PrusaSlicer-NonPlainar/src/libslic3r/AStar.hpp
2022-10-26 16:28:40 +02:00

194 lines
6.7 KiB
C++

#ifndef ASTAR_HPP
#define ASTAR_HPP
#include <cmath> // std::isinf() is here
#include <unordered_map>
#include "libslic3r/MutablePriorityQueue.hpp"
namespace Slic3r { namespace astar {
// Borrowed from C++20
template<class T>
using remove_cvref_t = std::remove_cv_t<std::remove_reference_t<T>>;
// Input interface for the Astar algorithm. Specialize this struct for a
// particular type and implement all the 4 methods and specify the Node type
// to register the new type for the astar implementation.
template<class T> struct TracerTraits_
{
// The type of a node used by this tracer. Usually a point in space.
using Node = typename T::Node;
// Call fn for every new node reachable from node 'src'. fn should have the
// candidate node as its only argument.
template<class Fn>
static void foreach_reachable(const T &tracer, const Node &src, Fn &&fn)
{
tracer.foreach_reachable(src, fn);
}
// Get the distance from node 'a' to node 'b'. This is sometimes referred
// to as the g value of a node in AStar context.
static float distance(const T &tracer, const Node &a, const Node &b)
{
return tracer.distance(a, b);
}
// Get the estimated distance heuristic from node 'n' to the destination.
// This is referred to as the h value in AStar context.
// If node 'n' is the goal, this function should return a negative value.
// Note that this heuristic should be admissible (never bigger than the real
// cost) in order for Astar to work.
static float goal_heuristic(const T &tracer, const Node &n)
{
return tracer.goal_heuristic(n);
}
// Return a unique identifier (hash) for node 'n'.
static size_t unique_id(const T &tracer, const Node &n)
{
return tracer.unique_id(n);
}
};
// Helper definition to get the node type of a tracer
template<class T>
using TracerNodeT = typename TracerTraits_<remove_cvref_t<T>>::Node;
constexpr auto Unassigned = std::numeric_limits<size_t>::max();
template<class Tracer>
struct QNode // Queue node. Keeps track of scores g, and h
{
TracerNodeT<Tracer> node; // The actual node itself
size_t queue_id; // Position in the open queue or Unassigned if closed
size_t parent; // unique id of the parent or Unassigned
float g, h;
float f() const { return g + h; }
QNode(TracerNodeT<Tracer> n = {},
size_t p = Unassigned,
float gval = std::numeric_limits<float>::infinity(),
float hval = 0.f)
: node{std::move(n)}
, parent{p}
, queue_id{InvalidQueueID}
, g{gval}
, h{hval}
{}
};
// Run the AStar algorithm on a tracer implementation.
// The 'tracer' argument encapsulates the domain (grid, point cloud, etc...)
// The 'source' argument is the starting node.
// The 'out' argument is the output iterator into which the output nodes are
// written. For performance reasons, the order is reverse, from the destination
// to the source -- (destination included, source is not).
// The 'cached_nodes' argument is an optional associative container to hold a
// QNode entry for each visited node. Any compatible container can be used
// (like std::map or maps with different allocators, even a sufficiently large
// std::vector).
//
// Note that no destination node is given in the signature. The tracer's
// goal_heuristic() method should return a negative value if a node is a
// destination node.
template<class Tracer,
class It,
class NodeMap = std::unordered_map<size_t, QNode<Tracer>>>
bool search_route(const Tracer &tracer,
const TracerNodeT<Tracer> &source,
It out,
NodeMap &&cached_nodes = {})
{
using Node = TracerNodeT<Tracer>;
using QNode = QNode<Tracer>;
using TracerTraits = TracerTraits_<remove_cvref_t<Tracer>>;
struct LessPred { // Comparison functor needed by the priority queue
NodeMap &m;
bool operator ()(size_t node_a, size_t node_b) {
return m[node_a].f() < m[node_b].f();
}
};
auto qopen = make_mutable_priority_queue<size_t, true>(
[&cached_nodes](size_t el, size_t qidx) {
cached_nodes[el].queue_id = qidx;
},
LessPred{cached_nodes});
QNode initial{source, /*parent = */ Unassigned, /*g = */0.f};
size_t source_id = TracerTraits::unique_id(tracer, source);
cached_nodes[source_id] = initial;
qopen.push(source_id);
size_t goal_id = TracerTraits::goal_heuristic(tracer, source) < 0.f ?
source_id :
Unassigned;
while (goal_id == Unassigned && !qopen.empty()) {
size_t q_id = qopen.top();
qopen.pop();
QNode &q = cached_nodes[q_id];
// This should absolutely be initialized in the cache already
assert(!std::isinf(q.g));
TracerTraits::foreach_reachable(tracer, q.node, [&](const Node &succ_nd) {
if (goal_id != Unassigned)
return true;
float h = TracerTraits::goal_heuristic(tracer, succ_nd);
float dst = TracerTraits::distance(tracer, q.node, succ_nd);
size_t succ_id = TracerTraits::unique_id(tracer, succ_nd);
QNode qsucc_nd{succ_nd, q_id, q.g + dst, h};
if (h < 0.f) {
goal_id = succ_id;
cached_nodes[succ_id] = qsucc_nd;
} else {
// If succ_id is not in cache, it gets created with g = infinity
QNode &prev_nd = cached_nodes[succ_id];
if (qsucc_nd.g < prev_nd.g) {
// new route is better, apply it:
// Save the old queue id, it would be lost after the next line
size_t queue_id = prev_nd.queue_id;
// The cache needs to be updated either way
prev_nd = qsucc_nd;
if (queue_id == InvalidQueueID)
// was in closed or unqueued, rescheduling
qopen.push(succ_id);
else // was in open, updating
qopen.update(queue_id);
}
}
return goal_id != Unassigned;
});
}
// Write the output, do not reverse. Clients can do so if they need to.
if (goal_id != Unassigned) {
const QNode *q = &cached_nodes[goal_id];
while (q->parent != Unassigned) {
assert(!std::isinf(q->g)); // Uninitialized nodes are NOT allowed
*out = q->node;
++out;
q = &cached_nodes[q->parent];
}
}
return goal_id != Unassigned;
}
}} // namespace Slic3r::astar
#endif // ASTAR_HPP