0bb8ee149e
(background processing)
2459 lines
134 KiB
C++
2459 lines
134 KiB
C++
#include "Print.hpp"
|
||
#include "BoundingBox.hpp"
|
||
#include "ClipperUtils.hpp"
|
||
#include "Geometry.hpp"
|
||
#include "I18N.hpp"
|
||
#include "SupportMaterial.hpp"
|
||
#include "Surface.hpp"
|
||
#include "Slicing.hpp"
|
||
#include "Utils.hpp"
|
||
|
||
#include <utility>
|
||
#include <boost/log/trivial.hpp>
|
||
#include <float.h>
|
||
|
||
#include <tbb/task_scheduler_init.h>
|
||
#include <tbb/parallel_for.h>
|
||
#include <tbb/atomic.h>
|
||
|
||
#include <Shiny/Shiny.h>
|
||
|
||
//! macro used to mark string used at localization,
|
||
//! return same string
|
||
#define L(s) Slic3r::I18N::translate(s)
|
||
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
#define SLIC3R_DEBUG
|
||
#endif
|
||
|
||
// #define SLIC3R_DEBUG
|
||
|
||
// Make assert active if SLIC3R_DEBUG
|
||
#ifdef SLIC3R_DEBUG
|
||
#undef NDEBUG
|
||
#define DEBUG
|
||
#define _DEBUG
|
||
#include "SVG.hpp"
|
||
#undef assert
|
||
#include <cassert>
|
||
#endif
|
||
|
||
namespace Slic3r {
|
||
|
||
PrintObject::PrintObject(Print* print, ModelObject* model_object, bool add_instances) :
|
||
PrintObjectBaseWithState(print, model_object),
|
||
typed_slices(false),
|
||
size(Vec3crd::Zero())
|
||
{
|
||
// Compute the translation to be applied to our meshes so that we work with smaller coordinates
|
||
{
|
||
// Translate meshes so that our toolpath generation algorithms work with smaller
|
||
// XY coordinates; this translation is an optimization and not strictly required.
|
||
// A cloned mesh will be aligned to 0 before slicing in _slice_region() since we
|
||
// don't assume it's already aligned and we don't alter the original position in model.
|
||
// We store the XY translation so that we can place copies correctly in the output G-code
|
||
// (copies are expressed in G-code coordinates and this translation is not publicly exposed).
|
||
const BoundingBoxf3 modobj_bbox = model_object->raw_bounding_box();
|
||
m_copies_shift = Point::new_scale(modobj_bbox.min(0), modobj_bbox.min(1));
|
||
// Scale the object size and store it
|
||
this->size = (modobj_bbox.size() * (1. / SCALING_FACTOR)).cast<coord_t>();
|
||
}
|
||
|
||
if (add_instances) {
|
||
Points copies;
|
||
copies.reserve(m_model_object->instances.size());
|
||
for (const ModelInstance *mi : m_model_object->instances) {
|
||
assert(mi->is_printable());
|
||
const Vec3d& offset = mi->get_offset();
|
||
copies.emplace_back(Point::new_scale(offset(0), offset(1)));
|
||
}
|
||
this->set_copies(copies);
|
||
}
|
||
}
|
||
|
||
PrintBase::ApplyStatus PrintObject::set_copies(const Points &points)
|
||
{
|
||
// Order copies with a nearest-neighbor search.
|
||
std::vector<Point> copies;
|
||
{
|
||
std::vector<Points::size_type> ordered_copies;
|
||
Slic3r::Geometry::chained_path(points, ordered_copies);
|
||
copies.reserve(ordered_copies.size());
|
||
for (size_t point_idx : ordered_copies)
|
||
copies.emplace_back(points[point_idx] + m_copies_shift);
|
||
}
|
||
// Invalidate and set copies.
|
||
PrintBase::ApplyStatus status = PrintBase::APPLY_STATUS_UNCHANGED;
|
||
if (copies != m_copies) {
|
||
status = PrintBase::APPLY_STATUS_CHANGED;
|
||
if (m_print->invalidate_steps({ psSkirt, psBrim, psGCodeExport }) ||
|
||
(copies.size() != m_copies.size() && m_print->invalidate_step(psWipeTower)))
|
||
status = PrintBase::APPLY_STATUS_INVALIDATED;
|
||
m_copies = copies;
|
||
}
|
||
return status;
|
||
}
|
||
|
||
// 1) Decides Z positions of the layers,
|
||
// 2) Initializes layers and their regions
|
||
// 3) Slices the object meshes
|
||
// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
|
||
// 5) Applies size compensation (offsets the slices in XY plane)
|
||
// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
|
||
// Resulting expolygons of layer regions are marked as Internal.
|
||
//
|
||
// this should be idempotent
|
||
void PrintObject::slice()
|
||
{
|
||
if (! this->set_started(posSlice))
|
||
return;
|
||
m_print->set_status(10, L("Processing triangulated mesh"));
|
||
std::vector<coordf_t> layer_height_profile;
|
||
this->update_layer_height_profile(*this->model_object(), m_slicing_params, layer_height_profile);
|
||
m_print->throw_if_canceled();
|
||
this->_slice(layer_height_profile);
|
||
m_print->throw_if_canceled();
|
||
// Fix the model.
|
||
//FIXME is this the right place to do? It is done repeateadly at the UI and now here at the backend.
|
||
std::string warning = this->_fix_slicing_errors();
|
||
m_print->throw_if_canceled();
|
||
if (! warning.empty())
|
||
BOOST_LOG_TRIVIAL(info) << warning;
|
||
// Simplify slices if required.
|
||
if (m_print->config().resolution)
|
||
this->_simplify_slices(scale_(this->print()->config().resolution));
|
||
if (m_layers.empty())
|
||
throw std::runtime_error("No layers were detected. You might want to repair your STL file(s) or check their size or thickness and retry.\n");
|
||
this->set_done(posSlice);
|
||
}
|
||
|
||
// 1) Merges typed region slices into stInternal type.
|
||
// 2) Increases an "extra perimeters" counter at region slices where needed.
|
||
// 3) Generates perimeters, gap fills and fill regions (fill regions of type stInternal).
|
||
void PrintObject::make_perimeters()
|
||
{
|
||
// prerequisites
|
||
this->slice();
|
||
|
||
if (! this->set_started(posPerimeters))
|
||
return;
|
||
|
||
m_print->set_status(20, L("Generating perimeters"));
|
||
BOOST_LOG_TRIVIAL(info) << "Generating perimeters..." << log_memory_info();
|
||
|
||
// merge slices if they were split into types
|
||
if (this->typed_slices) {
|
||
for (Layer *layer : m_layers) {
|
||
layer->merge_slices();
|
||
m_print->throw_if_canceled();
|
||
}
|
||
this->typed_slices = false;
|
||
}
|
||
|
||
// compare each layer to the one below, and mark those slices needing
|
||
// one additional inner perimeter, like the top of domed objects-
|
||
|
||
// this algorithm makes sure that at least one perimeter is overlapping
|
||
// but we don't generate any extra perimeter if fill density is zero, as they would be floating
|
||
// inside the object - infill_only_where_needed should be the method of choice for printing
|
||
// hollow objects
|
||
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
|
||
const PrintRegion ®ion = *m_print->regions()[region_id];
|
||
if (! region.config().extra_perimeters || region.config().perimeters == 0 || region.config().fill_density == 0 || this->layer_count() < 2)
|
||
continue;
|
||
|
||
BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - start";
|
||
tbb::parallel_for(
|
||
tbb::blocked_range<size_t>(0, m_layers.size() - 1),
|
||
[this, ®ion, region_id](const tbb::blocked_range<size_t>& range) {
|
||
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
|
||
m_print->throw_if_canceled();
|
||
LayerRegion &layerm = *m_layers[layer_idx]->m_regions[region_id];
|
||
const LayerRegion &upper_layerm = *m_layers[layer_idx+1]->m_regions[region_id];
|
||
const Polygons upper_layerm_polygons = upper_layerm.slices;
|
||
// Filter upper layer polygons in intersection_ppl by their bounding boxes?
|
||
// my $upper_layerm_poly_bboxes= [ map $_->bounding_box, @{$upper_layerm_polygons} ];
|
||
const double total_loop_length = total_length(upper_layerm_polygons);
|
||
const coord_t perimeter_spacing = layerm.flow(frPerimeter).scaled_spacing();
|
||
const Flow ext_perimeter_flow = layerm.flow(frExternalPerimeter);
|
||
const coord_t ext_perimeter_width = ext_perimeter_flow.scaled_width();
|
||
const coord_t ext_perimeter_spacing = ext_perimeter_flow.scaled_spacing();
|
||
|
||
for (Surface &slice : layerm.slices.surfaces) {
|
||
for (;;) {
|
||
// compute the total thickness of perimeters
|
||
const coord_t perimeters_thickness = ext_perimeter_width/2 + ext_perimeter_spacing/2
|
||
+ (region.config().perimeters-1 + slice.extra_perimeters) * perimeter_spacing;
|
||
// define a critical area where we don't want the upper slice to fall into
|
||
// (it should either lay over our perimeters or outside this area)
|
||
const coord_t critical_area_depth = coord_t(perimeter_spacing * 1.5);
|
||
const Polygons critical_area = diff(
|
||
offset(slice.expolygon, float(- perimeters_thickness)),
|
||
offset(slice.expolygon, float(- perimeters_thickness - critical_area_depth))
|
||
);
|
||
// check whether a portion of the upper slices falls inside the critical area
|
||
const Polylines intersection = intersection_pl(to_polylines(upper_layerm_polygons), critical_area);
|
||
// only add an additional loop if at least 30% of the slice loop would benefit from it
|
||
if (total_length(intersection) <= total_loop_length*0.3)
|
||
break;
|
||
/*
|
||
if (0) {
|
||
require "Slic3r/SVG.pm";
|
||
Slic3r::SVG::output(
|
||
"extra.svg",
|
||
no_arrows => 1,
|
||
expolygons => union_ex($critical_area),
|
||
polylines => [ map $_->split_at_first_point, map $_->p, @{$upper_layerm->slices} ],
|
||
);
|
||
}
|
||
*/
|
||
++ slice.extra_perimeters;
|
||
}
|
||
#ifdef DEBUG
|
||
if (slice.extra_perimeters > 0)
|
||
printf(" adding %d more perimeter(s) at layer %zu\n", slice.extra_perimeters, layer_idx);
|
||
#endif
|
||
}
|
||
}
|
||
});
|
||
m_print->throw_if_canceled();
|
||
BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - end";
|
||
}
|
||
|
||
BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - start";
|
||
tbb::parallel_for(
|
||
tbb::blocked_range<size_t>(0, m_layers.size()),
|
||
[this](const tbb::blocked_range<size_t>& range) {
|
||
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
|
||
m_print->throw_if_canceled();
|
||
m_layers[layer_idx]->make_perimeters();
|
||
}
|
||
}
|
||
);
|
||
m_print->throw_if_canceled();
|
||
BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - end";
|
||
|
||
/*
|
||
simplify slices (both layer and region slices),
|
||
we only need the max resolution for perimeters
|
||
### This makes this method not-idempotent, so we keep it disabled for now.
|
||
###$self->_simplify_slices(&Slic3r::SCALED_RESOLUTION);
|
||
*/
|
||
|
||
this->set_done(posPerimeters);
|
||
}
|
||
|
||
void PrintObject::prepare_infill()
|
||
{
|
||
if (! this->set_started(posPrepareInfill))
|
||
return;
|
||
|
||
m_print->set_status(30, L("Preparing infill"));
|
||
|
||
// This will assign a type (top/bottom/internal) to $layerm->slices.
|
||
// Then the classifcation of $layerm->slices is transfered onto
|
||
// the $layerm->fill_surfaces by clipping $layerm->fill_surfaces
|
||
// by the cummulative area of the previous $layerm->fill_surfaces.
|
||
this->detect_surfaces_type();
|
||
m_print->throw_if_canceled();
|
||
|
||
// Decide what surfaces are to be filled.
|
||
// Here the S_TYPE_TOP / S_TYPE_BOTTOMBRIDGE / S_TYPE_BOTTOM infill is turned to just S_TYPE_INTERNAL if zero top / bottom infill layers are configured.
|
||
// Also tiny S_TYPE_INTERNAL surfaces are turned to S_TYPE_INTERNAL_SOLID.
|
||
BOOST_LOG_TRIVIAL(info) << "Preparing fill surfaces..." << log_memory_info();
|
||
for (auto *layer : m_layers)
|
||
for (auto *region : layer->m_regions) {
|
||
region->prepare_fill_surfaces();
|
||
m_print->throw_if_canceled();
|
||
}
|
||
|
||
// this will detect bridges and reverse bridges
|
||
// and rearrange top/bottom/internal surfaces
|
||
// It produces enlarged overlapping bridging areas.
|
||
//
|
||
// 1) S_TYPE_BOTTOMBRIDGE / S_TYPE_BOTTOM infill is grown by 3mm and clipped by the total infill area. Bridges are detected. The areas may overlap.
|
||
// 2) S_TYPE_TOP is grown by 3mm and clipped by the grown bottom areas. The areas may overlap.
|
||
// 3) Clip the internal surfaces by the grown top/bottom surfaces.
|
||
// 4) Merge surfaces with the same style. This will mostly get rid of the overlaps.
|
||
//FIXME This does not likely merge surfaces, which are supported by a material with different colors, but same properties.
|
||
this->process_external_surfaces();
|
||
m_print->throw_if_canceled();
|
||
|
||
// Add solid fills to ensure the shell vertical thickness.
|
||
this->discover_vertical_shells();
|
||
m_print->throw_if_canceled();
|
||
|
||
// Debugging output.
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
|
||
for (const Layer *layer : m_layers) {
|
||
LayerRegion *layerm = layer->m_regions[region_id];
|
||
layerm->export_region_slices_to_svg_debug("6_discover_vertical_shells-final");
|
||
layerm->export_region_fill_surfaces_to_svg_debug("6_discover_vertical_shells-final");
|
||
} // for each layer
|
||
} // for each region
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
|
||
// Detect, which fill surfaces are near external layers.
|
||
// They will be split in internal and internal-solid surfaces.
|
||
// The purpose is to add a configurable number of solid layers to support the TOP surfaces
|
||
// and to add a configurable number of solid layers above the BOTTOM / BOTTOMBRIDGE surfaces
|
||
// to close these surfaces reliably.
|
||
//FIXME Vojtech: Is this a good place to add supporting infills below sloping perimeters?
|
||
this->discover_horizontal_shells();
|
||
m_print->throw_if_canceled();
|
||
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
|
||
for (const Layer *layer : m_layers) {
|
||
LayerRegion *layerm = layer->m_regions[region_id];
|
||
layerm->export_region_slices_to_svg_debug("7_discover_horizontal_shells-final");
|
||
layerm->export_region_fill_surfaces_to_svg_debug("7_discover_horizontal_shells-final");
|
||
} // for each layer
|
||
} // for each region
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
|
||
// Only active if config->infill_only_where_needed. This step trims the sparse infill,
|
||
// so it acts as an internal support. It maintains all other infill types intact.
|
||
// Here the internal surfaces and perimeters have to be supported by the sparse infill.
|
||
//FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support.
|
||
// Likely the sparse infill will not be anchored correctly, so it will not work as intended.
|
||
// Also one wishes the perimeters to be supported by a full infill.
|
||
this->clip_fill_surfaces();
|
||
m_print->throw_if_canceled();
|
||
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
|
||
for (const Layer *layer : m_layers) {
|
||
LayerRegion *layerm = layer->m_regions[region_id];
|
||
layerm->export_region_slices_to_svg_debug("8_clip_surfaces-final");
|
||
layerm->export_region_fill_surfaces_to_svg_debug("8_clip_surfaces-final");
|
||
} // for each layer
|
||
} // for each region
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
|
||
// the following step needs to be done before combination because it may need
|
||
// to remove only half of the combined infill
|
||
this->bridge_over_infill();
|
||
m_print->throw_if_canceled();
|
||
|
||
// combine fill surfaces to honor the "infill every N layers" option
|
||
this->combine_infill();
|
||
m_print->throw_if_canceled();
|
||
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
|
||
for (const Layer *layer : m_layers) {
|
||
LayerRegion *layerm = layer->m_regions[region_id];
|
||
layerm->export_region_slices_to_svg_debug("9_prepare_infill-final");
|
||
layerm->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final");
|
||
} // for each layer
|
||
} // for each region
|
||
for (const Layer *layer : m_layers) {
|
||
layer->export_region_slices_to_svg_debug("9_prepare_infill-final");
|
||
layer->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final");
|
||
} // for each layer
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
|
||
this->set_done(posPrepareInfill);
|
||
}
|
||
|
||
void PrintObject::infill()
|
||
{
|
||
// prerequisites
|
||
this->prepare_infill();
|
||
|
||
if (this->set_started(posInfill)) {
|
||
BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - start";
|
||
tbb::parallel_for(
|
||
tbb::blocked_range<size_t>(0, m_layers.size()),
|
||
[this](const tbb::blocked_range<size_t>& range) {
|
||
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
|
||
m_print->throw_if_canceled();
|
||
m_layers[layer_idx]->make_fills();
|
||
}
|
||
}
|
||
);
|
||
m_print->throw_if_canceled();
|
||
BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - end";
|
||
/* we could free memory now, but this would make this step not idempotent
|
||
### $_->fill_surfaces->clear for map @{$_->regions}, @{$object->layers};
|
||
*/
|
||
this->set_done(posInfill);
|
||
}
|
||
}
|
||
|
||
void PrintObject::generate_support_material()
|
||
{
|
||
if (this->set_started(posSupportMaterial)) {
|
||
this->clear_support_layers();
|
||
if ((m_config.support_material || m_config.raft_layers > 0) && m_layers.size() > 1) {
|
||
m_print->set_status(85, L("Generating support material"));
|
||
this->_generate_support_material();
|
||
m_print->throw_if_canceled();
|
||
} else {
|
||
#if 0
|
||
// Printing without supports. Empty layer means some objects or object parts are levitating,
|
||
// therefore they cannot be printed without supports.
|
||
for (const Layer *layer : m_layers)
|
||
if (layer->empty())
|
||
throw std::runtime_error("Levitating objects cannot be printed without supports.");
|
||
#endif
|
||
}
|
||
this->set_done(posSupportMaterial);
|
||
}
|
||
}
|
||
|
||
void PrintObject::clear_layers()
|
||
{
|
||
for (Layer *l : m_layers)
|
||
delete l;
|
||
m_layers.clear();
|
||
}
|
||
|
||
Layer* PrintObject::add_layer(int id, coordf_t height, coordf_t print_z, coordf_t slice_z)
|
||
{
|
||
m_layers.emplace_back(new Layer(id, this, height, print_z, slice_z));
|
||
return m_layers.back();
|
||
}
|
||
|
||
void PrintObject::clear_support_layers()
|
||
{
|
||
for (Layer *l : m_support_layers)
|
||
delete l;
|
||
m_support_layers.clear();
|
||
}
|
||
|
||
SupportLayer* PrintObject::add_support_layer(int id, coordf_t height, coordf_t print_z)
|
||
{
|
||
m_support_layers.emplace_back(new SupportLayer(id, this, height, print_z, -1));
|
||
return m_support_layers.back();
|
||
}
|
||
|
||
SupportLayerPtrs::const_iterator PrintObject::insert_support_layer(SupportLayerPtrs::const_iterator pos, int id, coordf_t height, coordf_t print_z, coordf_t slice_z)
|
||
{
|
||
return m_support_layers.insert(pos, new SupportLayer(id, this, height, print_z, slice_z));
|
||
}
|
||
|
||
// Called by Print::apply().
|
||
// This method only accepts PrintObjectConfig and PrintRegionConfig option keys.
|
||
bool PrintObject::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys)
|
||
{
|
||
if (opt_keys.empty())
|
||
return false;
|
||
|
||
std::vector<PrintObjectStep> steps;
|
||
bool invalidated = false;
|
||
for (const t_config_option_key &opt_key : opt_keys) {
|
||
if ( opt_key == "perimeters"
|
||
|| opt_key == "extra_perimeters"
|
||
|| opt_key == "gap_fill_speed"
|
||
|| opt_key == "overhangs"
|
||
|| opt_key == "first_layer_extrusion_width"
|
||
|| opt_key == "perimeter_extrusion_width"
|
||
|| opt_key == "infill_overlap"
|
||
|| opt_key == "thin_walls"
|
||
|| opt_key == "external_perimeters_first") {
|
||
steps.emplace_back(posPerimeters);
|
||
} else if (
|
||
opt_key == "layer_height"
|
||
|| opt_key == "first_layer_height"
|
||
|| opt_key == "raft_layers"
|
||
|| opt_key == "slice_closing_radius") {
|
||
steps.emplace_back(posSlice);
|
||
}
|
||
else if (
|
||
opt_key == "clip_multipart_objects"
|
||
|| opt_key == "elefant_foot_compensation"
|
||
|| opt_key == "support_material_contact_distance"
|
||
|| opt_key == "xy_size_compensation") {
|
||
steps.emplace_back(posSlice);
|
||
} else if (
|
||
opt_key == "support_material"
|
||
|| opt_key == "support_material_auto"
|
||
|| opt_key == "support_material_angle"
|
||
|| opt_key == "support_material_buildplate_only"
|
||
|| opt_key == "support_material_enforce_layers"
|
||
|| opt_key == "support_material_extruder"
|
||
|| opt_key == "support_material_extrusion_width"
|
||
|| opt_key == "support_material_interface_layers"
|
||
|| opt_key == "support_material_interface_contact_loops"
|
||
|| opt_key == "support_material_interface_extruder"
|
||
|| opt_key == "support_material_interface_spacing"
|
||
|| opt_key == "support_material_pattern"
|
||
|| opt_key == "support_material_xy_spacing"
|
||
|| opt_key == "support_material_spacing"
|
||
|| opt_key == "support_material_synchronize_layers"
|
||
|| opt_key == "support_material_threshold"
|
||
|| opt_key == "support_material_with_sheath"
|
||
|| opt_key == "dont_support_bridges"
|
||
|| opt_key == "first_layer_extrusion_width") {
|
||
steps.emplace_back(posSupportMaterial);
|
||
} else if (
|
||
opt_key == "interface_shells"
|
||
|| opt_key == "infill_only_where_needed"
|
||
|| opt_key == "infill_every_layers"
|
||
|| opt_key == "solid_infill_every_layers"
|
||
|| opt_key == "bottom_solid_layers"
|
||
|| opt_key == "top_solid_layers"
|
||
|| opt_key == "solid_infill_below_area"
|
||
|| opt_key == "infill_extruder"
|
||
|| opt_key == "solid_infill_extruder"
|
||
|| opt_key == "infill_extrusion_width"
|
||
|| opt_key == "ensure_vertical_shell_thickness"
|
||
|| opt_key == "bridge_angle") {
|
||
steps.emplace_back(posPrepareInfill);
|
||
} else if (
|
||
opt_key == "top_fill_pattern"
|
||
|| opt_key == "bottom_fill_pattern"
|
||
|| opt_key == "external_fill_link_max_length"
|
||
|| opt_key == "fill_angle"
|
||
|| opt_key == "fill_pattern"
|
||
|| opt_key == "fill_link_max_length"
|
||
|| opt_key == "top_infill_extrusion_width"
|
||
|| opt_key == "first_layer_extrusion_width") {
|
||
steps.emplace_back(posInfill);
|
||
} else if (
|
||
opt_key == "fill_density"
|
||
|| opt_key == "solid_infill_extrusion_width") {
|
||
steps.emplace_back(posPerimeters);
|
||
steps.emplace_back(posPrepareInfill);
|
||
} else if (
|
||
opt_key == "external_perimeter_extrusion_width"
|
||
|| opt_key == "perimeter_extruder") {
|
||
steps.emplace_back(posPerimeters);
|
||
steps.emplace_back(posSupportMaterial);
|
||
} else if (opt_key == "bridge_flow_ratio") {
|
||
steps.emplace_back(posPerimeters);
|
||
steps.emplace_back(posInfill);
|
||
} else if (
|
||
opt_key == "seam_position"
|
||
|| opt_key == "seam_preferred_direction"
|
||
|| opt_key == "seam_preferred_direction_jitter"
|
||
|| opt_key == "support_material_speed"
|
||
|| opt_key == "support_material_interface_speed"
|
||
|| opt_key == "bridge_speed"
|
||
|| opt_key == "external_perimeter_speed"
|
||
|| opt_key == "infill_speed"
|
||
|| opt_key == "perimeter_speed"
|
||
|| opt_key == "small_perimeter_speed"
|
||
|| opt_key == "solid_infill_speed"
|
||
|| opt_key == "top_solid_infill_speed") {
|
||
invalidated |= m_print->invalidate_step(psGCodeExport);
|
||
} else if (
|
||
opt_key == "wipe_into_infill"
|
||
|| opt_key == "wipe_into_objects") {
|
||
invalidated |= m_print->invalidate_step(psWipeTower);
|
||
invalidated |= m_print->invalidate_step(psGCodeExport);
|
||
} else {
|
||
// for legacy, if we can't handle this option let's invalidate all steps
|
||
this->invalidate_all_steps();
|
||
invalidated = true;
|
||
}
|
||
}
|
||
|
||
sort_remove_duplicates(steps);
|
||
for (PrintObjectStep step : steps)
|
||
invalidated |= this->invalidate_step(step);
|
||
return invalidated;
|
||
}
|
||
|
||
bool PrintObject::invalidate_step(PrintObjectStep step)
|
||
{
|
||
bool invalidated = Inherited::invalidate_step(step);
|
||
|
||
// propagate to dependent steps
|
||
if (step == posPerimeters) {
|
||
invalidated |= this->invalidate_steps({ posPrepareInfill, posInfill });
|
||
invalidated |= m_print->invalidate_steps({ psSkirt, psBrim });
|
||
} else if (step == posPrepareInfill) {
|
||
invalidated |= this->invalidate_step(posInfill);
|
||
} else if (step == posInfill) {
|
||
invalidated |= m_print->invalidate_steps({ psSkirt, psBrim });
|
||
} else if (step == posSlice) {
|
||
invalidated |= this->invalidate_steps({ posPerimeters, posPrepareInfill, posInfill, posSupportMaterial });
|
||
invalidated |= m_print->invalidate_steps({ psSkirt, psBrim });
|
||
this->m_slicing_params.valid = false;
|
||
} else if (step == posSupportMaterial) {
|
||
invalidated |= m_print->invalidate_steps({ psSkirt, psBrim });
|
||
this->m_slicing_params.valid = false;
|
||
}
|
||
|
||
// Wipe tower depends on the ordering of extruders, which in turn depends on everything.
|
||
// It also decides about what the wipe_into_infill / wipe_into_object features will do,
|
||
// and that too depends on many of the settings.
|
||
invalidated |= m_print->invalidate_step(psWipeTower);
|
||
// Invalidate G-code export in any case.
|
||
invalidated |= m_print->invalidate_step(psGCodeExport);
|
||
return invalidated;
|
||
}
|
||
|
||
bool PrintObject::invalidate_all_steps()
|
||
{
|
||
return Inherited::invalidate_all_steps() | m_print->invalidate_all_steps();
|
||
}
|
||
|
||
bool PrintObject::has_support_material() const
|
||
{
|
||
return m_config.support_material
|
||
|| m_config.raft_layers > 0
|
||
|| m_config.support_material_enforce_layers > 0;
|
||
}
|
||
|
||
// This function analyzes slices of a region (SurfaceCollection slices).
|
||
// Each region slice (instance of Surface) is analyzed, whether it is supported or whether it is the top surface.
|
||
// Initially all slices are of type stInternal.
|
||
// Slices are compared against the top / bottom slices and regions and classified to the following groups:
|
||
// stTop - Part of a region, which is not covered by any upper layer. This surface will be filled with a top solid infill.
|
||
// stBottomBridge - Part of a region, which is not fully supported, but it hangs in the air, or it hangs losely on a support or a raft.
|
||
// stBottom - Part of a region, which is not supported by the same region, but it is supported either by another region, or by a soluble interface layer.
|
||
// stInternal - Part of a region, which is supported by the same region type.
|
||
// If a part of a region is of stBottom and stTop, the stBottom wins.
|
||
void PrintObject::detect_surfaces_type()
|
||
{
|
||
BOOST_LOG_TRIVIAL(info) << "Detecting solid surfaces..." << log_memory_info();
|
||
|
||
// Interface shells: the intersecting parts are treated as self standing objects supporting each other.
|
||
// Each of the objects will have a full number of top / bottom layers, even if these top / bottom layers
|
||
// are completely hidden inside a collective body of intersecting parts.
|
||
// This is useful if one of the parts is to be dissolved, or if it is transparent and the internal shells
|
||
// should be visible.
|
||
bool interface_shells = m_config.interface_shells.value;
|
||
|
||
for (int idx_region = 0; idx_region < this->region_volumes.size(); ++ idx_region) {
|
||
BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " in parallel - start";
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
for (Layer *layer : m_layers)
|
||
layer->m_regions[idx_region]->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-initial");
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
|
||
// If interface shells are allowed, the region->surfaces cannot be overwritten as they may be used by other threads.
|
||
// Cache the result of the following parallel_loop.
|
||
std::vector<Surfaces> surfaces_new;
|
||
if (interface_shells)
|
||
surfaces_new.assign(m_layers.size(), Surfaces());
|
||
|
||
tbb::parallel_for(
|
||
tbb::blocked_range<size_t>(0, m_layers.size()),
|
||
[this, idx_region, interface_shells, &surfaces_new](const tbb::blocked_range<size_t>& range) {
|
||
// If we have raft layers, consider bottom layer as a bridge just like any other bottom surface lying on the void.
|
||
SurfaceType surface_type_bottom_1st =
|
||
(m_config.raft_layers.value > 0 && m_config.support_material_contact_distance.value > 0) ?
|
||
stBottomBridge : stBottom;
|
||
// If we have soluble support material, don't bridge. The overhang will be squished against a soluble layer separating
|
||
// the support from the print.
|
||
SurfaceType surface_type_bottom_other =
|
||
(m_config.support_material.value && m_config.support_material_contact_distance.value == 0) ?
|
||
stBottom : stBottomBridge;
|
||
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
|
||
m_print->throw_if_canceled();
|
||
// BOOST_LOG_TRIVIAL(trace) << "Detecting solid surfaces for region " << idx_region << " and layer " << layer->print_z;
|
||
Layer *layer = m_layers[idx_layer];
|
||
LayerRegion *layerm = layer->get_region(idx_region);
|
||
// comparison happens against the *full* slices (considering all regions)
|
||
// unless internal shells are requested
|
||
Layer *upper_layer = (idx_layer + 1 < this->layer_count()) ? m_layers[idx_layer + 1] : nullptr;
|
||
Layer *lower_layer = (idx_layer > 0) ? m_layers[idx_layer - 1] : nullptr;
|
||
// collapse very narrow parts (using the safety offset in the diff is not enough)
|
||
float offset = layerm->flow(frExternalPerimeter).scaled_width() / 10.f;
|
||
|
||
Polygons layerm_slices_surfaces = to_polygons(layerm->slices.surfaces);
|
||
|
||
// find top surfaces (difference between current surfaces
|
||
// of current layer and upper one)
|
||
Surfaces top;
|
||
if (upper_layer) {
|
||
Polygons upper_slices = interface_shells ?
|
||
to_polygons(upper_layer->get_region(idx_region)->slices.surfaces) :
|
||
to_polygons(upper_layer->slices);
|
||
surfaces_append(top,
|
||
//FIXME implement offset2_ex working over ExPolygons, that should be a bit more efficient than calling offset_ex twice.
|
||
offset_ex(offset_ex(diff_ex(layerm_slices_surfaces, upper_slices, true), -offset), offset),
|
||
stTop);
|
||
} else {
|
||
// if no upper layer, all surfaces of this one are solid
|
||
// we clone surfaces because we're going to clear the slices collection
|
||
top = layerm->slices.surfaces;
|
||
for (Surface &surface : top)
|
||
surface.surface_type = stTop;
|
||
}
|
||
|
||
// Find bottom surfaces (difference between current surfaces of current layer and lower one).
|
||
Surfaces bottom;
|
||
if (lower_layer) {
|
||
#if 0
|
||
//FIXME Why is this branch failing t\multi.t ?
|
||
Polygons lower_slices = interface_shells ?
|
||
to_polygons(lower_layer->get_region(idx_region)->slices.surfaces) :
|
||
to_polygons(lower_layer->slices);
|
||
surfaces_append(bottom,
|
||
offset2_ex(diff(layerm_slices_surfaces, lower_slices, true), -offset, offset),
|
||
surface_type_bottom_other);
|
||
#else
|
||
// Any surface lying on the void is a true bottom bridge (an overhang)
|
||
surfaces_append(
|
||
bottom,
|
||
offset2_ex(
|
||
diff(layerm_slices_surfaces, to_polygons(lower_layer->slices), true),
|
||
-offset, offset),
|
||
surface_type_bottom_other);
|
||
// if user requested internal shells, we need to identify surfaces
|
||
// lying on other slices not belonging to this region
|
||
if (interface_shells) {
|
||
// non-bridging bottom surfaces: any part of this layer lying
|
||
// on something else, excluding those lying on our own region
|
||
surfaces_append(
|
||
bottom,
|
||
offset2_ex(
|
||
diff(
|
||
intersection(layerm_slices_surfaces, to_polygons(lower_layer->slices)), // supported
|
||
to_polygons(lower_layer->get_region(idx_region)->slices.surfaces),
|
||
true),
|
||
-offset, offset),
|
||
stBottom);
|
||
}
|
||
#endif
|
||
} else {
|
||
// if no lower layer, all surfaces of this one are solid
|
||
// we clone surfaces because we're going to clear the slices collection
|
||
bottom = layerm->slices.surfaces;
|
||
for (Surface &surface : bottom)
|
||
surface.surface_type = surface_type_bottom_1st;
|
||
}
|
||
|
||
// now, if the object contained a thin membrane, we could have overlapping bottom
|
||
// and top surfaces; let's do an intersection to discover them and consider them
|
||
// as bottom surfaces (to allow for bridge detection)
|
||
if (! top.empty() && ! bottom.empty()) {
|
||
// Polygons overlapping = intersection(to_polygons(top), to_polygons(bottom));
|
||
// Slic3r::debugf " layer %d contains %d membrane(s)\n", $layerm->layer->id, scalar(@$overlapping)
|
||
// if $Slic3r::debug;
|
||
Polygons top_polygons = to_polygons(std::move(top));
|
||
top.clear();
|
||
surfaces_append(top,
|
||
diff_ex(top_polygons, to_polygons(bottom), false),
|
||
stTop);
|
||
}
|
||
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
{
|
||
static int iRun = 0;
|
||
std::vector<std::pair<Slic3r::ExPolygons, SVG::ExPolygonAttributes>> expolygons_with_attributes;
|
||
expolygons_with_attributes.emplace_back(std::make_pair(union_ex(top), SVG::ExPolygonAttributes("green")));
|
||
expolygons_with_attributes.emplace_back(std::make_pair(union_ex(bottom), SVG::ExPolygonAttributes("brown")));
|
||
expolygons_with_attributes.emplace_back(std::make_pair(to_expolygons(layerm->slices.surfaces), SVG::ExPolygonAttributes("black")));
|
||
SVG::export_expolygons(debug_out_path("1_detect_surfaces_type_%d_region%d-layer_%f.svg", iRun ++, idx_region, layer->print_z).c_str(), expolygons_with_attributes);
|
||
}
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
|
||
// save surfaces to layer
|
||
Surfaces &surfaces_out = interface_shells ? surfaces_new[idx_layer] : layerm->slices.surfaces;
|
||
surfaces_out.clear();
|
||
|
||
// find internal surfaces (difference between top/bottom surfaces and others)
|
||
{
|
||
Polygons topbottom = to_polygons(top);
|
||
polygons_append(topbottom, to_polygons(bottom));
|
||
surfaces_append(surfaces_out,
|
||
diff_ex(layerm_slices_surfaces, topbottom, false),
|
||
stInternal);
|
||
}
|
||
|
||
surfaces_append(surfaces_out, std::move(top));
|
||
surfaces_append(surfaces_out, std::move(bottom));
|
||
|
||
// Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n",
|
||
// $layerm->layer->id, scalar(@bottom), scalar(@top), scalar(@internal) if $Slic3r::debug;
|
||
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
layerm->export_region_slices_to_svg_debug("detect_surfaces_type-final");
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
}
|
||
}
|
||
); // for each layer of a region
|
||
m_print->throw_if_canceled();
|
||
|
||
if (interface_shells) {
|
||
// Move surfaces_new to layerm->slices.surfaces
|
||
for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++ idx_layer)
|
||
m_layers[idx_layer]->get_region(idx_region)->slices.surfaces = std::move(surfaces_new[idx_layer]);
|
||
}
|
||
|
||
BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " - clipping in parallel - start";
|
||
// Fill in layerm->fill_surfaces by trimming the layerm->slices by the cummulative layerm->fill_surfaces.
|
||
tbb::parallel_for(
|
||
tbb::blocked_range<size_t>(0, m_layers.size()),
|
||
[this, idx_region, interface_shells, &surfaces_new](const tbb::blocked_range<size_t>& range) {
|
||
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
|
||
m_print->throw_if_canceled();
|
||
LayerRegion *layerm = m_layers[idx_layer]->get_region(idx_region);
|
||
layerm->slices_to_fill_surfaces_clipped();
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
layerm->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-final");
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
} // for each layer of a region
|
||
});
|
||
m_print->throw_if_canceled();
|
||
BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " - clipping in parallel - end";
|
||
} // for each this->print->region_count
|
||
|
||
// Mark the object to have the region slices classified (typed, which also means they are split based on whether they are supported, bridging, top layers etc.)
|
||
this->typed_slices = true;
|
||
}
|
||
|
||
void PrintObject::process_external_surfaces()
|
||
{
|
||
BOOST_LOG_TRIVIAL(info) << "Processing external surfaces..." << log_memory_info();
|
||
|
||
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++region_id) {
|
||
const PrintRegion ®ion = *m_print->regions()[region_id];
|
||
|
||
BOOST_LOG_TRIVIAL(debug) << "Processing external surfaces for region " << region_id << " in parallel - start";
|
||
tbb::parallel_for(
|
||
tbb::blocked_range<size_t>(0, m_layers.size()),
|
||
[this, region_id](const tbb::blocked_range<size_t>& range) {
|
||
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
|
||
m_print->throw_if_canceled();
|
||
// BOOST_LOG_TRIVIAL(trace) << "Processing external surface, layer" << m_layers[layer_idx]->print_z;
|
||
m_layers[layer_idx]->get_region((int)region_id)->process_external_surfaces((layer_idx == 0) ? NULL : m_layers[layer_idx - 1]);
|
||
}
|
||
}
|
||
);
|
||
m_print->throw_if_canceled();
|
||
BOOST_LOG_TRIVIAL(debug) << "Processing external surfaces for region " << region_id << " in parallel - end";
|
||
}
|
||
}
|
||
|
||
void PrintObject::discover_vertical_shells()
|
||
{
|
||
PROFILE_FUNC();
|
||
|
||
BOOST_LOG_TRIVIAL(info) << "Discovering vertical shells..." << log_memory_info();
|
||
|
||
struct DiscoverVerticalShellsCacheEntry
|
||
{
|
||
// Collected polygons, offsetted
|
||
Polygons top_surfaces;
|
||
Polygons bottom_surfaces;
|
||
Polygons holes;
|
||
};
|
||
std::vector<DiscoverVerticalShellsCacheEntry> cache_top_botom_regions(m_layers.size(), DiscoverVerticalShellsCacheEntry());
|
||
bool top_bottom_surfaces_all_regions = this->region_volumes.size() > 1 && ! m_config.interface_shells.value;
|
||
if (top_bottom_surfaces_all_regions) {
|
||
// This is a multi-material print and interface_shells are disabled, meaning that the vertical shell thickness
|
||
// is calculated over all materials.
|
||
// Is the "ensure vertical wall thickness" applicable to any region?
|
||
bool has_extra_layers = false;
|
||
for (size_t idx_region = 0; idx_region < this->region_volumes.size(); ++ idx_region) {
|
||
const PrintRegion ®ion = *m_print->get_region(idx_region);
|
||
if (region.config().ensure_vertical_shell_thickness.value &&
|
||
(region.config().top_solid_layers.value > 1 || region.config().bottom_solid_layers.value > 1)) {
|
||
has_extra_layers = true;
|
||
}
|
||
}
|
||
if (! has_extra_layers)
|
||
// The "ensure vertical wall thickness" feature is not applicable to any of the regions. Quit.
|
||
return;
|
||
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells in parallel - start : cache top / bottom";
|
||
//FIXME Improve the heuristics for a grain size.
|
||
size_t grain_size = std::max(m_layers.size() / 16, size_t(1));
|
||
tbb::parallel_for(
|
||
tbb::blocked_range<size_t>(0, m_layers.size(), grain_size),
|
||
[this, &cache_top_botom_regions](const tbb::blocked_range<size_t>& range) {
|
||
const SurfaceType surfaces_bottom[2] = { stBottom, stBottomBridge };
|
||
const size_t num_regions = this->region_volumes.size();
|
||
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
|
||
m_print->throw_if_canceled();
|
||
const Layer &layer = *m_layers[idx_layer];
|
||
DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[idx_layer];
|
||
// Simulate single set of perimeters over all merged regions.
|
||
float perimeter_offset = 0.f;
|
||
float perimeter_min_spacing = FLT_MAX;
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
static size_t debug_idx = 0;
|
||
++ debug_idx;
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
for (size_t idx_region = 0; idx_region < num_regions; ++ idx_region) {
|
||
LayerRegion &layerm = *layer.m_regions[idx_region];
|
||
float min_perimeter_infill_spacing = float(layerm.flow(frSolidInfill).scaled_spacing()) * 1.05f;
|
||
// Top surfaces.
|
||
append(cache.top_surfaces, offset(to_expolygons(layerm.slices.filter_by_type(stTop)), min_perimeter_infill_spacing));
|
||
append(cache.top_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_type(stTop)), min_perimeter_infill_spacing));
|
||
// Bottom surfaces.
|
||
append(cache.bottom_surfaces, offset(to_expolygons(layerm.slices.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing));
|
||
append(cache.bottom_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing));
|
||
// Calculate the maximum perimeter offset as if the slice was extruded with a single extruder only.
|
||
// First find the maxium number of perimeters per region slice.
|
||
unsigned int perimeters = 0;
|
||
for (Surface &s : layerm.slices.surfaces)
|
||
perimeters = std::max<unsigned int>(perimeters, s.extra_perimeters);
|
||
perimeters += layerm.region()->config().perimeters.value;
|
||
// Then calculate the infill offset.
|
||
if (perimeters > 0) {
|
||
Flow extflow = layerm.flow(frExternalPerimeter);
|
||
Flow flow = layerm.flow(frPerimeter);
|
||
perimeter_offset = std::max(perimeter_offset,
|
||
0.5f * float(extflow.scaled_width() + extflow.scaled_spacing()) + (float(perimeters) - 1.f) * flow.scaled_spacing());
|
||
perimeter_min_spacing = std::min(perimeter_min_spacing, float(std::min(extflow.scaled_spacing(), flow.scaled_spacing())));
|
||
}
|
||
polygons_append(cache.holes, to_polygons(layerm.fill_expolygons));
|
||
}
|
||
// Save some computing time by reducing the number of polygons.
|
||
cache.top_surfaces = union_(cache.top_surfaces, false);
|
||
cache.bottom_surfaces = union_(cache.bottom_surfaces, false);
|
||
// For a multi-material print, simulate perimeter / infill split as if only a single extruder has been used for the whole print.
|
||
if (perimeter_offset > 0.) {
|
||
// The layer.slices are forced to merge by expanding them first.
|
||
polygons_append(cache.holes, offset(offset_ex(layer.slices, 0.3f * perimeter_min_spacing), - perimeter_offset - 0.3f * perimeter_min_spacing));
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
{
|
||
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-extra-holes-%d.svg", debug_idx), get_extents(layer.slices.expolygons));
|
||
svg.draw(layer.slices.expolygons, "blue");
|
||
svg.draw(union_ex(cache.holes), "red");
|
||
svg.draw_outline(union_ex(cache.holes), "black", "blue", scale_(0.05));
|
||
svg.Close();
|
||
}
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
}
|
||
cache.holes = union_(cache.holes, false);
|
||
}
|
||
});
|
||
m_print->throw_if_canceled();
|
||
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells in parallel - end : cache top / bottom";
|
||
}
|
||
|
||
for (size_t idx_region = 0; idx_region < this->region_volumes.size(); ++ idx_region) {
|
||
PROFILE_BLOCK(discover_vertical_shells_region);
|
||
|
||
const PrintRegion ®ion = *m_print->get_region(idx_region);
|
||
if (! region.config().ensure_vertical_shell_thickness.value)
|
||
// This region will be handled by discover_horizontal_shells().
|
||
continue;
|
||
int n_extra_top_layers = std::max(0, region.config().top_solid_layers.value - 1);
|
||
int n_extra_bottom_layers = std::max(0, region.config().bottom_solid_layers.value - 1);
|
||
if (n_extra_top_layers + n_extra_bottom_layers == 0)
|
||
// Zero or 1 layer, there is no additional vertical wall thickness enforced.
|
||
continue;
|
||
|
||
//FIXME Improve the heuristics for a grain size.
|
||
size_t grain_size = std::max(m_layers.size() / 16, size_t(1));
|
||
|
||
if (! top_bottom_surfaces_all_regions) {
|
||
// This is either a single material print, or a multi-material print and interface_shells are enabled, meaning that the vertical shell thickness
|
||
// is calculated over a single material.
|
||
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - start : cache top / bottom";
|
||
tbb::parallel_for(
|
||
tbb::blocked_range<size_t>(0, m_layers.size(), grain_size),
|
||
[this, idx_region, &cache_top_botom_regions](const tbb::blocked_range<size_t>& range) {
|
||
const SurfaceType surfaces_bottom[2] = { stBottom, stBottomBridge };
|
||
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
|
||
m_print->throw_if_canceled();
|
||
Layer &layer = *m_layers[idx_layer];
|
||
LayerRegion &layerm = *layer.m_regions[idx_region];
|
||
float min_perimeter_infill_spacing = float(layerm.flow(frSolidInfill).scaled_spacing()) * 1.05f;
|
||
// Top surfaces.
|
||
auto &cache = cache_top_botom_regions[idx_layer];
|
||
cache.top_surfaces = offset(to_expolygons(layerm.slices.filter_by_type(stTop)), min_perimeter_infill_spacing);
|
||
append(cache.top_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_type(stTop)), min_perimeter_infill_spacing));
|
||
// Bottom surfaces.
|
||
cache.bottom_surfaces = offset(to_expolygons(layerm.slices.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing);
|
||
append(cache.bottom_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing));
|
||
// Holes over all regions. Only collect them once, they are valid for all idx_region iterations.
|
||
if (cache.holes.empty()) {
|
||
for (size_t idx_region = 0; idx_region < layer.regions().size(); ++ idx_region)
|
||
polygons_append(cache.holes, to_polygons(layer.regions()[idx_region]->fill_expolygons));
|
||
}
|
||
}
|
||
});
|
||
m_print->throw_if_canceled();
|
||
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - end : cache top / bottom";
|
||
}
|
||
|
||
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - start : ensure vertical wall thickness";
|
||
tbb::parallel_for(
|
||
tbb::blocked_range<size_t>(0, m_layers.size(), grain_size),
|
||
[this, idx_region, n_extra_top_layers, n_extra_bottom_layers, &cache_top_botom_regions]
|
||
(const tbb::blocked_range<size_t>& range) {
|
||
// printf("discover_vertical_shells from %d to %d\n", range.begin(), range.end());
|
||
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
|
||
PROFILE_BLOCK(discover_vertical_shells_region_layer);
|
||
m_print->throw_if_canceled();
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
static size_t debug_idx = 0;
|
||
++ debug_idx;
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
|
||
Layer *layer = m_layers[idx_layer];
|
||
LayerRegion *layerm = layer->m_regions[idx_region];
|
||
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
layerm->export_region_slices_to_svg_debug("4_discover_vertical_shells-initial");
|
||
layerm->export_region_fill_surfaces_to_svg_debug("4_discover_vertical_shells-initial");
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
|
||
Flow solid_infill_flow = layerm->flow(frSolidInfill);
|
||
coord_t infill_line_spacing = solid_infill_flow.scaled_spacing();
|
||
// Find a union of perimeters below / above this surface to guarantee a minimum shell thickness.
|
||
Polygons shell;
|
||
Polygons holes;
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
ExPolygons shell_ex;
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
float min_perimeter_infill_spacing = float(infill_line_spacing) * 1.05f;
|
||
{
|
||
PROFILE_BLOCK(discover_vertical_shells_region_layer_collect);
|
||
#if 0
|
||
// #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
{
|
||
Slic3r::SVG svg_cummulative(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d.svg", debug_idx), this->bounding_box());
|
||
for (int n = (int)idx_layer - n_extra_bottom_layers; n <= (int)idx_layer + n_extra_top_layers; ++ n) {
|
||
if (n < 0 || n >= (int)m_layers.size())
|
||
continue;
|
||
ExPolygons &expolys = m_layers[n]->perimeter_expolygons;
|
||
for (size_t i = 0; i < expolys.size(); ++ i) {
|
||
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d-layer%d-expoly%d.svg", debug_idx, n, i), get_extents(expolys[i]));
|
||
svg.draw(expolys[i]);
|
||
svg.draw_outline(expolys[i].contour, "black", scale_(0.05));
|
||
svg.draw_outline(expolys[i].holes, "blue", scale_(0.05));
|
||
svg.Close();
|
||
|
||
svg_cummulative.draw(expolys[i]);
|
||
svg_cummulative.draw_outline(expolys[i].contour, "black", scale_(0.05));
|
||
svg_cummulative.draw_outline(expolys[i].holes, "blue", scale_(0.05));
|
||
}
|
||
}
|
||
}
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
// Reset the top / bottom inflated regions caches of entries, which are out of the moving window.
|
||
bool hole_first = true;
|
||
for (int n = (int)idx_layer - n_extra_bottom_layers; n <= (int)idx_layer + n_extra_top_layers; ++ n)
|
||
if (n >= 0 && n < (int)m_layers.size()) {
|
||
Layer &neighbor_layer = *m_layers[n];
|
||
const DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[n];
|
||
if (hole_first) {
|
||
hole_first = false;
|
||
polygons_append(holes, cache.holes);
|
||
}
|
||
else if (! holes.empty()) {
|
||
holes = intersection(holes, cache.holes);
|
||
}
|
||
size_t n_shell_old = shell.size();
|
||
if (n > int(idx_layer))
|
||
// Collect top surfaces.
|
||
polygons_append(shell, cache.top_surfaces);
|
||
else if (n < int(idx_layer))
|
||
// Collect bottom and bottom bridge surfaces.
|
||
polygons_append(shell, cache.bottom_surfaces);
|
||
// Running the union_ using the Clipper library piece by piece is cheaper
|
||
// than running the union_ all at once.
|
||
if (n_shell_old < shell.size())
|
||
shell = union_(shell, false);
|
||
}
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
{
|
||
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-%d.svg", debug_idx), get_extents(shell));
|
||
svg.draw(shell);
|
||
svg.draw_outline(shell, "black", scale_(0.05));
|
||
svg.Close();
|
||
}
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
#if 0
|
||
{
|
||
PROFILE_BLOCK(discover_vertical_shells_region_layer_shell_);
|
||
// shell = union_(shell, true);
|
||
shell = union_(shell, false);
|
||
}
|
||
#endif
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
shell_ex = union_ex(shell, true);
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
}
|
||
|
||
//if (shell.empty())
|
||
// continue;
|
||
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
{
|
||
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-after-union-%d.svg", debug_idx), get_extents(shell));
|
||
svg.draw(shell_ex);
|
||
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
|
||
svg.Close();
|
||
}
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
{
|
||
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internal-wshell-%d.svg", debug_idx), get_extents(shell));
|
||
svg.draw(layerm->fill_surfaces.filter_by_type(stInternal), "yellow", 0.5);
|
||
svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternal), "black", "blue", scale_(0.05));
|
||
svg.draw(shell_ex, "blue", 0.5);
|
||
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
|
||
svg.Close();
|
||
}
|
||
{
|
||
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internalvoid-wshell-%d.svg", debug_idx), get_extents(shell));
|
||
svg.draw(layerm->fill_surfaces.filter_by_type(stInternalVoid), "yellow", 0.5);
|
||
svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternalVoid), "black", "blue", scale_(0.05));
|
||
svg.draw(shell_ex, "blue", 0.5);
|
||
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
|
||
svg.Close();
|
||
}
|
||
{
|
||
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internalvoid-wshell-%d.svg", debug_idx), get_extents(shell));
|
||
svg.draw(layerm->fill_surfaces.filter_by_type(stInternalVoid), "yellow", 0.5);
|
||
svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternalVoid), "black", "blue", scale_(0.05));
|
||
svg.draw(shell_ex, "blue", 0.5);
|
||
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
|
||
svg.Close();
|
||
}
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
|
||
// Trim the shells region by the internal & internal void surfaces.
|
||
const SurfaceType surfaceTypesInternal[] = { stInternal, stInternalVoid, stInternalSolid };
|
||
const Polygons polygonsInternal = to_polygons(layerm->fill_surfaces.filter_by_types(surfaceTypesInternal, 3));
|
||
shell = intersection(shell, polygonsInternal, true);
|
||
polygons_append(shell, diff(polygonsInternal, holes));
|
||
if (shell.empty())
|
||
continue;
|
||
|
||
// Append the internal solids, so they will be merged with the new ones.
|
||
polygons_append(shell, to_polygons(layerm->fill_surfaces.filter_by_type(stInternalSolid)));
|
||
|
||
// These regions will be filled by a rectilinear full infill. Currently this type of infill
|
||
// only fills regions, which fit at least a single line. To avoid gaps in the sparse infill,
|
||
// make sure that this region does not contain parts narrower than the infill spacing width.
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
Polygons shell_before = shell;
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
#if 1
|
||
// Intentionally inflate a bit more than how much the region has been shrunk,
|
||
// so there will be some overlap between this solid infill and the other infill regions (mainly the sparse infill).
|
||
shell = offset(offset_ex(union_ex(shell), - 0.5f * min_perimeter_infill_spacing), 0.8f * min_perimeter_infill_spacing, ClipperLib::jtSquare);
|
||
if (shell.empty())
|
||
continue;
|
||
#else
|
||
// Ensure each region is at least 3x infill line width wide, so it could be filled in.
|
||
// float margin = float(infill_line_spacing) * 3.f;
|
||
float margin = float(infill_line_spacing) * 1.5f;
|
||
// we use a higher miterLimit here to handle areas with acute angles
|
||
// in those cases, the default miterLimit would cut the corner and we'd
|
||
// get a triangle in $too_narrow; if we grow it below then the shell
|
||
// would have a different shape from the external surface and we'd still
|
||
// have the same angle, so the next shell would be grown even more and so on.
|
||
Polygons too_narrow = diff(shell, offset2(shell, -margin, margin, ClipperLib::jtMiter, 5.), true);
|
||
if (! too_narrow.empty()) {
|
||
// grow the collapsing parts and add the extra area to the neighbor layer
|
||
// as well as to our original surfaces so that we support this
|
||
// additional area in the next shell too
|
||
// make sure our grown surfaces don't exceed the fill area
|
||
polygons_append(shell, intersection(offset(too_narrow, margin), polygonsInternal));
|
||
}
|
||
#endif
|
||
ExPolygons new_internal_solid = intersection_ex(polygonsInternal, shell, false);
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
{
|
||
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-regularized-%d.svg", debug_idx), get_extents(shell_before));
|
||
// Source shell.
|
||
svg.draw(union_ex(shell_before, true));
|
||
// Shell trimmed to the internal surfaces.
|
||
svg.draw_outline(union_ex(shell, true), "black", "blue", scale_(0.05));
|
||
// Regularized infill region.
|
||
svg.draw_outline(new_internal_solid, "red", "magenta", scale_(0.05));
|
||
svg.Close();
|
||
}
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
|
||
// Trim the internal & internalvoid by the shell.
|
||
Slic3r::ExPolygons new_internal = diff_ex(
|
||
to_polygons(layerm->fill_surfaces.filter_by_type(stInternal)),
|
||
shell,
|
||
false
|
||
);
|
||
Slic3r::ExPolygons new_internal_void = diff_ex(
|
||
to_polygons(layerm->fill_surfaces.filter_by_type(stInternalVoid)),
|
||
shell,
|
||
false
|
||
);
|
||
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
{
|
||
SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal-%d.svg", debug_idx), get_extents(shell), new_internal, "black", "blue", scale_(0.05));
|
||
SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_void-%d.svg", debug_idx), get_extents(shell), new_internal_void, "black", "blue", scale_(0.05));
|
||
SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_solid-%d.svg", debug_idx), get_extents(shell), new_internal_solid, "black", "blue", scale_(0.05));
|
||
}
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
|
||
// Assign resulting internal surfaces to layer.
|
||
const SurfaceType surfaceTypesKeep[] = { stTop, stBottom, stBottomBridge };
|
||
layerm->fill_surfaces.keep_types(surfaceTypesKeep, sizeof(surfaceTypesKeep)/sizeof(SurfaceType));
|
||
layerm->fill_surfaces.append(new_internal, stInternal);
|
||
layerm->fill_surfaces.append(new_internal_void, stInternalVoid);
|
||
layerm->fill_surfaces.append(new_internal_solid, stInternalSolid);
|
||
} // for each layer
|
||
});
|
||
m_print->throw_if_canceled();
|
||
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - end";
|
||
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++idx_layer) {
|
||
LayerRegion *layerm = m_layers[idx_layer]->get_region(idx_region);
|
||
layerm->export_region_slices_to_svg_debug("4_discover_vertical_shells-final");
|
||
layerm->export_region_fill_surfaces_to_svg_debug("4_discover_vertical_shells-final");
|
||
}
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
} // for each region
|
||
|
||
// Write the profiler measurements to file
|
||
// PROFILE_UPDATE();
|
||
// PROFILE_OUTPUT(debug_out_path("discover_vertical_shells-profile.txt").c_str());
|
||
}
|
||
|
||
/* This method applies bridge flow to the first internal solid layer above
|
||
sparse infill */
|
||
void PrintObject::bridge_over_infill()
|
||
{
|
||
BOOST_LOG_TRIVIAL(info) << "Bridge over infill..." << log_memory_info();
|
||
|
||
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
|
||
const PrintRegion ®ion = *m_print->regions()[region_id];
|
||
|
||
// skip bridging in case there are no voids
|
||
if (region.config().fill_density.value == 100) continue;
|
||
|
||
// get bridge flow
|
||
Flow bridge_flow = region.flow(
|
||
frSolidInfill,
|
||
-1, // layer height, not relevant for bridge flow
|
||
true, // bridge
|
||
false, // first layer
|
||
-1, // custom width, not relevant for bridge flow
|
||
*this
|
||
);
|
||
|
||
for (LayerPtrs::iterator layer_it = m_layers.begin(); layer_it != m_layers.end(); ++ layer_it) {
|
||
// skip first layer
|
||
if (layer_it == m_layers.begin())
|
||
continue;
|
||
|
||
Layer* layer = *layer_it;
|
||
LayerRegion* layerm = layer->m_regions[region_id];
|
||
|
||
// extract the stInternalSolid surfaces that might be transformed into bridges
|
||
Polygons internal_solid;
|
||
layerm->fill_surfaces.filter_by_type(stInternalSolid, &internal_solid);
|
||
|
||
// check whether the lower area is deep enough for absorbing the extra flow
|
||
// (for obvious physical reasons but also for preventing the bridge extrudates
|
||
// from overflowing in 3D preview)
|
||
ExPolygons to_bridge;
|
||
{
|
||
Polygons to_bridge_pp = internal_solid;
|
||
|
||
// iterate through lower layers spanned by bridge_flow
|
||
double bottom_z = layer->print_z - bridge_flow.height;
|
||
for (int i = int(layer_it - m_layers.begin()) - 1; i >= 0; --i) {
|
||
const Layer* lower_layer = m_layers[i];
|
||
|
||
// stop iterating if layer is lower than bottom_z
|
||
if (lower_layer->print_z < bottom_z) break;
|
||
|
||
// iterate through regions and collect internal surfaces
|
||
Polygons lower_internal;
|
||
for (LayerRegion *lower_layerm : lower_layer->m_regions)
|
||
lower_layerm->fill_surfaces.filter_by_type(stInternal, &lower_internal);
|
||
|
||
// intersect such lower internal surfaces with the candidate solid surfaces
|
||
to_bridge_pp = intersection(to_bridge_pp, lower_internal);
|
||
}
|
||
|
||
// there's no point in bridging too thin/short regions
|
||
//FIXME Vojtech: The offset2 function is not a geometric offset,
|
||
// therefore it may create 1) gaps, and 2) sharp corners, which are outside the original contour.
|
||
// The gaps will be filled by a separate region, which makes the infill less stable and it takes longer.
|
||
{
|
||
float min_width = float(bridge_flow.scaled_width()) * 3.f;
|
||
to_bridge_pp = offset2(to_bridge_pp, -min_width, +min_width);
|
||
}
|
||
|
||
if (to_bridge_pp.empty()) continue;
|
||
|
||
// convert into ExPolygons
|
||
to_bridge = union_ex(to_bridge_pp);
|
||
}
|
||
|
||
#ifdef SLIC3R_DEBUG
|
||
printf("Bridging " PRINTF_ZU " internal areas at layer " PRINTF_ZU "\n", to_bridge.size(), layer->id());
|
||
#endif
|
||
|
||
// compute the remaning internal solid surfaces as difference
|
||
ExPolygons not_to_bridge = diff_ex(internal_solid, to_polygons(to_bridge), true);
|
||
to_bridge = intersection_ex(to_polygons(to_bridge), internal_solid, true);
|
||
// build the new collection of fill_surfaces
|
||
layerm->fill_surfaces.remove_type(stInternalSolid);
|
||
for (ExPolygon &ex : to_bridge)
|
||
layerm->fill_surfaces.surfaces.push_back(Surface(stInternalBridge, ex));
|
||
for (ExPolygon &ex : not_to_bridge)
|
||
layerm->fill_surfaces.surfaces.push_back(Surface(stInternalSolid, ex));
|
||
/*
|
||
# exclude infill from the layers below if needed
|
||
# see discussion at https://github.com/alexrj/Slic3r/issues/240
|
||
# Update: do not exclude any infill. Sparse infill is able to absorb the excess material.
|
||
if (0) {
|
||
my $excess = $layerm->extruders->{infill}->bridge_flow->width - $layerm->height;
|
||
for (my $i = $layer_id-1; $excess >= $self->get_layer($i)->height; $i--) {
|
||
Slic3r::debugf " skipping infill below those areas at layer %d\n", $i;
|
||
foreach my $lower_layerm (@{$self->get_layer($i)->regions}) {
|
||
my @new_surfaces = ();
|
||
# subtract the area from all types of surfaces
|
||
foreach my $group (@{$lower_layerm->fill_surfaces->group}) {
|
||
push @new_surfaces, map $group->[0]->clone(expolygon => $_),
|
||
@{diff_ex(
|
||
[ map $_->p, @$group ],
|
||
[ map @$_, @$to_bridge ],
|
||
)};
|
||
push @new_surfaces, map Slic3r::Surface->new(
|
||
expolygon => $_,
|
||
surface_type => S_TYPE_INTERNALVOID,
|
||
), @{intersection_ex(
|
||
[ map $_->p, @$group ],
|
||
[ map @$_, @$to_bridge ],
|
||
)};
|
||
}
|
||
$lower_layerm->fill_surfaces->clear;
|
||
$lower_layerm->fill_surfaces->append($_) for @new_surfaces;
|
||
}
|
||
|
||
$excess -= $self->get_layer($i)->height;
|
||
}
|
||
}
|
||
*/
|
||
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
layerm->export_region_slices_to_svg_debug("7_bridge_over_infill");
|
||
layerm->export_region_fill_surfaces_to_svg_debug("7_bridge_over_infill");
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
m_print->throw_if_canceled();
|
||
}
|
||
}
|
||
}
|
||
|
||
static void clamp_exturder_to_default(ConfigOptionInt &opt, size_t num_extruders)
|
||
{
|
||
if (opt.value > (int)num_extruders)
|
||
// assign the default extruder
|
||
opt.value = 1;
|
||
}
|
||
|
||
PrintObjectConfig PrintObject::object_config_from_model_object(const PrintObjectConfig &default_object_config, const ModelObject &object, size_t num_extruders)
|
||
{
|
||
PrintObjectConfig config = default_object_config;
|
||
normalize_and_apply_config(config, object.config);
|
||
// Clamp invalid extruders to the default extruder (with index 1).
|
||
clamp_exturder_to_default(config.support_material_extruder, num_extruders);
|
||
clamp_exturder_to_default(config.support_material_interface_extruder, num_extruders);
|
||
return config;
|
||
}
|
||
|
||
PrintRegionConfig PrintObject::region_config_from_model_volume(const PrintRegionConfig &default_region_config, const ModelVolume &volume, size_t num_extruders)
|
||
{
|
||
PrintRegionConfig config = default_region_config;
|
||
normalize_and_apply_config(config, volume.get_object()->config);
|
||
normalize_and_apply_config(config, volume.config);
|
||
if (! volume.material_id().empty())
|
||
normalize_and_apply_config(config, volume.material()->config);
|
||
// Clamp invalid extruders to the default extruder (with index 1).
|
||
clamp_exturder_to_default(config.infill_extruder, num_extruders);
|
||
clamp_exturder_to_default(config.perimeter_extruder, num_extruders);
|
||
clamp_exturder_to_default(config.solid_infill_extruder, num_extruders);
|
||
return config;
|
||
}
|
||
|
||
void PrintObject::update_slicing_parameters()
|
||
{
|
||
if (! m_slicing_params.valid)
|
||
m_slicing_params = SlicingParameters::create_from_config(
|
||
this->print()->config(), m_config, unscale<double>(this->size(2)), this->object_extruders());
|
||
}
|
||
|
||
SlicingParameters PrintObject::slicing_parameters(const DynamicPrintConfig &full_config, const ModelObject &model_object, float object_max_z)
|
||
{
|
||
PrintConfig print_config;
|
||
PrintObjectConfig object_config;
|
||
PrintRegionConfig default_region_config;
|
||
print_config .apply(full_config, true);
|
||
object_config.apply(full_config, true);
|
||
default_region_config.apply(full_config, true);
|
||
size_t num_extruders = print_config.nozzle_diameter.size();
|
||
object_config = object_config_from_model_object(object_config, model_object, num_extruders);
|
||
|
||
std::vector<unsigned int> object_extruders;
|
||
for (const ModelVolume *model_volume : model_object.volumes)
|
||
if (model_volume->is_model_part())
|
||
PrintRegion::collect_object_printing_extruders(
|
||
print_config,
|
||
region_config_from_model_volume(default_region_config, *model_volume, num_extruders),
|
||
object_extruders);
|
||
sort_remove_duplicates(object_extruders);
|
||
|
||
if (object_max_z <= 0.f)
|
||
object_max_z = model_object.raw_bounding_box().size().z();
|
||
return SlicingParameters::create_from_config(print_config, object_config, object_max_z, object_extruders);
|
||
}
|
||
|
||
// returns 0-based indices of extruders used to print the object (without brim, support and other helper extrusions)
|
||
std::vector<unsigned int> PrintObject::object_extruders() const
|
||
{
|
||
std::vector<unsigned int> extruders;
|
||
extruders.reserve(this->region_volumes.size() * 3);
|
||
for (size_t idx_region = 0; idx_region < this->region_volumes.size(); ++ idx_region)
|
||
if (! this->region_volumes[idx_region].empty())
|
||
m_print->get_region(idx_region)->collect_object_printing_extruders(extruders);
|
||
sort_remove_duplicates(extruders);
|
||
return extruders;
|
||
}
|
||
|
||
bool PrintObject::update_layer_height_profile(const ModelObject &model_object, const SlicingParameters &slicing_parameters, std::vector<coordf_t> &layer_height_profile)
|
||
{
|
||
bool updated = false;
|
||
|
||
if (layer_height_profile.empty()) {
|
||
layer_height_profile = model_object.layer_height_profile;
|
||
updated = true;
|
||
}
|
||
|
||
// Verify the layer_height_profile.
|
||
if (! layer_height_profile.empty() &&
|
||
// Must not be of even length.
|
||
((layer_height_profile.size() & 1) != 0 ||
|
||
// Last entry must be at the top of the object.
|
||
std::abs(layer_height_profile[layer_height_profile.size() - 2] - slicing_parameters.object_print_z_height()) > 1e-3))
|
||
layer_height_profile.clear();
|
||
|
||
if (layer_height_profile.empty()) {
|
||
if (0)
|
||
// if (this->layer_height_profile.empty())
|
||
layer_height_profile = layer_height_profile_adaptive(slicing_parameters, model_object.layer_height_ranges, model_object.volumes);
|
||
else
|
||
layer_height_profile = layer_height_profile_from_ranges(slicing_parameters, model_object.layer_height_ranges);
|
||
updated = true;
|
||
}
|
||
return updated;
|
||
}
|
||
|
||
// 1) Decides Z positions of the layers,
|
||
// 2) Initializes layers and their regions
|
||
// 3) Slices the object meshes
|
||
// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
|
||
// 5) Applies size compensation (offsets the slices in XY plane)
|
||
// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
|
||
// Resulting expolygons of layer regions are marked as Internal.
|
||
//
|
||
// this should be idempotent
|
||
void PrintObject::_slice(const std::vector<coordf_t> &layer_height_profile)
|
||
{
|
||
BOOST_LOG_TRIVIAL(info) << "Slicing objects..." << log_memory_info();
|
||
|
||
this->typed_slices = false;
|
||
|
||
#ifdef SLIC3R_PROFILE
|
||
// Disable parallelization so the Shiny profiler works
|
||
static tbb::task_scheduler_init *tbb_init = nullptr;
|
||
tbb_init = new tbb::task_scheduler_init(1);
|
||
#endif
|
||
|
||
// 1) Initialize layers and their slice heights.
|
||
std::vector<float> slice_zs;
|
||
{
|
||
this->clear_layers();
|
||
// Object layers (pairs of bottom/top Z coordinate), without the raft.
|
||
std::vector<coordf_t> object_layers = generate_object_layers(m_slicing_params, layer_height_profile);
|
||
// Reserve object layers for the raft. Last layer of the raft is the contact layer.
|
||
int id = int(m_slicing_params.raft_layers());
|
||
slice_zs.reserve(object_layers.size());
|
||
Layer *prev = nullptr;
|
||
for (size_t i_layer = 0; i_layer < object_layers.size(); i_layer += 2) {
|
||
coordf_t lo = object_layers[i_layer];
|
||
coordf_t hi = object_layers[i_layer + 1];
|
||
coordf_t slice_z = 0.5 * (lo + hi);
|
||
Layer *layer = this->add_layer(id ++, hi - lo, hi + m_slicing_params.object_print_z_min, slice_z);
|
||
slice_zs.push_back(float(slice_z));
|
||
if (prev != nullptr) {
|
||
prev->upper_layer = layer;
|
||
layer->lower_layer = prev;
|
||
}
|
||
// Make sure all layers contain layer region objects for all regions.
|
||
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id)
|
||
layer->add_region(this->print()->regions()[region_id]);
|
||
prev = layer;
|
||
}
|
||
}
|
||
|
||
// Count model parts and modifier meshes, check whether the model parts are of the same region.
|
||
int single_volume_region = -2; // not set yet
|
||
size_t num_volumes = 0;
|
||
size_t num_modifiers = 0;
|
||
std::vector<int> map_volume_to_region(this->model_object()->volumes.size());
|
||
for (int region_id = 0; region_id < (int)this->region_volumes.size(); ++ region_id) {
|
||
for (int volume_id : this->region_volumes[region_id]) {
|
||
const ModelVolume *model_volume = this->model_object()->volumes[volume_id];
|
||
if (model_volume->is_model_part()) {
|
||
map_volume_to_region[volume_id] = region_id;
|
||
if (single_volume_region == -2)
|
||
// first model volume met
|
||
single_volume_region = region_id;
|
||
else if (single_volume_region != region_id)
|
||
// multiple volumes met and they are not equal
|
||
single_volume_region = -1;
|
||
++ num_volumes;
|
||
} else if (model_volume->is_modifier())
|
||
++ num_modifiers;
|
||
}
|
||
}
|
||
assert(num_volumes > 0);
|
||
|
||
// Slice all non-modifier volumes.
|
||
bool clipped = false;
|
||
bool upscaled = false;
|
||
if (! m_config.clip_multipart_objects.value || single_volume_region >= 0) {
|
||
// Cheap path: Slice regions without mutual clipping.
|
||
// The cheap path is possible if no clipping is allowed or if slicing volumes of just a single region.
|
||
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
|
||
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - region " << region_id;
|
||
// slicing in parallel
|
||
std::vector<ExPolygons> expolygons_by_layer = this->_slice_region(region_id, slice_zs, false);
|
||
m_print->throw_if_canceled();
|
||
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - append slices " << region_id << " start";
|
||
for (size_t layer_id = 0; layer_id < expolygons_by_layer.size(); ++ layer_id)
|
||
m_layers[layer_id]->regions()[region_id]->slices.append(std::move(expolygons_by_layer[layer_id]), stInternal);
|
||
m_print->throw_if_canceled();
|
||
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - append slices " << region_id << " end";
|
||
}
|
||
} else {
|
||
// Expensive path: Slice one volume after the other in the order they are presented at the user interface,
|
||
// clip the last volumes with the first.
|
||
// First slice the volumes.
|
||
struct SlicedVolume {
|
||
SlicedVolume(int volume_id, int region_id, std::vector<ExPolygons> &&expolygons_by_layer) :
|
||
volume_id(volume_id), region_id(region_id), expolygons_by_layer(std::move(expolygons_by_layer)) {}
|
||
int volume_id;
|
||
int region_id;
|
||
std::vector<ExPolygons> expolygons_by_layer;
|
||
};
|
||
std::vector<SlicedVolume> sliced_volumes;
|
||
sliced_volumes.reserve(num_volumes);
|
||
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id)
|
||
for (int volume_id : this->region_volumes[region_id]) {
|
||
const ModelVolume *model_volume = this->model_object()->volumes[volume_id];
|
||
if (model_volume->is_model_part()) {
|
||
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - volume " << volume_id;
|
||
// slicing in parallel
|
||
sliced_volumes.emplace_back(volume_id, map_volume_to_region[volume_id], this->_slice_volume(slice_zs, *model_volume));
|
||
}
|
||
}
|
||
// Second clip the volumes in the order they are presented at the user interface.
|
||
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - parallel clipping - start";
|
||
tbb::parallel_for(
|
||
tbb::blocked_range<size_t>(0, slice_zs.size()),
|
||
[this, &sliced_volumes, num_modifiers](const tbb::blocked_range<size_t>& range) {
|
||
float delta = float(scale_(m_config.xy_size_compensation.value));
|
||
// Only upscale together with clipping if there are no modifiers, as the modifiers shall be applied before upscaling
|
||
// (upscaling may grow the object outside of the modifier mesh).
|
||
bool upscale = delta > 0 && num_modifiers == 0;
|
||
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
|
||
m_print->throw_if_canceled();
|
||
// Trim volumes in a single layer, one by the other, possibly apply upscaling.
|
||
{
|
||
Polygons processed;
|
||
for (SlicedVolume &sliced_volume : sliced_volumes) {
|
||
ExPolygons slices = std::move(sliced_volume.expolygons_by_layer[layer_id]);
|
||
if (upscale)
|
||
slices = offset_ex(std::move(slices), delta);
|
||
if (! processed.empty())
|
||
// Trim by the slices of already processed regions.
|
||
slices = diff_ex(to_polygons(std::move(slices)), processed);
|
||
if (size_t(&sliced_volume - &sliced_volumes.front()) + 1 < sliced_volumes.size())
|
||
// Collect the already processed regions to trim the to be processed regions.
|
||
polygons_append(processed, slices);
|
||
sliced_volume.expolygons_by_layer[layer_id] = std::move(slices);
|
||
}
|
||
}
|
||
// Collect and union volumes of a single region.
|
||
for (int region_id = 0; region_id < (int)this->region_volumes.size(); ++ region_id) {
|
||
ExPolygons expolygons;
|
||
size_t num_volumes = 0;
|
||
for (SlicedVolume &sliced_volume : sliced_volumes)
|
||
if (sliced_volume.region_id == region_id && ! sliced_volume.expolygons_by_layer[layer_id].empty()) {
|
||
++ num_volumes;
|
||
append(expolygons, std::move(sliced_volume.expolygons_by_layer[layer_id]));
|
||
}
|
||
if (num_volumes > 1)
|
||
// Merge the islands using a positive / negative offset.
|
||
expolygons = offset_ex(offset_ex(expolygons, float(scale_(EPSILON))), -float(scale_(EPSILON)));
|
||
m_layers[layer_id]->regions()[region_id]->slices.append(std::move(expolygons), stInternal);
|
||
}
|
||
}
|
||
});
|
||
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - parallel clipping - end";
|
||
clipped = true;
|
||
upscaled = m_config.xy_size_compensation.value > 0 && num_modifiers == 0;
|
||
}
|
||
|
||
// Slice all modifier volumes.
|
||
if (this->region_volumes.size() > 1) {
|
||
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
|
||
BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - region " << region_id;
|
||
// slicing in parallel
|
||
std::vector<ExPolygons> expolygons_by_layer = this->_slice_region(region_id, slice_zs, true);
|
||
m_print->throw_if_canceled();
|
||
if (expolygons_by_layer.empty())
|
||
continue;
|
||
// loop through the other regions and 'steal' the slices belonging to this one
|
||
BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - stealing " << region_id << " start";
|
||
tbb::parallel_for(
|
||
tbb::blocked_range<size_t>(0, m_layers.size()),
|
||
[this, &expolygons_by_layer, region_id](const tbb::blocked_range<size_t>& range) {
|
||
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
|
||
for (size_t other_region_id = 0; other_region_id < this->region_volumes.size(); ++ other_region_id) {
|
||
if (region_id == other_region_id)
|
||
continue;
|
||
Layer *layer = m_layers[layer_id];
|
||
LayerRegion *layerm = layer->m_regions[region_id];
|
||
LayerRegion *other_layerm = layer->m_regions[other_region_id];
|
||
if (layerm == nullptr || other_layerm == nullptr)
|
||
continue;
|
||
Polygons other_slices = to_polygons(other_layerm->slices);
|
||
ExPolygons my_parts = intersection_ex(other_slices, to_polygons(expolygons_by_layer[layer_id]));
|
||
if (my_parts.empty())
|
||
continue;
|
||
// Remove such parts from original region.
|
||
other_layerm->slices.set(diff_ex(other_slices, to_polygons(my_parts)), stInternal);
|
||
// Append new parts to our region.
|
||
layerm->slices.append(std::move(my_parts), stInternal);
|
||
}
|
||
}
|
||
});
|
||
m_print->throw_if_canceled();
|
||
BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - stealing " << region_id << " end";
|
||
}
|
||
}
|
||
|
||
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - removing top empty layers";
|
||
while (! m_layers.empty()) {
|
||
const Layer *layer = m_layers.back();
|
||
if (! layer->empty())
|
||
goto end;
|
||
delete layer;
|
||
m_layers.pop_back();
|
||
if (! m_layers.empty())
|
||
m_layers.back()->upper_layer = nullptr;
|
||
}
|
||
m_print->throw_if_canceled();
|
||
end:
|
||
;
|
||
|
||
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - make_slices in parallel - begin";
|
||
tbb::parallel_for(
|
||
tbb::blocked_range<size_t>(0, m_layers.size()),
|
||
[this, upscaled, clipped](const tbb::blocked_range<size_t>& range) {
|
||
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
|
||
m_print->throw_if_canceled();
|
||
Layer *layer = m_layers[layer_id];
|
||
// Apply size compensation and perform clipping of multi-part objects.
|
||
float delta = float(scale_(m_config.xy_size_compensation.value));
|
||
float elephant_foot_compensation = 0.f;
|
||
if (layer_id == 0)
|
||
elephant_foot_compensation = float(scale_(m_config.elefant_foot_compensation.value));
|
||
if (layer->m_regions.size() == 1) {
|
||
// Optimized version for a single region layer.
|
||
if (layer_id == 0) {
|
||
if (delta > elephant_foot_compensation) {
|
||
delta -= elephant_foot_compensation;
|
||
elephant_foot_compensation = 0.f;
|
||
} else if (delta > 0)
|
||
elephant_foot_compensation -= delta;
|
||
}
|
||
if (delta != 0.f || elephant_foot_compensation > 0.f) {
|
||
// Single region, growing or shrinking.
|
||
LayerRegion *layerm = layer->m_regions.front();
|
||
// Apply the XY compensation.
|
||
ExPolygons expolygons = (delta == 0.f) ?
|
||
to_expolygons(std::move(layerm->slices.surfaces)) :
|
||
offset_ex(to_expolygons(std::move(layerm->slices.surfaces)), delta);
|
||
// Apply the elephant foot compensation.
|
||
if (elephant_foot_compensation > 0) {
|
||
float elephant_foot_spacing = float(layerm->flow(frExternalPerimeter).scaled_elephant_foot_spacing());
|
||
float external_perimeter_nozzle = float(scale_(this->print()->config().nozzle_diameter.get_at(layerm->region()->config().perimeter_extruder.value - 1)));
|
||
// Apply the elephant foot compensation by steps of 1/10 nozzle diameter.
|
||
float steps = std::ceil(elephant_foot_compensation / (0.1f * external_perimeter_nozzle));
|
||
size_t nsteps = size_t(steps);
|
||
float step = elephant_foot_compensation / steps;
|
||
for (size_t i = 0; i < nsteps; ++ i) {
|
||
Polygons tmp = offset(expolygons, - step);
|
||
append(tmp, diff(to_polygons(expolygons), offset(offset_ex(expolygons, -elephant_foot_spacing - step), elephant_foot_spacing + step)));
|
||
expolygons = union_ex(tmp);
|
||
}
|
||
}
|
||
layerm->slices.set(std::move(expolygons), stInternal);
|
||
}
|
||
} else {
|
||
bool upscale = ! upscaled && delta > 0.f;
|
||
bool clip = ! clipped && m_config.clip_multipart_objects.value;
|
||
if (upscale || clip) {
|
||
// Multiple regions, growing or just clipping one region by the other.
|
||
// When clipping the regions, priority is given to the first regions.
|
||
Polygons processed;
|
||
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
|
||
LayerRegion *layerm = layer->m_regions[region_id];
|
||
ExPolygons slices = to_expolygons(std::move(layerm->slices.surfaces));
|
||
if (upscale)
|
||
slices = offset_ex(std::move(slices), delta);
|
||
if (region_id > 0 && clip)
|
||
// Trim by the slices of already processed regions.
|
||
slices = diff_ex(to_polygons(std::move(slices)), processed);
|
||
if (clip && (region_id + 1 < layer->m_regions.size()))
|
||
// Collect the already processed regions to trim the to be processed regions.
|
||
polygons_append(processed, slices);
|
||
layerm->slices.set(std::move(slices), stInternal);
|
||
}
|
||
}
|
||
if (delta < 0.f) {
|
||
// Apply the negative XY compensation.
|
||
Polygons trimming = offset(layer->merged(float(EPSILON)), delta - float(EPSILON));
|
||
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id)
|
||
layer->m_regions[region_id]->trim_surfaces(trimming);
|
||
}
|
||
if (elephant_foot_compensation > 0.f) {
|
||
// Apply the elephant foot compensation.
|
||
std::vector<float> elephant_foot_spacing;
|
||
elephant_foot_spacing.reserve(layer->m_regions.size());
|
||
float external_perimeter_nozzle = 0.f;
|
||
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
|
||
LayerRegion *layerm = layer->m_regions[region_id];
|
||
elephant_foot_spacing.emplace_back(float(layerm->flow(frExternalPerimeter).scaled_elephant_foot_spacing()));
|
||
external_perimeter_nozzle += float(scale_(this->print()->config().nozzle_diameter.get_at(layerm->region()->config().perimeter_extruder.value - 1)));
|
||
}
|
||
external_perimeter_nozzle /= (float)layer->m_regions.size();
|
||
// Apply the elephant foot compensation by steps of 1/10 nozzle diameter.
|
||
float steps = std::ceil(elephant_foot_compensation / (0.1f * external_perimeter_nozzle));
|
||
size_t nsteps = size_t(steps);
|
||
float step = elephant_foot_compensation / steps;
|
||
for (size_t i = 0; i < nsteps; ++ i) {
|
||
Polygons trimming_polygons = offset(layer->merged(float(EPSILON)), - step - float(EPSILON));
|
||
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id)
|
||
layer->m_regions[region_id]->elephant_foot_compensation_step(elephant_foot_spacing[region_id] + step, trimming_polygons);
|
||
}
|
||
}
|
||
}
|
||
// Merge all regions' slices to get islands, chain them by a shortest path.
|
||
layer->make_slices();
|
||
}
|
||
});
|
||
m_print->throw_if_canceled();
|
||
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - make_slices in parallel - end";
|
||
}
|
||
|
||
std::vector<ExPolygons> PrintObject::_slice_region(size_t region_id, const std::vector<float> &z, bool modifier)
|
||
{
|
||
std::vector<const ModelVolume*> volumes;
|
||
if (region_id < this->region_volumes.size()) {
|
||
for (int volume_id : this->region_volumes[region_id]) {
|
||
const ModelVolume *volume = this->model_object()->volumes[volume_id];
|
||
if (modifier ? volume->is_modifier() : volume->is_model_part())
|
||
volumes.emplace_back(volume);
|
||
}
|
||
}
|
||
return this->_slice_volumes(z, volumes);
|
||
}
|
||
|
||
std::vector<ExPolygons> PrintObject::slice_support_enforcers() const
|
||
{
|
||
std::vector<const ModelVolume*> volumes;
|
||
for (const ModelVolume *volume : this->model_object()->volumes)
|
||
if (volume->is_support_enforcer())
|
||
volumes.emplace_back(volume);
|
||
std::vector<float> zs;
|
||
zs.reserve(this->layers().size());
|
||
for (const Layer *l : this->layers())
|
||
zs.emplace_back((float)l->slice_z);
|
||
return this->_slice_volumes(zs, volumes);
|
||
}
|
||
|
||
std::vector<ExPolygons> PrintObject::slice_support_blockers() const
|
||
{
|
||
std::vector<const ModelVolume*> volumes;
|
||
for (const ModelVolume *volume : this->model_object()->volumes)
|
||
if (volume->is_support_blocker())
|
||
volumes.emplace_back(volume);
|
||
std::vector<float> zs;
|
||
zs.reserve(this->layers().size());
|
||
for (const Layer *l : this->layers())
|
||
zs.emplace_back((float)l->slice_z);
|
||
return this->_slice_volumes(zs, volumes);
|
||
}
|
||
|
||
std::vector<ExPolygons> PrintObject::_slice_volumes(const std::vector<float> &z, const std::vector<const ModelVolume*> &volumes) const
|
||
{
|
||
std::vector<ExPolygons> layers;
|
||
if (! volumes.empty()) {
|
||
// Compose mesh.
|
||
//FIXME better to perform slicing over each volume separately and then to use a Boolean operation to merge them.
|
||
TriangleMesh mesh(volumes.front()->mesh());
|
||
mesh.transform(volumes.front()->get_matrix(), true);
|
||
assert(mesh.repaired);
|
||
if (volumes.size() == 1 && mesh.repaired) {
|
||
//FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it.
|
||
stl_check_facets_exact(&mesh.stl);
|
||
}
|
||
for (size_t idx_volume = 1; idx_volume < volumes.size(); ++ idx_volume) {
|
||
const ModelVolume &model_volume = *volumes[idx_volume];
|
||
TriangleMesh vol_mesh(model_volume.mesh());
|
||
vol_mesh.transform(model_volume.get_matrix(), true);
|
||
mesh.merge(vol_mesh);
|
||
}
|
||
if (mesh.stl.stats.number_of_facets > 0) {
|
||
mesh.transform(m_trafo, true);
|
||
// apply XY shift
|
||
mesh.translate(- unscale<float>(m_copies_shift(0)), - unscale<float>(m_copies_shift(1)), 0);
|
||
// perform actual slicing
|
||
const Print *print = this->print();
|
||
auto callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();});
|
||
// TriangleMeshSlicer needs shared vertices, also this calls the repair() function.
|
||
mesh.require_shared_vertices();
|
||
TriangleMeshSlicer mslicer;
|
||
mslicer.init(&mesh, callback);
|
||
mslicer.slice(z, float(m_config.slice_closing_radius.value), &layers, callback);
|
||
m_print->throw_if_canceled();
|
||
}
|
||
}
|
||
return layers;
|
||
}
|
||
|
||
std::vector<ExPolygons> PrintObject::_slice_volume(const std::vector<float> &z, const ModelVolume &volume) const
|
||
{
|
||
std::vector<ExPolygons> layers;
|
||
// Compose mesh.
|
||
//FIXME better to perform slicing over each volume separately and then to use a Boolean operation to merge them.
|
||
TriangleMesh mesh(volume.mesh());
|
||
mesh.transform(volume.get_matrix(), true);
|
||
if (mesh.repaired) {
|
||
//FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it.
|
||
stl_check_facets_exact(&mesh.stl);
|
||
}
|
||
if (mesh.stl.stats.number_of_facets > 0) {
|
||
mesh.transform(m_trafo, true);
|
||
// apply XY shift
|
||
mesh.translate(- unscale<float>(m_copies_shift(0)), - unscale<float>(m_copies_shift(1)), 0);
|
||
// perform actual slicing
|
||
TriangleMeshSlicer mslicer;
|
||
const Print *print = this->print();
|
||
auto callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();});
|
||
// TriangleMeshSlicer needs the shared vertices.
|
||
mesh.require_shared_vertices();
|
||
mslicer.init(&mesh, callback);
|
||
mslicer.slice(z, float(m_config.slice_closing_radius.value), &layers, callback);
|
||
m_print->throw_if_canceled();
|
||
}
|
||
return layers;
|
||
}
|
||
|
||
std::string PrintObject::_fix_slicing_errors()
|
||
{
|
||
// Collect layers with slicing errors.
|
||
// These layers will be fixed in parallel.
|
||
std::vector<size_t> buggy_layers;
|
||
buggy_layers.reserve(m_layers.size());
|
||
for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++ idx_layer)
|
||
if (m_layers[idx_layer]->slicing_errors)
|
||
buggy_layers.push_back(idx_layer);
|
||
|
||
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - begin";
|
||
tbb::parallel_for(
|
||
tbb::blocked_range<size_t>(0, buggy_layers.size()),
|
||
[this, &buggy_layers](const tbb::blocked_range<size_t>& range) {
|
||
for (size_t buggy_layer_idx = range.begin(); buggy_layer_idx < range.end(); ++ buggy_layer_idx) {
|
||
m_print->throw_if_canceled();
|
||
size_t idx_layer = buggy_layers[buggy_layer_idx];
|
||
Layer *layer = m_layers[idx_layer];
|
||
assert(layer->slicing_errors);
|
||
// Try to repair the layer surfaces by merging all contours and all holes from neighbor layers.
|
||
// BOOST_LOG_TRIVIAL(trace) << "Attempting to repair layer" << idx_layer;
|
||
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
|
||
LayerRegion *layerm = layer->m_regions[region_id];
|
||
// Find the first valid layer below / above the current layer.
|
||
const Surfaces *upper_surfaces = nullptr;
|
||
const Surfaces *lower_surfaces = nullptr;
|
||
for (size_t j = idx_layer + 1; j < m_layers.size(); ++ j)
|
||
if (! m_layers[j]->slicing_errors) {
|
||
upper_surfaces = &m_layers[j]->regions()[region_id]->slices.surfaces;
|
||
break;
|
||
}
|
||
for (int j = int(idx_layer) - 1; j >= 0; -- j)
|
||
if (! m_layers[j]->slicing_errors) {
|
||
lower_surfaces = &m_layers[j]->regions()[region_id]->slices.surfaces;
|
||
break;
|
||
}
|
||
// Collect outer contours and holes from the valid layers above & below.
|
||
Polygons outer;
|
||
outer.reserve(
|
||
((upper_surfaces == nullptr) ? 0 : upper_surfaces->size()) +
|
||
((lower_surfaces == nullptr) ? 0 : lower_surfaces->size()));
|
||
size_t num_holes = 0;
|
||
if (upper_surfaces)
|
||
for (const auto &surface : *upper_surfaces) {
|
||
outer.push_back(surface.expolygon.contour);
|
||
num_holes += surface.expolygon.holes.size();
|
||
}
|
||
if (lower_surfaces)
|
||
for (const auto &surface : *lower_surfaces) {
|
||
outer.push_back(surface.expolygon.contour);
|
||
num_holes += surface.expolygon.holes.size();
|
||
}
|
||
Polygons holes;
|
||
holes.reserve(num_holes);
|
||
if (upper_surfaces)
|
||
for (const auto &surface : *upper_surfaces)
|
||
polygons_append(holes, surface.expolygon.holes);
|
||
if (lower_surfaces)
|
||
for (const auto &surface : *lower_surfaces)
|
||
polygons_append(holes, surface.expolygon.holes);
|
||
layerm->slices.set(diff_ex(union_(outer), holes, false), stInternal);
|
||
}
|
||
// Update layer slices after repairing the single regions.
|
||
layer->make_slices();
|
||
}
|
||
});
|
||
m_print->throw_if_canceled();
|
||
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - end";
|
||
|
||
// remove empty layers from bottom
|
||
while (! m_layers.empty() && m_layers.front()->slices.expolygons.empty()) {
|
||
delete m_layers.front();
|
||
m_layers.erase(m_layers.begin());
|
||
m_layers.front()->lower_layer = nullptr;
|
||
for (size_t i = 0; i < m_layers.size(); ++ i)
|
||
m_layers[i]->set_id(m_layers[i]->id() - 1);
|
||
}
|
||
|
||
return buggy_layers.empty() ? "" :
|
||
"The model has overlapping or self-intersecting facets. I tried to repair it, "
|
||
"however you might want to check the results or repair the input file and retry.\n";
|
||
}
|
||
|
||
// Simplify the sliced model, if "resolution" configuration parameter > 0.
|
||
// The simplification is problematic, because it simplifies the slices independent from each other,
|
||
// which makes the simplified discretization visible on the object surface.
|
||
void PrintObject::_simplify_slices(double distance)
|
||
{
|
||
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - begin";
|
||
tbb::parallel_for(
|
||
tbb::blocked_range<size_t>(0, m_layers.size()),
|
||
[this, distance](const tbb::blocked_range<size_t>& range) {
|
||
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
|
||
m_print->throw_if_canceled();
|
||
Layer *layer = m_layers[layer_idx];
|
||
for (size_t region_idx = 0; region_idx < layer->m_regions.size(); ++ region_idx)
|
||
layer->m_regions[region_idx]->slices.simplify(distance);
|
||
layer->slices.simplify(distance);
|
||
}
|
||
});
|
||
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - end";
|
||
}
|
||
|
||
void PrintObject::_make_perimeters()
|
||
{
|
||
if (! this->set_started(posPerimeters))
|
||
return;
|
||
|
||
BOOST_LOG_TRIVIAL(info) << "Generating perimeters..." << log_memory_info();
|
||
|
||
// merge slices if they were split into types
|
||
if (this->typed_slices) {
|
||
for (Layer *layer : m_layers)
|
||
layer->merge_slices();
|
||
this->typed_slices = false;
|
||
this->invalidate_step(posPrepareInfill);
|
||
}
|
||
|
||
// compare each layer to the one below, and mark those slices needing
|
||
// one additional inner perimeter, like the top of domed objects-
|
||
|
||
// this algorithm makes sure that at least one perimeter is overlapping
|
||
// but we don't generate any extra perimeter if fill density is zero, as they would be floating
|
||
// inside the object - infill_only_where_needed should be the method of choice for printing
|
||
// hollow objects
|
||
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
|
||
const PrintRegion ®ion = *m_print->regions()[region_id];
|
||
if (! region.config().extra_perimeters || region.config().perimeters == 0 || region.config().fill_density == 0 || this->layer_count() < 2)
|
||
continue;
|
||
|
||
BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - start";
|
||
tbb::parallel_for(
|
||
tbb::blocked_range<size_t>(0, m_layers.size() - 1),
|
||
[this, ®ion, region_id](const tbb::blocked_range<size_t>& range) {
|
||
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
|
||
LayerRegion &layerm = *m_layers[layer_idx]->regions()[region_id];
|
||
const LayerRegion &upper_layerm = *m_layers[layer_idx+1]->regions()[region_id];
|
||
const Polygons upper_layerm_polygons = upper_layerm.slices;
|
||
// Filter upper layer polygons in intersection_ppl by their bounding boxes?
|
||
// my $upper_layerm_poly_bboxes= [ map $_->bounding_box, @{$upper_layerm_polygons} ];
|
||
const double total_loop_length = total_length(upper_layerm_polygons);
|
||
const coord_t perimeter_spacing = layerm.flow(frPerimeter).scaled_spacing();
|
||
const Flow ext_perimeter_flow = layerm.flow(frExternalPerimeter);
|
||
const coord_t ext_perimeter_width = ext_perimeter_flow.scaled_width();
|
||
const coord_t ext_perimeter_spacing = ext_perimeter_flow.scaled_spacing();
|
||
|
||
for (Surface &slice : layerm.slices.surfaces) {
|
||
for (;;) {
|
||
// compute the total thickness of perimeters
|
||
const coord_t perimeters_thickness = ext_perimeter_width/2 + ext_perimeter_spacing/2
|
||
+ (region.config().perimeters-1 + slice.extra_perimeters) * perimeter_spacing;
|
||
// define a critical area where we don't want the upper slice to fall into
|
||
// (it should either lay over our perimeters or outside this area)
|
||
const coord_t critical_area_depth = coord_t(perimeter_spacing * 1.5);
|
||
const Polygons critical_area = diff(
|
||
offset(slice.expolygon, float(- perimeters_thickness)),
|
||
offset(slice.expolygon, float(- perimeters_thickness - critical_area_depth))
|
||
);
|
||
// check whether a portion of the upper slices falls inside the critical area
|
||
const Polylines intersection = intersection_pl(to_polylines(upper_layerm_polygons), critical_area);
|
||
// only add an additional loop if at least 30% of the slice loop would benefit from it
|
||
if (total_length(intersection) <= total_loop_length*0.3)
|
||
break;
|
||
/*
|
||
if (0) {
|
||
require "Slic3r/SVG.pm";
|
||
Slic3r::SVG::output(
|
||
"extra.svg",
|
||
no_arrows => 1,
|
||
expolygons => union_ex($critical_area),
|
||
polylines => [ map $_->split_at_first_point, map $_->p, @{$upper_layerm->slices} ],
|
||
);
|
||
}
|
||
*/
|
||
++ slice.extra_perimeters;
|
||
}
|
||
#ifdef DEBUG
|
||
if (slice.extra_perimeters > 0)
|
||
printf(" adding %d more perimeter(s) at layer %zu\n", slice.extra_perimeters, layer_idx);
|
||
#endif
|
||
}
|
||
}
|
||
});
|
||
BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - end";
|
||
}
|
||
|
||
BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - start";
|
||
tbb::parallel_for(
|
||
tbb::blocked_range<size_t>(0, m_layers.size()),
|
||
[this](const tbb::blocked_range<size_t>& range) {
|
||
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx)
|
||
m_layers[layer_idx]->make_perimeters();
|
||
}
|
||
);
|
||
BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - end";
|
||
|
||
/*
|
||
simplify slices (both layer and region slices),
|
||
we only need the max resolution for perimeters
|
||
### This makes this method not-idempotent, so we keep it disabled for now.
|
||
###$self->_simplify_slices(&Slic3r::SCALED_RESOLUTION);
|
||
*/
|
||
|
||
this->set_done(posPerimeters);
|
||
}
|
||
|
||
// Only active if config->infill_only_where_needed. This step trims the sparse infill,
|
||
// so it acts as an internal support. It maintains all other infill types intact.
|
||
// Here the internal surfaces and perimeters have to be supported by the sparse infill.
|
||
//FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support.
|
||
// Likely the sparse infill will not be anchored correctly, so it will not work as intended.
|
||
// Also one wishes the perimeters to be supported by a full infill.
|
||
// Idempotence of this method is guaranteed by the fact that we don't remove things from
|
||
// fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
|
||
void PrintObject::clip_fill_surfaces()
|
||
{
|
||
if (! m_config.infill_only_where_needed.value ||
|
||
! std::any_of(this->print()->regions().begin(), this->print()->regions().end(),
|
||
[](const PrintRegion *region) { return region->config().fill_density > 0; }))
|
||
return;
|
||
|
||
// We only want infill under ceilings; this is almost like an
|
||
// internal support material.
|
||
// Proceed top-down, skipping the bottom layer.
|
||
Polygons upper_internal;
|
||
for (int layer_id = int(m_layers.size()) - 1; layer_id > 0; -- layer_id) {
|
||
Layer *layer = m_layers[layer_id];
|
||
Layer *lower_layer = m_layers[layer_id - 1];
|
||
// Detect things that we need to support.
|
||
// Cummulative slices.
|
||
Polygons slices;
|
||
for (const ExPolygon &expoly : layer->slices.expolygons)
|
||
polygons_append(slices, to_polygons(expoly));
|
||
// Cummulative fill surfaces.
|
||
Polygons fill_surfaces;
|
||
// Solid surfaces to be supported.
|
||
Polygons overhangs;
|
||
for (const LayerRegion *layerm : layer->m_regions)
|
||
for (const Surface &surface : layerm->fill_surfaces.surfaces) {
|
||
Polygons polygons = to_polygons(surface.expolygon);
|
||
if (surface.is_solid())
|
||
polygons_append(overhangs, polygons);
|
||
polygons_append(fill_surfaces, std::move(polygons));
|
||
}
|
||
Polygons lower_layer_fill_surfaces;
|
||
Polygons lower_layer_internal_surfaces;
|
||
for (const LayerRegion *layerm : lower_layer->m_regions)
|
||
for (const Surface &surface : layerm->fill_surfaces.surfaces) {
|
||
Polygons polygons = to_polygons(surface.expolygon);
|
||
if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
|
||
polygons_append(lower_layer_internal_surfaces, polygons);
|
||
polygons_append(lower_layer_fill_surfaces, std::move(polygons));
|
||
}
|
||
// We also need to support perimeters when there's at least one full unsupported loop
|
||
{
|
||
// Get perimeters area as the difference between slices and fill_surfaces
|
||
// Only consider the area that is not supported by lower perimeters
|
||
Polygons perimeters = intersection(diff(slices, fill_surfaces), lower_layer_fill_surfaces);
|
||
// Only consider perimeter areas that are at least one extrusion width thick.
|
||
//FIXME Offset2 eats out from both sides, while the perimeters are create outside in.
|
||
//Should the pw not be half of the current value?
|
||
float pw = FLT_MAX;
|
||
for (const LayerRegion *layerm : layer->m_regions)
|
||
pw = std::min<float>(pw, layerm->flow(frPerimeter).scaled_width());
|
||
// Append such thick perimeters to the areas that need support
|
||
polygons_append(overhangs, offset2(perimeters, -pw, +pw));
|
||
}
|
||
// Find new internal infill.
|
||
polygons_append(overhangs, std::move(upper_internal));
|
||
upper_internal = intersection(overhangs, lower_layer_internal_surfaces);
|
||
// Apply new internal infill to regions.
|
||
for (LayerRegion *layerm : lower_layer->m_regions) {
|
||
if (layerm->region()->config().fill_density.value == 0)
|
||
continue;
|
||
SurfaceType internal_surface_types[] = { stInternal, stInternalVoid };
|
||
Polygons internal;
|
||
for (Surface &surface : layerm->fill_surfaces.surfaces)
|
||
if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
|
||
polygons_append(internal, std::move(surface.expolygon));
|
||
layerm->fill_surfaces.remove_types(internal_surface_types, 2);
|
||
layerm->fill_surfaces.append(intersection_ex(internal, upper_internal, true), stInternal);
|
||
layerm->fill_surfaces.append(diff_ex (internal, upper_internal, true), stInternalVoid);
|
||
// If there are voids it means that our internal infill is not adjacent to
|
||
// perimeters. In this case it would be nice to add a loop around infill to
|
||
// make it more robust and nicer. TODO.
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
layerm->export_region_fill_surfaces_to_svg_debug("6_clip_fill_surfaces");
|
||
#endif
|
||
}
|
||
m_print->throw_if_canceled();
|
||
}
|
||
}
|
||
|
||
void PrintObject::discover_horizontal_shells()
|
||
{
|
||
BOOST_LOG_TRIVIAL(trace) << "discover_horizontal_shells()";
|
||
|
||
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
|
||
for (int i = 0; i < int(m_layers.size()); ++ i) {
|
||
m_print->throw_if_canceled();
|
||
LayerRegion *layerm = m_layers[i]->regions()[region_id];
|
||
const PrintRegionConfig ®ion_config = layerm->region()->config();
|
||
if (region_config.solid_infill_every_layers.value > 0 && region_config.fill_density.value > 0 &&
|
||
(i % region_config.solid_infill_every_layers) == 0) {
|
||
// Insert a solid internal layer. Mark stInternal surfaces as stInternalSolid or stInternalBridge.
|
||
SurfaceType type = (region_config.fill_density == 100) ? stInternalSolid : stInternalBridge;
|
||
for (Surface &surface : layerm->fill_surfaces.surfaces)
|
||
if (surface.surface_type == stInternal)
|
||
surface.surface_type = type;
|
||
}
|
||
|
||
// If ensure_vertical_shell_thickness, then the rest has already been performed by discover_vertical_shells().
|
||
if (region_config.ensure_vertical_shell_thickness.value)
|
||
continue;
|
||
|
||
for (int idx_surface_type = 0; idx_surface_type < 3; ++ idx_surface_type) {
|
||
m_print->throw_if_canceled();
|
||
SurfaceType type = (idx_surface_type == 0) ? stTop : (idx_surface_type == 1) ? stBottom : stBottomBridge;
|
||
// Find slices of current type for current layer.
|
||
// Use slices instead of fill_surfaces, because they also include the perimeter area,
|
||
// which needs to be propagated in shells; we need to grow slices like we did for
|
||
// fill_surfaces though. Using both ungrown slices and grown fill_surfaces will
|
||
// not work in some situations, as there won't be any grown region in the perimeter
|
||
// area (this was seen in a model where the top layer had one extra perimeter, thus
|
||
// its fill_surfaces were thinner than the lower layer's infill), however it's the best
|
||
// solution so far. Growing the external slices by EXTERNAL_INFILL_MARGIN will put
|
||
// too much solid infill inside nearly-vertical slopes.
|
||
|
||
// Surfaces including the area of perimeters. Everything, that is visible from the top / bottom
|
||
// (not covered by a layer above / below).
|
||
// This does not contain the areas covered by perimeters!
|
||
Polygons solid;
|
||
for (const Surface &surface : layerm->slices.surfaces)
|
||
if (surface.surface_type == type)
|
||
polygons_append(solid, to_polygons(surface.expolygon));
|
||
// Infill areas (slices without the perimeters).
|
||
for (const Surface &surface : layerm->fill_surfaces.surfaces)
|
||
if (surface.surface_type == type)
|
||
polygons_append(solid, to_polygons(surface.expolygon));
|
||
if (solid.empty())
|
||
continue;
|
||
// Slic3r::debugf "Layer %d has %s surfaces\n", $i, ($type == S_TYPE_TOP) ? 'top' : 'bottom';
|
||
|
||
size_t solid_layers = (type == stTop) ? region_config.top_solid_layers.value : region_config.bottom_solid_layers.value;
|
||
for (int n = (type == stTop) ? i-1 : i+1; std::abs(n - i) < solid_layers; (type == stTop) ? -- n : ++ n) {
|
||
if (n < 0 || n >= int(m_layers.size()))
|
||
continue;
|
||
// Slic3r::debugf " looking for neighbors on layer %d...\n", $n;
|
||
// Reference to the lower layer of a TOP surface, or an upper layer of a BOTTOM surface.
|
||
LayerRegion *neighbor_layerm = m_layers[n]->regions()[region_id];
|
||
|
||
// find intersection between neighbor and current layer's surfaces
|
||
// intersections have contours and holes
|
||
// we update $solid so that we limit the next neighbor layer to the areas that were
|
||
// found on this one - in other words, solid shells on one layer (for a given external surface)
|
||
// are always a subset of the shells found on the previous shell layer
|
||
// this approach allows for DWIM in hollow sloping vases, where we want bottom
|
||
// shells to be generated in the base but not in the walls (where there are many
|
||
// narrow bottom surfaces): reassigning $solid will consider the 'shadow' of the
|
||
// upper perimeter as an obstacle and shell will not be propagated to more upper layers
|
||
//FIXME How does it work for S_TYPE_INTERNALBRIDGE? This is set for sparse infill. Likely this does not work.
|
||
Polygons new_internal_solid;
|
||
{
|
||
Polygons internal;
|
||
for (const Surface &surface : neighbor_layerm->fill_surfaces.surfaces)
|
||
if (surface.surface_type == stInternal || surface.surface_type == stInternalSolid)
|
||
polygons_append(internal, to_polygons(surface.expolygon));
|
||
new_internal_solid = intersection(solid, internal, true);
|
||
}
|
||
if (new_internal_solid.empty()) {
|
||
// No internal solid needed on this layer. In order to decide whether to continue
|
||
// searching on the next neighbor (thus enforcing the configured number of solid
|
||
// layers, use different strategies according to configured infill density:
|
||
if (region_config.fill_density.value == 0) {
|
||
// If user expects the object to be void (for example a hollow sloping vase),
|
||
// don't continue the search. In this case, we only generate the external solid
|
||
// shell if the object would otherwise show a hole (gap between perimeters of
|
||
// the two layers), and internal solid shells are a subset of the shells found
|
||
// on each previous layer.
|
||
goto EXTERNAL;
|
||
} else {
|
||
// If we have internal infill, we can generate internal solid shells freely.
|
||
continue;
|
||
}
|
||
}
|
||
|
||
if (region_config.fill_density.value == 0) {
|
||
// if we're printing a hollow object we discard any solid shell thinner
|
||
// than a perimeter width, since it's probably just crossing a sloping wall
|
||
// and it's not wanted in a hollow print even if it would make sense when
|
||
// obeying the solid shell count option strictly (DWIM!)
|
||
float margin = float(neighbor_layerm->flow(frExternalPerimeter).scaled_width());
|
||
Polygons too_narrow = diff(
|
||
new_internal_solid,
|
||
offset2(new_internal_solid, -margin, +margin, jtMiter, 5),
|
||
true);
|
||
// Trim the regularized region by the original region.
|
||
if (! too_narrow.empty())
|
||
new_internal_solid = solid = diff(new_internal_solid, too_narrow);
|
||
}
|
||
|
||
// make sure the new internal solid is wide enough, as it might get collapsed
|
||
// when spacing is added in Fill.pm
|
||
{
|
||
//FIXME Vojtech: Disable this and you will be sorry.
|
||
// https://github.com/prusa3d/PrusaSlicer/issues/26 bottom
|
||
float margin = 3.f * layerm->flow(frSolidInfill).scaled_width(); // require at least this size
|
||
// we use a higher miterLimit here to handle areas with acute angles
|
||
// in those cases, the default miterLimit would cut the corner and we'd
|
||
// get a triangle in $too_narrow; if we grow it below then the shell
|
||
// would have a different shape from the external surface and we'd still
|
||
// have the same angle, so the next shell would be grown even more and so on.
|
||
Polygons too_narrow = diff(
|
||
new_internal_solid,
|
||
offset2(new_internal_solid, -margin, +margin, ClipperLib::jtMiter, 5),
|
||
true);
|
||
if (! too_narrow.empty()) {
|
||
// grow the collapsing parts and add the extra area to the neighbor layer
|
||
// as well as to our original surfaces so that we support this
|
||
// additional area in the next shell too
|
||
// make sure our grown surfaces don't exceed the fill area
|
||
Polygons internal;
|
||
for (const Surface &surface : neighbor_layerm->fill_surfaces.surfaces)
|
||
if (surface.is_internal() && !surface.is_bridge())
|
||
polygons_append(internal, to_polygons(surface.expolygon));
|
||
polygons_append(new_internal_solid,
|
||
intersection(
|
||
offset(too_narrow, +margin),
|
||
// Discard bridges as they are grown for anchoring and we can't
|
||
// remove such anchors. (This may happen when a bridge is being
|
||
// anchored onto a wall where little space remains after the bridge
|
||
// is grown, and that little space is an internal solid shell so
|
||
// it triggers this too_narrow logic.)
|
||
internal));
|
||
solid = new_internal_solid;
|
||
}
|
||
}
|
||
|
||
// internal-solid are the union of the existing internal-solid surfaces
|
||
// and new ones
|
||
SurfaceCollection backup = std::move(neighbor_layerm->fill_surfaces);
|
||
polygons_append(new_internal_solid, to_polygons(backup.filter_by_type(stInternalSolid)));
|
||
ExPolygons internal_solid = union_ex(new_internal_solid, false);
|
||
// assign new internal-solid surfaces to layer
|
||
neighbor_layerm->fill_surfaces.set(internal_solid, stInternalSolid);
|
||
// subtract intersections from layer surfaces to get resulting internal surfaces
|
||
Polygons polygons_internal = to_polygons(std::move(internal_solid));
|
||
ExPolygons internal = diff_ex(
|
||
to_polygons(backup.filter_by_type(stInternal)),
|
||
polygons_internal,
|
||
true);
|
||
// assign resulting internal surfaces to layer
|
||
neighbor_layerm->fill_surfaces.append(internal, stInternal);
|
||
polygons_append(polygons_internal, to_polygons(std::move(internal)));
|
||
// assign top and bottom surfaces to layer
|
||
SurfaceType surface_types_solid[] = { stTop, stBottom, stBottomBridge };
|
||
backup.keep_types(surface_types_solid, 3);
|
||
std::vector<SurfacesPtr> top_bottom_groups;
|
||
backup.group(&top_bottom_groups);
|
||
for (SurfacesPtr &group : top_bottom_groups)
|
||
neighbor_layerm->fill_surfaces.append(
|
||
diff_ex(to_polygons(group), polygons_internal),
|
||
// Use an existing surface as a template, it carries the bridge angle etc.
|
||
*group.front());
|
||
}
|
||
EXTERNAL:;
|
||
} // foreach type (stTop, stBottom, stBottomBridge)
|
||
} // for each layer
|
||
} // for each region
|
||
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
|
||
for (const Layer *layer : m_layers) {
|
||
const LayerRegion *layerm = layer->m_regions[region_id];
|
||
layerm->export_region_slices_to_svg_debug("5_discover_horizontal_shells");
|
||
layerm->export_region_fill_surfaces_to_svg_debug("5_discover_horizontal_shells");
|
||
} // for each layer
|
||
} // for each region
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
}
|
||
|
||
// combine fill surfaces across layers to honor the "infill every N layers" option
|
||
// Idempotence of this method is guaranteed by the fact that we don't remove things from
|
||
// fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
|
||
void PrintObject::combine_infill()
|
||
{
|
||
// Work on each region separately.
|
||
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
|
||
const PrintRegion *region = this->print()->regions()[region_id];
|
||
const int every = region->config().infill_every_layers.value;
|
||
if (every < 2 || region->config().fill_density == 0.)
|
||
continue;
|
||
// Limit the number of combined layers to the maximum height allowed by this regions' nozzle.
|
||
//FIXME limit the layer height to max_layer_height
|
||
double nozzle_diameter = std::min(
|
||
this->print()->config().nozzle_diameter.get_at(region->config().infill_extruder.value - 1),
|
||
this->print()->config().nozzle_diameter.get_at(region->config().solid_infill_extruder.value - 1));
|
||
// define the combinations
|
||
std::vector<size_t> combine(m_layers.size(), 0);
|
||
{
|
||
double current_height = 0.;
|
||
size_t num_layers = 0;
|
||
for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) {
|
||
m_print->throw_if_canceled();
|
||
const Layer *layer = m_layers[layer_idx];
|
||
if (layer->id() == 0)
|
||
// Skip first print layer (which may not be first layer in array because of raft).
|
||
continue;
|
||
// Check whether the combination of this layer with the lower layers' buffer
|
||
// would exceed max layer height or max combined layer count.
|
||
if (current_height + layer->height >= nozzle_diameter + EPSILON || num_layers >= every) {
|
||
// Append combination to lower layer.
|
||
combine[layer_idx - 1] = num_layers;
|
||
current_height = 0.;
|
||
num_layers = 0;
|
||
}
|
||
current_height += layer->height;
|
||
++ num_layers;
|
||
}
|
||
|
||
// Append lower layers (if any) to uppermost layer.
|
||
combine[m_layers.size() - 1] = num_layers;
|
||
}
|
||
|
||
// loop through layers to which we have assigned layers to combine
|
||
for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) {
|
||
m_print->throw_if_canceled();
|
||
size_t num_layers = combine[layer_idx];
|
||
if (num_layers <= 1)
|
||
continue;
|
||
// Get all the LayerRegion objects to be combined.
|
||
std::vector<LayerRegion*> layerms;
|
||
layerms.reserve(num_layers);
|
||
for (size_t i = layer_idx + 1 - num_layers; i <= layer_idx; ++ i)
|
||
layerms.emplace_back(m_layers[i]->regions()[region_id]);
|
||
// We need to perform a multi-layer intersection, so let's split it in pairs.
|
||
// Initialize the intersection with the candidates of the lowest layer.
|
||
ExPolygons intersection = to_expolygons(layerms.front()->fill_surfaces.filter_by_type(stInternal));
|
||
// Start looping from the second layer and intersect the current intersection with it.
|
||
for (size_t i = 1; i < layerms.size(); ++ i)
|
||
intersection = intersection_ex(
|
||
to_polygons(intersection),
|
||
to_polygons(layerms[i]->fill_surfaces.filter_by_type(stInternal)),
|
||
false);
|
||
double area_threshold = layerms.front()->infill_area_threshold();
|
||
if (! intersection.empty() && area_threshold > 0.)
|
||
intersection.erase(std::remove_if(intersection.begin(), intersection.end(),
|
||
[area_threshold](const ExPolygon &expoly) { return expoly.area() <= area_threshold; }),
|
||
intersection.end());
|
||
if (intersection.empty())
|
||
continue;
|
||
// Slic3r::debugf " combining %d %s regions from layers %d-%d\n",
|
||
// scalar(@$intersection),
|
||
// ($type == S_TYPE_INTERNAL ? 'internal' : 'internal-solid'),
|
||
// $layer_idx-($every-1), $layer_idx;
|
||
// intersection now contains the regions that can be combined across the full amount of layers,
|
||
// so let's remove those areas from all layers.
|
||
Polygons intersection_with_clearance;
|
||
intersection_with_clearance.reserve(intersection.size());
|
||
float clearance_offset =
|
||
0.5f * layerms.back()->flow(frPerimeter).scaled_width() +
|
||
// Because fill areas for rectilinear and honeycomb are grown
|
||
// later to overlap perimeters, we need to counteract that too.
|
||
((region->config().fill_pattern == ipRectilinear ||
|
||
region->config().fill_pattern == ipGrid ||
|
||
region->config().fill_pattern == ipLine ||
|
||
region->config().fill_pattern == ipHoneycomb) ? 1.5f : 0.5f) *
|
||
layerms.back()->flow(frSolidInfill).scaled_width();
|
||
for (ExPolygon &expoly : intersection)
|
||
polygons_append(intersection_with_clearance, offset(expoly, clearance_offset));
|
||
for (LayerRegion *layerm : layerms) {
|
||
Polygons internal = to_polygons(layerm->fill_surfaces.filter_by_type(stInternal));
|
||
layerm->fill_surfaces.remove_type(stInternal);
|
||
layerm->fill_surfaces.append(diff_ex(internal, intersection_with_clearance, false), stInternal);
|
||
if (layerm == layerms.back()) {
|
||
// Apply surfaces back with adjusted depth to the uppermost layer.
|
||
Surface templ(stInternal, ExPolygon());
|
||
templ.thickness = 0.;
|
||
for (LayerRegion *layerm2 : layerms)
|
||
templ.thickness += layerm2->layer()->height;
|
||
templ.thickness_layers = (unsigned short)layerms.size();
|
||
layerm->fill_surfaces.append(intersection, templ);
|
||
} else {
|
||
// Save void surfaces.
|
||
layerm->fill_surfaces.append(
|
||
intersection_ex(internal, intersection_with_clearance, false),
|
||
stInternalVoid);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void PrintObject::_generate_support_material()
|
||
{
|
||
PrintObjectSupportMaterial support_material(this, m_slicing_params);
|
||
support_material.generate(*this);
|
||
}
|
||
|
||
} // namespace Slic3r
|