PrusaSlicer-NonPlainar/tests/sla_print/sla_print_tests.cpp

396 lines
12 KiB
C++

#include <unordered_set>
#include <unordered_map>
#include <random>
#include "sla_test_utils.hpp"
namespace {
const char *const BELOW_PAD_TEST_OBJECTS[] = {
"20mm_cube.obj",
"V.obj",
};
const char *const AROUND_PAD_TEST_OBJECTS[] = {
"20mm_cube.obj",
"V.obj",
"frog_legs.obj",
"cube_with_concave_hole_enlarged.obj",
};
const char *const SUPPORT_TEST_MODELS[] = {
"cube_with_concave_hole_enlarged_standing.obj",
"A_upsidedown.obj",
"extruder_idler.obj"
};
} // namespace
// Test pair hash for 'nums' random number pairs.
template <class I, class II> void test_pairhash()
{
const constexpr size_t nums = 1000;
I A[nums] = {0}, B[nums] = {0};
std::unordered_set<I> CH;
std::unordered_map<II, std::pair<I, I>> ints;
std::random_device rd;
std::mt19937 gen(rd());
const I Ibits = int(sizeof(I) * CHAR_BIT);
const II IIbits = int(sizeof(II) * CHAR_BIT);
int bits = IIbits / 2 < Ibits ? Ibits / 2 : Ibits;
if (std::is_signed<I>::value) bits -= 1;
const I Imin = 0;
const I Imax = I(std::pow(2., bits) - 1);
std::uniform_int_distribution<I> dis(Imin, Imax);
for (size_t i = 0; i < nums;) {
I a = dis(gen);
if (CH.find(a) == CH.end()) { CH.insert(a); A[i] = a; ++i; }
}
for (size_t i = 0; i < nums;) {
I b = dis(gen);
if (CH.find(b) == CH.end()) { CH.insert(b); B[i] = b; ++i; }
}
for (size_t i = 0; i < nums; ++i) {
I a = A[i], b = B[i];
REQUIRE(a != b);
II hash_ab = sla::pairhash<I, II>(a, b);
II hash_ba = sla::pairhash<I, II>(b, a);
REQUIRE(hash_ab == hash_ba);
auto it = ints.find(hash_ab);
if (it != ints.end()) {
REQUIRE((
(it->second.first == a && it->second.second == b) ||
(it->second.first == b && it->second.second == a)
));
} else
ints[hash_ab] = std::make_pair(a, b);
}
}
TEST_CASE("Pillar pairhash should be unique", "[SLASupportGeneration]") {
test_pairhash<int, int>();
test_pairhash<int, long>();
test_pairhash<unsigned, unsigned>();
test_pairhash<unsigned, unsigned long>();
}
TEST_CASE("Support point generator should be deterministic if seeded",
"[SLASupportGeneration], [SLAPointGen]") {
TriangleMesh mesh = load_model("A_upsidedown.obj");
sla::EigenMesh3D emesh{mesh};
sla::SupportConfig supportcfg;
sla::SupportPointGenerator::Config autogencfg;
autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm);
sla::SupportPointGenerator point_gen{emesh, autogencfg, [] {}, [](int) {}};
TriangleMeshSlicer slicer{&mesh};
auto bb = mesh.bounding_box();
double zmin = bb.min.z();
double zmax = bb.max.z();
double gnd = zmin - supportcfg.object_elevation_mm;
auto layer_h = 0.05f;
auto slicegrid = grid(float(gnd), float(zmax), layer_h);
std::vector<ExPolygons> slices;
slicer.slice(slicegrid, CLOSING_RADIUS, &slices, []{});
point_gen.seed(0);
point_gen.execute(slices, slicegrid);
auto get_chksum = [](const std::vector<sla::SupportPoint> &pts){
long long chksum = 0;
for (auto &pt : pts) {
auto p = scaled(pt.pos);
chksum += p.x() + p.y() + p.z();
}
return chksum;
};
long long checksum = get_chksum(point_gen.output());
size_t ptnum = point_gen.output().size();
REQUIRE(point_gen.output().size() > 0);
for (int i = 0; i < 20; ++i) {
point_gen.output().clear();
point_gen.seed(0);
point_gen.execute(slices, slicegrid);
REQUIRE(point_gen.output().size() == ptnum);
REQUIRE(checksum == get_chksum(point_gen.output()));
}
}
TEST_CASE("Flat pad geometry is valid", "[SLASupportGeneration]") {
sla::PadConfig padcfg;
// Disable wings
padcfg.wall_height_mm = .0;
for (auto &fname : BELOW_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
}
TEST_CASE("WingedPadGeometryIsValid", "[SLASupportGeneration]") {
sla::PadConfig padcfg;
// Add some wings to the pad to test the cavity
padcfg.wall_height_mm = 1.;
for (auto &fname : BELOW_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
}
TEST_CASE("FlatPadAroundObjectIsValid", "[SLASupportGeneration]") {
sla::PadConfig padcfg;
// Add some wings to the pad to test the cavity
padcfg.wall_height_mm = 0.;
// padcfg.embed_object.stick_stride_mm = 0.;
padcfg.embed_object.enabled = true;
padcfg.embed_object.everywhere = true;
for (auto &fname : AROUND_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
}
TEST_CASE("WingedPadAroundObjectIsValid", "[SLASupportGeneration]") {
sla::PadConfig padcfg;
// Add some wings to the pad to test the cavity
padcfg.wall_height_mm = 1.;
padcfg.embed_object.enabled = true;
padcfg.embed_object.everywhere = true;
for (auto &fname : AROUND_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
}
TEST_CASE("ElevatedSupportGeometryIsValid", "[SLASupportGeneration]") {
sla::SupportConfig supportcfg;
supportcfg.object_elevation_mm = 5.;
for (auto fname : SUPPORT_TEST_MODELS) test_supports(fname);
}
TEST_CASE("FloorSupportGeometryIsValid", "[SLASupportGeneration]") {
sla::SupportConfig supportcfg;
supportcfg.object_elevation_mm = 0;
for (auto &fname: SUPPORT_TEST_MODELS) test_supports(fname, supportcfg);
}
TEST_CASE("ElevatedSupportsDoNotPierceModel", "[SLASupportGeneration]") {
sla::SupportConfig supportcfg;
for (auto fname : SUPPORT_TEST_MODELS)
test_support_model_collision(fname, supportcfg);
}
TEST_CASE("FloorSupportsDoNotPierceModel", "[SLASupportGeneration]") {
sla::SupportConfig supportcfg;
supportcfg.object_elevation_mm = 0;
for (auto fname : SUPPORT_TEST_MODELS)
test_support_model_collision(fname, supportcfg);
}
TEST_CASE("DefaultRasterShouldBeEmpty", "[SLARasterOutput]") {
sla::Raster raster;
REQUIRE(raster.empty());
}
TEST_CASE("InitializedRasterShouldBeNONEmpty", "[SLARasterOutput]") {
// Default Prusa SL1 display parameters
sla::Raster::Resolution res{2560, 1440};
sla::Raster::PixelDim pixdim{120. / res.width_px, 68. / res.height_px};
sla::Raster raster;
raster.reset(res, pixdim);
REQUIRE_FALSE(raster.empty());
REQUIRE(raster.resolution().width_px == res.width_px);
REQUIRE(raster.resolution().height_px == res.height_px);
REQUIRE(raster.pixel_dimensions().w_mm == Approx(pixdim.w_mm));
REQUIRE(raster.pixel_dimensions().h_mm == Approx(pixdim.h_mm));
}
using TPixel = uint8_t;
static constexpr const TPixel FullWhite = 255;
static constexpr const TPixel FullBlack = 0;
template <class A, int N> constexpr int arraysize(const A (&)[N]) { return N; }
static void check_raster_transformations(sla::Raster::Orientation o,
sla::Raster::TMirroring mirroring)
{
double disp_w = 120., disp_h = 68.;
sla::Raster::Resolution res{2560, 1440};
sla::Raster::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px};
auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)});
sla::Raster::Trafo trafo{o, mirroring};
trafo.origin_x = bb.center().x();
trafo.origin_y = bb.center().y();
sla::Raster raster{res, pixdim, trafo};
// create box of size 32x32 pixels (not 1x1 to avoid antialiasing errors)
coord_t pw = 32 * coord_t(std::ceil(scaled<double>(pixdim.w_mm)));
coord_t ph = 32 * coord_t(std::ceil(scaled<double>(pixdim.h_mm)));
ExPolygon box;
box.contour.points = {{-pw, -ph}, {pw, -ph}, {pw, ph}, {-pw, ph}};
double tr_x = scaled<double>(20.), tr_y = tr_x;
box.translate(tr_x, tr_y);
ExPolygon expected_box = box;
// Now calculate the position of the translated box according to output
// trafo.
if (o == sla::Raster::Orientation::roPortrait) expected_box.rotate(PI / 2.);
if (mirroring[X])
for (auto &p : expected_box.contour.points) p.x() = -p.x();
if (mirroring[Y])
for (auto &p : expected_box.contour.points) p.y() = -p.y();
raster.draw(box);
Point expected_coords = expected_box.contour.bounding_box().center();
double rx = unscaled(expected_coords.x() + bb.center().x()) / pixdim.w_mm;
double ry = unscaled(expected_coords.y() + bb.center().y()) / pixdim.h_mm;
auto w = size_t(std::floor(rx));
auto h = res.height_px - size_t(std::floor(ry));
REQUIRE((w < res.width_px && h < res.height_px));
auto px = raster.read_pixel(w, h);
if (px != FullWhite) {
sla::PNGImage img;
std::fstream outf("out.png", std::ios::out);
outf << img.serialize(raster);
}
REQUIRE(px == FullWhite);
}
TEST_CASE("MirroringShouldBeCorrect", "[SLARasterOutput]") {
sla::Raster::TMirroring mirrorings[] = {sla::Raster::NoMirror,
sla::Raster::MirrorX,
sla::Raster::MirrorY,
sla::Raster::MirrorXY};
sla::Raster::Orientation orientations[] = {sla::Raster::roLandscape,
sla::Raster::roPortrait};
for (auto orientation : orientations)
for (auto &mirror : mirrorings)
check_raster_transformations(orientation, mirror);
}
static ExPolygon square_with_hole(double v)
{
ExPolygon poly;
coord_t V = scaled(v / 2.);
poly.contour.points = {{-V, -V}, {V, -V}, {V, V}, {-V, V}};
poly.holes.emplace_back();
V = V / 2;
poly.holes.front().points = {{-V, V}, {V, V}, {V, -V}, {-V, -V}};
return poly;
}
static double pixel_area(TPixel px, const sla::Raster::PixelDim &pxdim)
{
return (pxdim.h_mm * pxdim.w_mm) * px * 1. / (FullWhite - FullBlack);
}
static double raster_white_area(const sla::Raster &raster)
{
if (raster.empty()) return std::nan("");
auto res = raster.resolution();
double a = 0;
for (size_t x = 0; x < res.width_px; ++x)
for (size_t y = 0; y < res.height_px; ++y) {
auto px = raster.read_pixel(x, y);
a += pixel_area(px, raster.pixel_dimensions());
}
return a;
}
static double predict_error(const ExPolygon &p, const sla::Raster::PixelDim &pd)
{
auto lines = p.lines();
double pix_err = pixel_area(FullWhite, pd) / 2.;
// Worst case is when a line is parallel to the shorter axis of one pixel,
// when the line will be composed of the max number of pixels
double pix_l = std::min(pd.h_mm, pd.w_mm);
double error = 0.;
for (auto &l : lines)
error += (unscaled(l.length()) / pix_l) * pix_err;
return error;
}
TEST_CASE("RasterizedPolygonAreaShouldMatch", "[SLARasterOutput]") {
double disp_w = 120., disp_h = 68.;
sla::Raster::Resolution res{2560, 1440};
sla::Raster::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px};
sla::Raster raster{res, pixdim};
auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)});
ExPolygon poly = square_with_hole(10.);
poly.translate(bb.center().x(), bb.center().y());
raster.draw(poly);
double a = poly.area() / (scaled<double>(1.) * scaled(1.));
double ra = raster_white_area(raster);
double diff = std::abs(a - ra);
REQUIRE(diff <= predict_error(poly, pixdim));
raster.clear();
poly = square_with_hole(60.);
poly.translate(bb.center().x(), bb.center().y());
raster.draw(poly);
a = poly.area() / (scaled<double>(1.) * scaled(1.));
ra = raster_white_area(raster);
diff = std::abs(a - ra);
REQUIRE(diff <= predict_error(poly, pixdim));
}
TEST_CASE("Triangle mesh conversions should be correct", "[SLAConversions]")
{
sla::Contour3D cntr;
{
std::fstream infile{"extruder_idler_quads.obj", std::ios::in};
cntr.from_obj(infile);
}
}