PrusaSlicer-NonPlainar/lib/Slic3r/Perimeter.pm
2011-09-25 20:24:14 +02:00

178 lines
6.4 KiB
Perl

package Slic3r::Perimeter;
use Moo;
use Math::Clipper ':all';
use Math::Geometry::Planar;
*Math::Geometry::Planar::OffsetPolygon = *Math::Geometry::Planar::Offset::OffsetPolygon;
use XXX;
use constant X => 0;
use constant Y => 1;
sub make_perimeter {
my $self = shift;
my ($layer) = @_;
printf "Making perimeter for layer %d:\n", $layer->id;
# at least one perimeter is required
die "Can't extrude object without any perimeter!\n"
if $Slic3r::perimeter_offsets == 0;
my (@perimeters, %contours, %holes) = ();
foreach my $surface (@{ $layer->surfaces }) {
$contours{$surface} = [];
$holes{$surface} = [];
# first perimeter
{
my $polygon = $surface->clipper_polygon;
my ($contour_p, @holes_p) = ($polygon->{outer}, @{$polygon->{holes}});
push @{ $contours{$surface} }, $contour_p;
push @{ $holes{$surface} }, @holes_p;
push @perimeters, $polygon;
}
# create other offsets
for (my $loop = 1; $loop < $Slic3r::perimeter_offsets; $loop++) {
# offsetting a polygon can result in one or many offset polygons
my @offsets = $self->offset_polygon($perimeters[-1]);
foreach my $offset_polygon (@offsets) {
my ($contour_p, @holes_p) = ($offset_polygon->{outer}, @{$offset_polygon->{holes}});
push @{ $contours{$surface} }, $contour_p;
push @{ $holes{$surface} }, @holes_p;
push @perimeters, $offset_polygon;
}
}
# create one more offset to be used as boundary for fill
push @{ $layer->fill_surfaces },
map Slic3r::Surface->new(
surface_type => $surface->surface_type,
contour => Slic3r::Polyline::Closed->cast($_->{outer}),
holes => [
map Slic3r::Polyline::Closed->cast($_), @{$_->{holes}}
],
), $self->offset_polygon($perimeters[-1]),
}
# generate paths for holes
# we start from innermost loops (that is, external ones), do them
# for all holes, than go on with inner loop and do that for all
# holes and so on
foreach my $hole (map @$_, values %holes) {
my @points = @$hole;
push @points, [ @{$points[0]} ];
# to avoid blobs, the first point is replaced by the point of
# the segment which is $Slic3r::flow_width / $Slic3r::resolution
# away from it to avoid the extruder to get two times there
$points[0] = $self->_get_point_along_line($points[0], $points[1],
$Slic3r::flow_width / $Slic3r::resolution);
push @{ $layer->perimeters }, Slic3r::ExtrusionPath->cast([@points]);
}
# generate paths for contours
# this time we do something different: we do contour loops for one
# shape (that is, one original surface) at a time: we start from the
# innermost loop (that is, internal one), then without interrupting
# our path we go onto the outer loop and continue; this should ensure
# good surface quality
foreach my $polylines (values %contours) {
my @path_points = ();
foreach my $p (map $self->_mgp_from_points_ref($_), @$polylines) {
my $points = $p->points;
# to avoid blobs, the first point is replaced by the point of
# the segment which is $Slic3r::flow_width / $Slic3r::resolution
# away from it to avoid the extruder to get two times there
push @$points, [ @{$points->[0]} ];
$points->[0] = $self->_get_point_along_line($points->[0], $points->[1],
$Slic3r::flow_width / $Slic3r::resolution);
push @path_points, @$points;
}
push @{ $layer->perimeters }, Slic3r::ExtrusionPath->cast([ reverse @path_points ]);
}
# generate skirt on bottom layer
if ($layer->id == 0 && $Slic3r::skirts > 0) {
# find out convex hull
my $points = [ map { @{ $_->mgp_polygon->polygons->[0] } } @{ $layer->surfaces } ];
my $convex_hull = $self->_mgp_from_points_ref($points)->convexhull2; # maybe Math::ConvexHull is faster?
my $convex_hull_points = ref $convex_hull eq 'ARRAY' ? $convex_hull : $convex_hull->points;
# draw outlines from outside to inside
for (my $i = $Slic3r::skirts - 1; $i >= 0; $i--) {
my $distance = ($Slic3r::skirt_distance + ($Slic3r::flow_width * $i)) / $Slic3r::resolution;
my $outline = offset([$convex_hull_points], $distance, 0.1, JT_ROUND);
push @{$outline->[0]}, $outline->[0][0]; # repeat first point as last to complete the loop
push @{ $layer->skirts }, Slic3r::ExtrusionPath->cast([ @{$outline->[0]} ]);
}
}
}
sub offset_polygon {
my $self = shift;
my ($polygon) = @_;
my $distance = $Slic3r::flow_width / $Slic3r::resolution;
# $polygon holds a Math::Clipper ExPolygon hashref representing
# a polygon and its holes
my ($contour_p, @holes_p) = ($polygon->{outer}, @{$polygon->{holes}});
# generate offsets
my $offsets = offset([ $contour_p, @holes_p ], -$distance, 100, JT_MITER, 2);
# defensive programming
my (@contour_offsets, @hole_offsets) = ();
for (@$offsets) {
if (is_counter_clockwise($_)) {
push @contour_offsets, $_;
} else {
push @hole_offsets, $_;
}
}
# apply all holes to all contours;
# this is improper, but Math::Clipper handles it
return map {{
outer => $_,
holes => [ @hole_offsets ],
}} @contour_offsets;
}
sub _mgp_from_points_ref {
my $self = shift;
my ($points) = @_;
my $p = Math::Geometry::Planar->new;
$p->points($points);
return $p;
}
sub _mgp_from_polygons_ref {
my $self = shift;
my ($polygons) = @_;
my $p = Math::Geometry::Planar->new;
$p->polygons($polygons);
return $p;
}
sub _get_point_along_line {
my $self = shift;
my ($p1, $p2, $distance) = @_;
my $point = [ @$p1 ];
my $line_length = sqrt( (($p2->[X] - $p1->[X])**2) + (($p2->[Y] - $p1->[Y])**2) );
for (X, Y) {
if ($p1->[$_] != $p2->[$_]) {
$point->[$_] = $p1->[$_] + ($p2->[$_] - $p1->[$_]) * $distance / $line_length;
}
}
return $point;
}
1;