PrusaSlicer-NonPlainar/src/libslic3r/Point.cpp
Vojtech Bubnik cc44089440 New BuildVolume class was created, which detects build volume type (rectangular,
circular, convex, concave) and performs efficient collision detection agains these build
volumes. As of now, collision detection is performed against a convex
hull of a concave build volume for efficency.

GCodeProcessor::Result renamed out of GCodeProcessor to GCodeProcessorResult,
so it could be forward declared.

Plater newly exports BuildVolume, not Bed3D. Bed3D is a rendering class,
while BuildVolume is a purely geometric class.

Reduced usage of global wxGetApp, the Bed3D is passed as a parameter
to View3D/Preview/GLCanvas.

Convex hull code was extracted from Geometry.cpp/hpp to Geometry/ConvexHulll.cpp,hpp.
New test inside_convex_polygon().
New efficent point inside polygon test: Decompose convex hull
to bottom / top parts and use the decomposition to detect point inside
a convex polygon in O(log n). decompose_convex_polygon_top_bottom(),
inside_convex_polygon().

New Circle constructing functions: circle_ransac() and circle_taubin_newton().

New polygon_is_convex() test with unit tests.
2021-11-16 10:15:51 +01:00

233 lines
7.5 KiB
C++

#include "Point.hpp"
#include "Line.hpp"
#include "MultiPoint.hpp"
#include "Int128.hpp"
#include "BoundingBox.hpp"
#include <algorithm>
namespace Slic3r {
std::vector<Vec3f> transform(const std::vector<Vec3f>& points, const Transform3f& t)
{
unsigned int vertices_count = (unsigned int)points.size();
if (vertices_count == 0)
return std::vector<Vec3f>();
unsigned int data_size = 3 * vertices_count * sizeof(float);
Eigen::MatrixXf src(3, vertices_count);
::memcpy((void*)src.data(), (const void*)points.data(), data_size);
Eigen::MatrixXf dst(3, vertices_count);
dst = t * src.colwise().homogeneous();
std::vector<Vec3f> ret_points(vertices_count, Vec3f::Zero());
::memcpy((void*)ret_points.data(), (const void*)dst.data(), data_size);
return ret_points;
}
Pointf3s transform(const Pointf3s& points, const Transform3d& t)
{
unsigned int vertices_count = (unsigned int)points.size();
if (vertices_count == 0)
return Pointf3s();
unsigned int data_size = 3 * vertices_count * sizeof(double);
Eigen::MatrixXd src(3, vertices_count);
::memcpy((void*)src.data(), (const void*)points.data(), data_size);
Eigen::MatrixXd dst(3, vertices_count);
dst = t * src.colwise().homogeneous();
Pointf3s ret_points(vertices_count, Vec3d::Zero());
::memcpy((void*)ret_points.data(), (const void*)dst.data(), data_size);
return ret_points;
}
void Point::rotate(double angle, const Point &center)
{
double cur_x = (double)(*this)(0);
double cur_y = (double)(*this)(1);
double s = ::sin(angle);
double c = ::cos(angle);
double dx = cur_x - (double)center(0);
double dy = cur_y - (double)center(1);
(*this)(0) = (coord_t)round( (double)center(0) + c * dx - s * dy );
(*this)(1) = (coord_t)round( (double)center(1) + c * dy + s * dx );
}
int Point::nearest_point_index(const Points &points) const
{
PointConstPtrs p;
p.reserve(points.size());
for (Points::const_iterator it = points.begin(); it != points.end(); ++it)
p.push_back(&*it);
return this->nearest_point_index(p);
}
int Point::nearest_point_index(const PointConstPtrs &points) const
{
int idx = -1;
double distance = -1; // double because long is limited to 2147483647 on some platforms and it's not enough
for (PointConstPtrs::const_iterator it = points.begin(); it != points.end(); ++it) {
/* If the X distance of the candidate is > than the total distance of the
best previous candidate, we know we don't want it */
double d = sqr<double>((*this)(0) - (*it)->x());
if (distance != -1 && d > distance) continue;
/* If the Y distance of the candidate is > than the total distance of the
best previous candidate, we know we don't want it */
d += sqr<double>((*this)(1) - (*it)->y());
if (distance != -1 && d > distance) continue;
idx = it - points.begin();
distance = d;
if (distance < EPSILON) break;
}
return idx;
}
int Point::nearest_point_index(const PointPtrs &points) const
{
PointConstPtrs p;
p.reserve(points.size());
for (PointPtrs::const_iterator it = points.begin(); it != points.end(); ++it)
p.push_back(*it);
return this->nearest_point_index(p);
}
bool Point::nearest_point(const Points &points, Point* point) const
{
int idx = this->nearest_point_index(points);
if (idx == -1) return false;
*point = points.at(idx);
return true;
}
/* Three points are a counter-clockwise turn if ccw > 0, clockwise if
* ccw < 0, and collinear if ccw = 0 because ccw is a determinant that
* gives the signed area of the triangle formed by p1, p2 and this point.
* In other words it is the 2D cross product of p1-p2 and p1-this, i.e.
* z-component of their 3D cross product.
* We return double because it must be big enough to hold 2*max(|coordinate|)^2
*/
double Point::ccw(const Point &p1, const Point &p2) const
{
static_assert(sizeof(coord_t) == 4, "Point::ccw() requires a 32 bit coord_t");
return cross2((p2 - p1).cast<int64_t>(), (*this - p1).cast<int64_t>());
// return cross2((p2 - p1).cast<double>(), (*this - p1).cast<double>());
}
double Point::ccw(const Line &line) const
{
return this->ccw(line.a, line.b);
}
// returns the CCW angle between this-p1 and this-p2
// i.e. this assumes a CCW rotation from p1 to p2 around this
double Point::ccw_angle(const Point &p1, const Point &p2) const
{
//FIXME this calculates an atan2 twice! Project one vector into the other!
double angle = atan2(p1.x() - (*this).x(), p1.y() - (*this).y())
- atan2(p2.x() - (*this).x(), p2.y() - (*this).y());
// we only want to return only positive angles
return angle <= 0 ? angle + 2*PI : angle;
}
Point Point::projection_onto(const MultiPoint &poly) const
{
Point running_projection = poly.first_point();
double running_min = (running_projection - *this).cast<double>().norm();
Lines lines = poly.lines();
for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line) {
Point point_temp = this->projection_onto(*line);
if ((point_temp - *this).cast<double>().norm() < running_min) {
running_projection = point_temp;
running_min = (running_projection - *this).cast<double>().norm();
}
}
return running_projection;
}
Point Point::projection_onto(const Line &line) const
{
if (line.a == line.b) return line.a;
/*
(Ported from VisiLibity by Karl J. Obermeyer)
The projection of point_temp onto the line determined by
line_segment_temp can be represented as an affine combination
expressed in the form projection of
Point = theta*line_segment_temp.first + (1.0-theta)*line_segment_temp.second.
If theta is outside the interval [0,1], then one of the Line_Segment's endpoints
must be closest to calling Point.
*/
double lx = (double)(line.b(0) - line.a(0));
double ly = (double)(line.b(1) - line.a(1));
double theta = ( (double)(line.b(0) - (*this)(0))*lx + (double)(line.b(1)- (*this)(1))*ly )
/ ( sqr<double>(lx) + sqr<double>(ly) );
if (0.0 <= theta && theta <= 1.0)
return (theta * line.a.cast<coordf_t>() + (1.0-theta) * line.b.cast<coordf_t>()).cast<coord_t>();
// Else pick closest endpoint.
return ((line.a - *this).cast<double>().squaredNorm() < (line.b - *this).cast<double>().squaredNorm()) ? line.a : line.b;
}
bool has_duplicate_points(std::vector<Point> &&pts)
{
std::sort(pts.begin(), pts.end());
for (size_t i = 1; i < pts.size(); ++ i)
if (pts[i - 1] == pts[i])
return true;
return false;
}
BoundingBox get_extents(const Points &pts)
{
return BoundingBox(pts);
}
BoundingBox get_extents(const std::vector<Points> &pts)
{
BoundingBox bbox;
for (const Points &p : pts)
bbox.merge(get_extents(p));
return bbox;
}
BoundingBoxf get_extents(const std::vector<Vec2d> &pts)
{
BoundingBoxf bbox;
for (const Vec2d &p : pts)
bbox.merge(p);
return bbox;
}
std::ostream& operator<<(std::ostream &stm, const Vec2d &pointf)
{
return stm << pointf(0) << "," << pointf(1);
}
namespace int128 {
int orient(const Vec2crd &p1, const Vec2crd &p2, const Vec2crd &p3)
{
Slic3r::Vector v1(p2 - p1);
Slic3r::Vector v2(p3 - p1);
return Int128::sign_determinant_2x2_filtered(v1.x(), v1.y(), v2.x(), v2.y());
}
int cross(const Vec2crd &v1, const Vec2crd &v2)
{
return Int128::sign_determinant_2x2_filtered(v1.x(), v1.y(), v2.x(), v2.y());
}
}
}