PrusaSlicer-NonPlainar/src/libslic3r/GCode/WipeTower.cpp

1416 lines
60 KiB
C++

#include "WipeTower.hpp"
#include <cassert>
#include <iostream>
#include <vector>
#include <numeric>
#include "GCodeProcessor.hpp"
#include "BoundingBox.hpp"
// Experimental "Peter's wipe tower" feature was partially implemented, inspired by
// PJR's idea of alternating two perpendicular wiping directions on a square tower.
// It is probably never going to be finished, there are multiple remaining issues
// and there is probably no need to go down this way. m_peters_wipe_tower variable
// turns this on, maybe it should just be removed. Anyway, the issues are
// - layer's are not exactly square
// - variable width for higher levels
// - make sure it is not too sparse (apply max_bridge_distance and make last wipe longer)
// - enable enhanced first layer adhesion
namespace Slic3r
{
class WipeTowerWriter
{
public:
WipeTowerWriter(float layer_height, float line_width, GCodeFlavor flavor, const std::vector<WipeTower::FilamentParameters>& filament_parameters) :
m_current_pos(std::numeric_limits<float>::max(), std::numeric_limits<float>::max()),
m_current_z(0.f),
m_current_feedrate(0.f),
m_layer_height(layer_height),
m_extrusion_flow(0.f),
m_preview_suppressed(false),
m_elapsed_time(0.f),
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
m_default_analyzer_line_width(line_width),
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
m_gcode_flavor(flavor),
m_filpar(filament_parameters)
{
// adds tag for analyzer:
char buf[64];
sprintf(buf, ";%s%f\n", GCodeProcessor::Height_Tag.c_str(), m_layer_height); // don't rely on GCodeAnalyzer knowing the layer height - it knows nothing at priming
m_gcode += buf;
sprintf(buf, ";%s%s\n", GCodeProcessor::Extrusion_Role_Tag.c_str(), ExtrusionEntity::role_to_string(erWipeTower).c_str());
m_gcode += buf;
#if ENABLE_TOOLPATHS_WIDTH_HEIGHT_FROM_GCODE || ENABLE_GCODE_VIEWER_DATA_CHECKING
change_analyzer_line_width(line_width);
#endif // ENABLE_TOOLPATHS_WIDTH_HEIGHT_FROM_GCODE || ENABLE_GCODE_VIEWER_DATA_CHECKING
}
#if ENABLE_TOOLPATHS_WIDTH_HEIGHT_FROM_GCODE
WipeTowerWriter& change_analyzer_line_width(float line_width) {
// adds tag for analyzer:
char buf[64];
sprintf(buf, ";%s%f\n", GCodeProcessor::Width_Tag.c_str(), line_width);
m_gcode += buf;
return *this;
}
#endif // ENABLE_TOOLPATHS_WIDTH_HEIGHT_FROM_GCODE
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
#if !ENABLE_TOOLPATHS_WIDTH_HEIGHT_FROM_GCODE
WipeTowerWriter& change_analyzer_line_width(float line_width) {
// adds tag for analyzer:
char buf[64];
sprintf(buf, ";%s%f\n", GCodeProcessor::Width_Tag.c_str(), line_width);
m_gcode += buf;
return *this;
}
#endif // !ENABLE_TOOLPATHS_WIDTH_HEIGHT_FROM_GCODE
WipeTowerWriter& change_analyzer_mm3_per_mm(float len, float e) {
static const float area = float(M_PI) * 1.75f * 1.75f / 4.f;
float mm3_per_mm = (len == 0.f ? 0.f : area * e / len);
// adds tag for processor:
char buf[64];
sprintf(buf, ";%s%f\n", GCodeProcessor::Mm3_Per_Mm_Tag.c_str(), mm3_per_mm);
m_gcode += buf;
return *this;
}
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
WipeTowerWriter& set_initial_position(const Vec2f &pos, float width = 0.f, float depth = 0.f, float internal_angle = 0.f) {
m_wipe_tower_width = width;
m_wipe_tower_depth = depth;
m_internal_angle = internal_angle;
m_start_pos = this->rotate(pos);
m_current_pos = pos;
return *this;
}
WipeTowerWriter& set_initial_tool(size_t tool) { m_current_tool = tool; return *this; }
WipeTowerWriter& set_z(float z)
{ m_current_z = z; return *this; }
WipeTowerWriter& set_extrusion_flow(float flow)
{ m_extrusion_flow = flow; return *this; }
WipeTowerWriter& set_y_shift(float shift) {
m_current_pos.y() -= shift-m_y_shift;
m_y_shift = shift;
return (*this);
}
WipeTowerWriter& disable_linear_advance() {
m_gcode += (m_gcode_flavor == gcfRepRapSprinter || m_gcode_flavor == gcfRepRapFirmware
? (std::string("M572 D") + std::to_string(m_current_tool) + " S0\n")
: std::string("M900 K0\n"));
return *this;
}
// Suppress / resume G-code preview in Slic3r. Slic3r will have difficulty to differentiate the various
// filament loading and cooling moves from normal extrusion moves. Therefore the writer
// is asked to suppres output of some lines, which look like extrusions.
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
WipeTowerWriter& suppress_preview() { change_analyzer_line_width(0.f); m_preview_suppressed = true; return *this; }
WipeTowerWriter& resume_preview() { change_analyzer_line_width(m_default_analyzer_line_width); m_preview_suppressed = false; return *this; }
#else
WipeTowerWriter& suppress_preview() { m_preview_suppressed = true; return *this; }
WipeTowerWriter& resume_preview() { m_preview_suppressed = false; return *this; }
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
WipeTowerWriter& feedrate(float f)
{
if (f != m_current_feedrate)
m_gcode += "G1" + set_format_F(f) + "\n";
return *this;
}
const std::string& gcode() const { return m_gcode; }
const std::vector<WipeTower::Extrusion>& extrusions() const { return m_extrusions; }
float x() const { return m_current_pos.x(); }
float y() const { return m_current_pos.y(); }
const Vec2f& pos() const { return m_current_pos; }
const Vec2f start_pos_rotated() const { return m_start_pos; }
const Vec2f pos_rotated() const { return this->rotate(m_current_pos); }
float elapsed_time() const { return m_elapsed_time; }
float get_and_reset_used_filament_length() { float temp = m_used_filament_length; m_used_filament_length = 0.f; return temp; }
// Extrude with an explicitely provided amount of extrusion.
WipeTowerWriter& extrude_explicit(float x, float y, float e, float f = 0.f, bool record_length = false, bool limit_volumetric_flow = true)
{
if (x == m_current_pos.x() && y == m_current_pos.y() && e == 0.f && (f == 0.f || f == m_current_feedrate))
// Neither extrusion nor a travel move.
return *this;
float dx = x - m_current_pos.x();
float dy = y - m_current_pos.y();
float len = std::sqrt(dx*dx+dy*dy);
if (record_length)
m_used_filament_length += e;
// Now do the "internal rotation" with respect to the wipe tower center
Vec2f rotated_current_pos(this->pos_rotated());
Vec2f rot(this->rotate(Vec2f(x,y))); // this is where we want to go
if (! m_preview_suppressed && e > 0.f && len > 0.f) {
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
change_analyzer_mm3_per_mm(len, e);
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
// Width of a squished extrusion, corrected for the roundings of the squished extrusions.
// This is left zero if it is a travel move.
float width = e * m_filpar[0].filament_area / (len * m_layer_height);
// Correct for the roundings of a squished extrusion.
width += m_layer_height * float(1. - M_PI / 4.);
if (m_extrusions.empty() || m_extrusions.back().pos != rotated_current_pos)
m_extrusions.emplace_back(WipeTower::Extrusion(rotated_current_pos, 0, m_current_tool));
m_extrusions.emplace_back(WipeTower::Extrusion(rot, width, m_current_tool));
}
m_gcode += "G1";
if (std::abs(rot.x() - rotated_current_pos.x()) > (float)EPSILON)
m_gcode += set_format_X(rot.x());
if (std::abs(rot.y() - rotated_current_pos.y()) > (float)EPSILON)
m_gcode += set_format_Y(rot.y());
if (e != 0.f)
m_gcode += set_format_E(e);
if (f != 0.f && f != m_current_feedrate) {
if (limit_volumetric_flow) {
float e_speed = e / (((len == 0.f) ? std::abs(e) : len) / f * 60.f);
f /= std::max(1.f, e_speed / m_filpar[m_current_tool].max_e_speed);
}
m_gcode += set_format_F(f);
}
m_current_pos.x() = x;
m_current_pos.y() = y;
// Update the elapsed time with a rough estimate.
m_elapsed_time += ((len == 0.f) ? std::abs(e) : len) / m_current_feedrate * 60.f;
m_gcode += "\n";
return *this;
}
WipeTowerWriter& extrude_explicit(const Vec2f &dest, float e, float f = 0.f, bool record_length = false, bool limit_volumetric_flow = true)
{ return extrude_explicit(dest.x(), dest.y(), e, f, record_length); }
// Travel to a new XY position. f=0 means use the current value.
WipeTowerWriter& travel(float x, float y, float f = 0.f)
{ return extrude_explicit(x, y, 0.f, f); }
WipeTowerWriter& travel(const Vec2f &dest, float f = 0.f)
{ return extrude_explicit(dest.x(), dest.y(), 0.f, f); }
// Extrude a line from current position to x, y with the extrusion amount given by m_extrusion_flow.
WipeTowerWriter& extrude(float x, float y, float f = 0.f)
{
float dx = x - m_current_pos.x();
float dy = y - m_current_pos.y();
return extrude_explicit(x, y, std::sqrt(dx*dx+dy*dy) * m_extrusion_flow, f, true);
}
WipeTowerWriter& extrude(const Vec2f &dest, const float f = 0.f)
{ return extrude(dest.x(), dest.y(), f); }
WipeTowerWriter& rectangle(const Vec2f& ld,float width,float height,const float f = 0.f)
{
Vec2f corners[4];
corners[0] = ld;
corners[1] = ld + Vec2f(width,0.f);
corners[2] = ld + Vec2f(width,height);
corners[3] = ld + Vec2f(0.f,height);
int index_of_closest = 0;
if (x()-ld.x() > ld.x()+width-x()) // closer to the right
index_of_closest = 1;
if (y()-ld.y() > ld.y()+height-y()) // closer to the top
index_of_closest = (index_of_closest==0 ? 3 : 2);
travel(corners[index_of_closest].x(), y()); // travel to the closest corner
travel(x(),corners[index_of_closest].y());
int i = index_of_closest;
do {
++i;
if (i==4) i=0;
extrude(corners[i], f);
} while (i != index_of_closest);
return (*this);
}
WipeTowerWriter& load(float e, float f = 0.f)
{
if (e == 0.f && (f == 0.f || f == m_current_feedrate))
return *this;
m_gcode += "G1";
if (e != 0.f)
m_gcode += set_format_E(e);
if (f != 0.f && f != m_current_feedrate)
m_gcode += set_format_F(f);
m_gcode += "\n";
return *this;
}
WipeTowerWriter& retract(float e, float f = 0.f)
{ return load(-e, f); }
// Loads filament while also moving towards given points in x-axis (x feedrate is limited by cutting the distance short if necessary)
WipeTowerWriter& load_move_x_advanced(float farthest_x, float loading_dist, float loading_speed, float max_x_speed = 50.f)
{
float time = std::abs(loading_dist / loading_speed); // time that the move must take
float x_distance = std::abs(farthest_x - x()); // max x-distance that we can travel
float x_speed = x_distance / time; // x-speed to do it in that time
if (x_speed > max_x_speed) {
// Necessary x_speed is too high - we must shorten the distance to achieve max_x_speed and still respect the time.
x_distance = max_x_speed * time;
x_speed = max_x_speed;
}
float end_point = x() + (farthest_x > x() ? 1.f : -1.f) * x_distance;
return extrude_explicit(end_point, y(), loading_dist, x_speed * 60.f, false, false);
}
// Elevate the extruder head above the current print_z position.
WipeTowerWriter& z_hop(float hop, float f = 0.f)
{
m_gcode += std::string("G1") + set_format_Z(m_current_z + hop);
if (f != 0 && f != m_current_feedrate)
m_gcode += set_format_F(f);
m_gcode += "\n";
return *this;
}
// Lower the extruder head back to the current print_z position.
WipeTowerWriter& z_hop_reset(float f = 0.f)
{ return z_hop(0, f); }
// Move to x1, +y_increment,
// extrude quickly amount e to x2 with feed f.
WipeTowerWriter& ram(float x1, float x2, float dy, float e0, float e, float f)
{
extrude_explicit(x1, m_current_pos.y() + dy, e0, f, true, false);
extrude_explicit(x2, m_current_pos.y(), e, 0.f, true, false);
return *this;
}
// Let the end of the pulled out filament cool down in the cooling tube
// by moving up and down and moving the print head left / right
// at the current Y position to spread the leaking material.
WipeTowerWriter& cool(float x1, float x2, float e1, float e2, float f)
{
extrude_explicit(x1, m_current_pos.y(), e1, f, false, false);
extrude_explicit(x2, m_current_pos.y(), e2, false, false);
return *this;
}
WipeTowerWriter& set_tool(size_t tool)
{
m_current_tool = tool;
return *this;
}
// Set extruder temperature, don't wait by default.
WipeTowerWriter& set_extruder_temp(int temperature, bool wait = false)
{
m_gcode += "M" + std::to_string(wait ? 109 : 104) + " S" + std::to_string(temperature) + "\n";
return *this;
}
// Wait for a period of time (seconds).
WipeTowerWriter& wait(float time)
{
if (time==0.f)
return *this;
char buf[128];
sprintf(buf, "G4 S%.3f\n", time);
m_gcode += buf;
return *this;
}
// Set speed factor override percentage.
WipeTowerWriter& speed_override(int speed)
{
m_gcode += "M220 S" + std::to_string(speed) + "\n";
return *this;
}
// Let the firmware back up the active speed override value.
WipeTowerWriter& speed_override_backup()
{
// This is only supported by Prusa at this point (https://github.com/prusa3d/PrusaSlicer/issues/3114)
if (m_gcode_flavor == gcfMarlin)
m_gcode += "M220 B\n";
return *this;
}
// Let the firmware restore the active speed override value.
WipeTowerWriter& speed_override_restore()
{
if (m_gcode_flavor == gcfMarlin)
m_gcode += "M220 R\n";
return *this;
}
// Set digital trimpot motor
WipeTowerWriter& set_extruder_trimpot(int current)
{
if (m_gcode_flavor == gcfRepRapSprinter || m_gcode_flavor == gcfRepRapFirmware)
m_gcode += "M906 E";
else
m_gcode += "M907 E";
m_gcode += std::to_string(current) + "\n";
return *this;
}
WipeTowerWriter& flush_planner_queue()
{
m_gcode += "G4 S0\n";
return *this;
}
// Reset internal extruder counter.
WipeTowerWriter& reset_extruder()
{
m_gcode += "G92 E0\n";
return *this;
}
WipeTowerWriter& comment_with_value(const char *comment, int value)
{
m_gcode += std::string(";") + comment + std::to_string(value) + "\n";
return *this;
}
WipeTowerWriter& set_fan(unsigned speed)
{
if (speed == m_last_fan_speed)
return *this;
if (speed == 0)
m_gcode += "M107\n";
else
m_gcode += "M106 S" + std::to_string(unsigned(255.0 * speed / 100.0)) + "\n";
m_last_fan_speed = speed;
return *this;
}
WipeTowerWriter& append(const std::string& text) { m_gcode += text; return *this; }
std::vector<Vec2f> wipe_path() const
{
return m_wipe_path;
}
WipeTowerWriter& add_wipe_point(const Vec2f& pt)
{
m_wipe_path.push_back(rotate(pt));
return *this;
}
WipeTowerWriter& add_wipe_point(float x, float y)
{
return add_wipe_point(Vec2f(x, y));
}
private:
Vec2f m_start_pos;
Vec2f m_current_pos;
std::vector<Vec2f> m_wipe_path;
float m_current_z;
float m_current_feedrate;
size_t m_current_tool;
float m_layer_height;
float m_extrusion_flow;
bool m_preview_suppressed;
std::string m_gcode;
std::vector<WipeTower::Extrusion> m_extrusions;
float m_elapsed_time;
float m_internal_angle = 0.f;
float m_y_shift = 0.f;
float m_wipe_tower_width = 0.f;
float m_wipe_tower_depth = 0.f;
unsigned m_last_fan_speed = 0;
int current_temp = -1;
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
const float m_default_analyzer_line_width;
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
float m_used_filament_length = 0.f;
GCodeFlavor m_gcode_flavor;
const std::vector<WipeTower::FilamentParameters>& m_filpar;
std::string set_format_X(float x)
{
char buf[64];
sprintf(buf, " X%.3f", x);
m_current_pos.x() = x;
return buf;
}
std::string set_format_Y(float y) {
char buf[64];
sprintf(buf, " Y%.3f", y);
m_current_pos.y() = y;
return buf;
}
std::string set_format_Z(float z) {
char buf[64];
sprintf(buf, " Z%.3f", z);
return buf;
}
std::string set_format_E(float e) {
char buf[64];
sprintf(buf, " E%.4f", e);
return buf;
}
std::string set_format_F(float f) {
char buf[64];
sprintf(buf, " F%d", int(floor(f + 0.5f)));
m_current_feedrate = f;
return buf;
}
WipeTowerWriter& operator=(const WipeTowerWriter &rhs);
// Rotate the point around center of the wipe tower about given angle (in degrees)
Vec2f rotate(Vec2f pt) const
{
pt.x() -= m_wipe_tower_width / 2.f;
pt.y() += m_y_shift - m_wipe_tower_depth / 2.f;
double angle = m_internal_angle * float(M_PI/180.);
double c = cos(angle);
double s = sin(angle);
return Vec2f(float(pt.x() * c - pt.y() * s) + m_wipe_tower_width / 2.f, float(pt.x() * s + pt.y() * c) + m_wipe_tower_depth / 2.f);
}
}; // class WipeTowerWriter
WipeTower::ToolChangeResult WipeTower::construct_tcr(WipeTowerWriter& writer,
bool priming,
size_t old_tool) const
{
ToolChangeResult result;
result.priming = priming;
result.initial_tool = int(old_tool);
result.new_tool = int(this->m_current_tool);
result.print_z = this->m_z_pos;
result.layer_height = this->m_layer_height;
result.elapsed_time = writer.elapsed_time();
result.start_pos = writer.start_pos_rotated();
result.end_pos = priming ? writer.pos() : writer.pos_rotated();
result.gcode = std::move(writer.gcode());
result.extrusions = std::move(writer.extrusions());
result.wipe_path = std::move(writer.wipe_path());
return result;
}
WipeTower::WipeTower(const PrintConfig& config, const std::vector<std::vector<float>>& wiping_matrix, size_t initial_tool) :
m_semm(config.single_extruder_multi_material.value),
m_wipe_tower_pos(config.wipe_tower_x, config.wipe_tower_y),
m_wipe_tower_width(float(config.wipe_tower_width)),
m_wipe_tower_rotation_angle(float(config.wipe_tower_rotation_angle)),
m_y_shift(0.f),
m_z_pos(0.f),
m_is_first_layer(false),
m_bridging(float(config.wipe_tower_bridging)),
m_no_sparse_layers(config.wipe_tower_no_sparse_layers),
m_gcode_flavor(config.gcode_flavor),
m_current_tool(initial_tool),
wipe_volumes(wiping_matrix)
{
// If this is a single extruder MM printer, we will use all the SE-specific config values.
// Otherwise, the defaults will be used to turn off the SE stuff.
if (m_semm) {
m_cooling_tube_retraction = float(config.cooling_tube_retraction);
m_cooling_tube_length = float(config.cooling_tube_length);
m_parking_pos_retraction = float(config.parking_pos_retraction);
m_extra_loading_move = float(config.extra_loading_move);
m_set_extruder_trimpot = config.high_current_on_filament_swap;
}
// Calculate where the priming lines should be - very naive test not detecting parallelograms or custom shapes
const std::vector<Vec2d>& bed_points = config.bed_shape.values;
m_bed_shape = (bed_points.size() == 4 ? RectangularBed : CircularBed);
m_bed_width = float(BoundingBoxf(bed_points).size().x());
m_bed_bottom_left = m_bed_shape == RectangularBed
? Vec2f(bed_points.front().x(), bed_points.front().y())
: Vec2f::Zero();
}
void WipeTower::set_extruder(size_t idx, const PrintConfig& config)
{
//while (m_filpar.size() < idx+1) // makes sure the required element is in the vector
m_filpar.push_back(FilamentParameters());
m_filpar[idx].material = config.filament_type.get_at(idx);
m_filpar[idx].temperature = config.temperature.get_at(idx);
m_filpar[idx].first_layer_temperature = config.first_layer_temperature.get_at(idx);
// If this is a single extruder MM printer, we will use all the SE-specific config values.
// Otherwise, the defaults will be used to turn off the SE stuff.
if (m_semm) {
m_filpar[idx].loading_speed = float(config.filament_loading_speed.get_at(idx));
m_filpar[idx].loading_speed_start = float(config.filament_loading_speed_start.get_at(idx));
m_filpar[idx].unloading_speed = float(config.filament_unloading_speed.get_at(idx));
m_filpar[idx].unloading_speed_start = float(config.filament_unloading_speed_start.get_at(idx));
m_filpar[idx].delay = float(config.filament_toolchange_delay.get_at(idx));
m_filpar[idx].cooling_moves = config.filament_cooling_moves.get_at(idx);
m_filpar[idx].cooling_initial_speed = float(config.filament_cooling_initial_speed.get_at(idx));
m_filpar[idx].cooling_final_speed = float(config.filament_cooling_final_speed.get_at(idx));
}
m_filpar[idx].filament_area = float((M_PI/4.f) * pow(config.filament_diameter.get_at(idx), 2)); // all extruders are assumed to have the same filament diameter at this point
float nozzle_diameter = float(config.nozzle_diameter.get_at(idx));
m_filpar[idx].nozzle_diameter = nozzle_diameter; // to be used in future with (non-single) multiextruder MM
float max_vol_speed = float(config.filament_max_volumetric_speed.get_at(idx));
if (max_vol_speed!= 0.f)
m_filpar[idx].max_e_speed = (max_vol_speed / filament_area());
m_perimeter_width = nozzle_diameter * Width_To_Nozzle_Ratio; // all extruders are now assumed to have the same diameter
if (m_semm) {
std::istringstream stream{config.filament_ramming_parameters.get_at(idx)};
float speed = 0.f;
stream >> m_filpar[idx].ramming_line_width_multiplicator >> m_filpar[idx].ramming_step_multiplicator;
m_filpar[idx].ramming_line_width_multiplicator /= 100;
m_filpar[idx].ramming_step_multiplicator /= 100;
while (stream >> speed)
m_filpar[idx].ramming_speed.push_back(speed);
}
m_used_filament_length.resize(std::max(m_used_filament_length.size(), idx + 1)); // makes sure that the vector is big enough so we don't have to check later
}
// Returns gcode to prime the nozzles at the front edge of the print bed.
std::vector<WipeTower::ToolChangeResult> WipeTower::prime(
// print_z of the first layer.
float first_layer_height,
// Extruder indices, in the order to be primed. The last extruder will later print the wipe tower brim, print brim and the object.
const std::vector<unsigned int> &tools,
// If true, the last priming are will be the same as the other priming areas, and the rest of the wipe will be performed inside the wipe tower.
// If false, the last priming are will be large enough to wipe the last extruder sufficiently.
bool /*last_wipe_inside_wipe_tower*/)
{
this->set_layer(first_layer_height, first_layer_height, tools.size(), true, false);
this->m_current_tool = tools.front();
// The Prusa i3 MK2 has a working space of [0, -2.2] to [250, 210].
// Due to the XYZ calibration, this working space may shrink slightly from all directions,
// therefore the homing position is shifted inside the bed by 0.2 in the firmware to [0.2, -2.0].
// box_coordinates cleaning_box(xy(0.5f, - 1.5f), m_wipe_tower_width, wipe_area);
float prime_section_width = std::min(0.9f * m_bed_width / tools.size(), 60.f);
box_coordinates cleaning_box(Vec2f(0.02f * m_bed_width, 0.01f + m_perimeter_width/2.f), prime_section_width, 100.f);
// In case of a circular bed, place it so it goes across the diameter and hope it will fit
if (m_bed_shape == CircularBed)
cleaning_box.translate(-m_bed_width/2 + m_bed_width * 0.03f, -m_bed_width * 0.12f);
if (m_bed_shape == RectangularBed)
cleaning_box.translate(m_bed_bottom_left);
std::vector<ToolChangeResult> results;
// Iterate over all priming toolchanges and push respective ToolChangeResults into results vector.
for (size_t idx_tool = 0; idx_tool < tools.size(); ++ idx_tool) {
size_t old_tool = m_current_tool;
WipeTowerWriter writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar);
writer.set_extrusion_flow(m_extrusion_flow)
.set_z(m_z_pos)
.set_initial_tool(m_current_tool);
// This is the first toolchange - initiate priming
if (idx_tool == 0) {
writer.append(";--------------------\n"
"; CP PRIMING START\n")
.append(";--------------------\n")
.speed_override_backup()
.speed_override(100)
.set_initial_position(Vec2f::Zero()) // Always move to the starting position
.travel(cleaning_box.ld, 7200);
if (m_set_extruder_trimpot)
writer.set_extruder_trimpot(750); // Increase the extruder driver current to allow fast ramming.
}
else
writer.set_initial_position(results.back().end_pos);
unsigned int tool = tools[idx_tool];
m_left_to_right = true;
toolchange_Change(writer, tool, m_filpar[tool].material); // Select the tool, set a speed override for soluble and flex materials.
toolchange_Load(writer, cleaning_box); // Prime the tool.
if (idx_tool + 1 == tools.size()) {
// Last tool should not be unloaded, but it should be wiped enough to become of a pure color.
toolchange_Wipe(writer, cleaning_box, wipe_volumes[tools[idx_tool-1]][tool]);
} else {
// Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool.
//writer.travel(writer.x(), writer.y() + m_perimeter_width, 7200);
toolchange_Wipe(writer, cleaning_box , 20.f);
box_coordinates box = cleaning_box;
box.translate(0.f, writer.y() - cleaning_box.ld.y() + m_perimeter_width);
toolchange_Unload(writer, box , m_filpar[m_current_tool].material, m_filpar[tools[idx_tool + 1]].first_layer_temperature);
cleaning_box.translate(prime_section_width, 0.f);
writer.travel(cleaning_box.ld, 7200);
}
++ m_num_tool_changes;
// Ask our writer about how much material was consumed:
if (m_current_tool < m_used_filament_length.size())
m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length();
// This is the last priming toolchange - finish priming
if (idx_tool+1 == tools.size()) {
// Reset the extruder current to a normal value.
if (m_set_extruder_trimpot)
writer.set_extruder_trimpot(550);
writer.speed_override_restore()
.feedrate(6000)
.flush_planner_queue()
.reset_extruder()
.append("; CP PRIMING END\n"
";------------------\n"
"\n\n");
}
results.emplace_back(construct_tcr(writer, true, old_tool));
}
m_old_temperature = -1; // If the priming is turned off in config, the temperature changing commands will not actually appear
// in the output gcode - we should not remember emitting them (we will output them twice in the worst case)
// so that tool_change() will know to extrude the wipe tower brim:
m_print_brim = true;
return results;
}
WipeTower::ToolChangeResult WipeTower::tool_change(size_t tool)
{
if ( m_print_brim )
return toolchange_Brim();
size_t old_tool = m_current_tool;
float wipe_area = 0.f;
bool last_change_in_layer = false;
float wipe_volume = 0.f;
// Finds this toolchange info
if (tool != (unsigned int)(-1))
{
for (const auto &b : m_layer_info->tool_changes)
if ( b.new_tool == tool ) {
wipe_volume = b.wipe_volume;
if (tool == m_layer_info->tool_changes.back().new_tool)
last_change_in_layer = true;
wipe_area = b.required_depth * m_layer_info->extra_spacing;
break;
}
}
else {
// Otherwise we are going to Unload only. And m_layer_info would be invalid.
}
box_coordinates cleaning_box(
Vec2f(m_perimeter_width / 2.f, m_perimeter_width / 2.f),
m_wipe_tower_width - m_perimeter_width,
(tool != (unsigned int)(-1) ? /*m_layer_info->depth*/wipe_area+m_depth_traversed-0.5f*m_perimeter_width
: m_wipe_tower_depth-m_perimeter_width));
WipeTowerWriter writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar);
writer.set_extrusion_flow(m_extrusion_flow)
.set_z(m_z_pos)
.set_initial_tool(m_current_tool)
.set_y_shift(m_y_shift + (tool!=(unsigned int)(-1) && (m_current_shape == SHAPE_REVERSED && !m_peters_wipe_tower) ? m_layer_info->depth - m_layer_info->toolchanges_depth(): 0.f))
.append(";--------------------\n"
"; CP TOOLCHANGE START\n")
.comment_with_value(" toolchange #", m_num_tool_changes + 1); // the number is zero-based
if (tool != (unsigned)(-1))
writer.append(std::string("; material : " + (m_current_tool < m_filpar.size() ? m_filpar[m_current_tool].material : "(NONE)") + " -> " + m_filpar[tool].material + "\n").c_str())
.append(";--------------------\n");
writer.speed_override_backup();
writer.speed_override(100);
Vec2f initial_position = cleaning_box.ld + Vec2f(0.f, m_depth_traversed);
writer.set_initial_position(initial_position, m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation);
// Increase the extruder driver current to allow fast ramming.
if (m_set_extruder_trimpot)
writer.set_extruder_trimpot(750);
// Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool.
if (tool != (unsigned int)-1){ // This is not the last change.
toolchange_Unload(writer, cleaning_box, m_filpar[m_current_tool].material,
m_is_first_layer ? m_filpar[tool].first_layer_temperature : m_filpar[tool].temperature);
toolchange_Change(writer, tool, m_filpar[tool].material); // Change the tool, set a speed override for soluble and flex materials.
toolchange_Load(writer, cleaning_box);
writer.travel(writer.x(), writer.y()-m_perimeter_width); // cooling and loading were done a bit down the road
toolchange_Wipe(writer, cleaning_box, wipe_volume); // Wipe the newly loaded filament until the end of the assigned wipe area.
++ m_num_tool_changes;
} else
toolchange_Unload(writer, cleaning_box, m_filpar[m_current_tool].material, m_filpar[m_current_tool].temperature);
m_depth_traversed += wipe_area;
if (last_change_in_layer) {// draw perimeter line
writer.set_y_shift(m_y_shift);
if (m_peters_wipe_tower)
writer.rectangle(Vec2f::Zero(), m_layer_info->depth + 3*m_perimeter_width, m_wipe_tower_depth);
else {
writer.rectangle(Vec2f::Zero(), m_wipe_tower_width, m_layer_info->depth + m_perimeter_width);
if (layer_finished()) { // no finish_layer will be called, we must wipe the nozzle
writer.add_wipe_point(writer.x(), writer.y())
.add_wipe_point(writer.x()> m_wipe_tower_width / 2.f ? 0.f : m_wipe_tower_width, writer.y());
}
}
}
if (m_set_extruder_trimpot)
writer.set_extruder_trimpot(550); // Reset the extruder current to a normal value.
writer.speed_override_restore();
writer.feedrate(6000)
.flush_planner_queue()
.reset_extruder()
.append("; CP TOOLCHANGE END\n"
";------------------\n"
"\n\n");
// Ask our writer about how much material was consumed:
if (m_current_tool < m_used_filament_length.size())
m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length();
return construct_tcr(writer, false, old_tool);
}
WipeTower::ToolChangeResult WipeTower::toolchange_Brim(bool sideOnly, float y_offset)
{
size_t old_tool = m_current_tool;
const box_coordinates wipeTower_box(
Vec2f::Zero(),
m_wipe_tower_width,
m_wipe_tower_depth);
WipeTowerWriter writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar);
writer.set_extrusion_flow(m_extrusion_flow * 1.1f)
.set_z(m_z_pos) // Let the writer know the current Z position as a base for Z-hop.
.set_initial_tool(m_current_tool)
.append(";-------------------------------------\n"
"; CP WIPE TOWER FIRST LAYER BRIM START\n");
Vec2f initial_position = wipeTower_box.lu - Vec2f(m_perimeter_width * 6.f, 0);
writer.set_initial_position(initial_position, m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation);
writer.extrude_explicit(wipeTower_box.ld - Vec2f(m_perimeter_width * 6.f, 0), // Prime the extruder left of the wipe tower.
1.5f * m_extrusion_flow * (wipeTower_box.lu.y() - wipeTower_box.ld.y()), 2400);
// The tool is supposed to be active and primed at the time when the wipe tower brim is extruded.
// Extrude 4 rounds of a brim around the future wipe tower.
box_coordinates box(wipeTower_box);
// the brim shall have 'normal' spacing with no extra void space
float spacing = m_perimeter_width - m_layer_height*float(1.-M_PI_4);
for (size_t i = 0; i < 4; ++ i) {
box.expand(spacing);
writer.travel (box.ld, 7000)
.extrude(box.lu, 2100).extrude(box.ru)
.extrude(box.rd ).extrude(box.ld);
}
box.expand(-spacing);
writer.add_wipe_point(writer.x(), writer.y())
.add_wipe_point(box.ld)
.add_wipe_point(box.rd);
writer.append("; CP WIPE TOWER FIRST LAYER BRIM END\n"
";-----------------------------------\n");
// Save actual brim width to be later passed to the Print object, which will use it
// for skirt calculation and pass it to GLCanvas for precise preview box
m_wipe_tower_brim_width = wipeTower_box.ld.x() - box.ld.x() + spacing/2.f;
m_print_brim = false; // Mark the brim as extruded
// Ask our writer about how much material was consumed:
if (m_current_tool < m_used_filament_length.size())
m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length();
return construct_tcr(writer, false, old_tool);
}
// Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool.
void WipeTower::toolchange_Unload(
WipeTowerWriter &writer,
const box_coordinates &cleaning_box,
const std::string& current_material,
const int new_temperature)
{
float xl = cleaning_box.ld.x() + 1.f * m_perimeter_width;
float xr = cleaning_box.rd.x() - 1.f * m_perimeter_width;
const float line_width = m_perimeter_width * m_filpar[m_current_tool].ramming_line_width_multiplicator; // desired ramming line thickness
const float y_step = line_width * m_filpar[m_current_tool].ramming_step_multiplicator * m_extra_spacing; // spacing between lines in mm
#if ENABLE_TOOLPATHS_WIDTH_HEIGHT_FROM_GCODE || ENABLE_GCODE_VIEWER_DATA_CHECKING
writer.append("; CP TOOLCHANGE UNLOAD\n")
.change_analyzer_line_width(line_width);
#else
writer.append("; CP TOOLCHANGE UNLOAD\n");
#endif // ENABLE_TOOLPATHS_WIDTH_HEIGHT_FROM_GCODE || ENABLE_GCODE_VIEWER_DATA_CHECKING
unsigned i = 0; // iterates through ramming_speed
m_left_to_right = true; // current direction of ramming
float remaining = xr - xl ; // keeps track of distance to the next turnaround
float e_done = 0; // measures E move done from each segment
writer.travel(xl, cleaning_box.ld.y() + m_depth_traversed + y_step/2.f ); // move to starting position
// if the ending point of the ram would end up in mid air, align it with the end of the wipe tower:
if (m_layer_info > m_plan.begin() && m_layer_info < m_plan.end() && (m_layer_info-1!=m_plan.begin() || !m_adhesion )) {
// this is y of the center of previous sparse infill border
float sparse_beginning_y = 0.f;
if (m_current_shape == SHAPE_REVERSED)
sparse_beginning_y += ((m_layer_info-1)->depth - (m_layer_info-1)->toolchanges_depth())
- ((m_layer_info)->depth-(m_layer_info)->toolchanges_depth()) ;
else
sparse_beginning_y += (m_layer_info-1)->toolchanges_depth() + m_perimeter_width;
float sum_of_depths = 0.f;
for (const auto& tch : m_layer_info->tool_changes) { // let's find this toolchange
if (tch.old_tool == m_current_tool) {
sum_of_depths += tch.ramming_depth;
float ramming_end_y = sum_of_depths;
ramming_end_y -= (y_step/m_extra_spacing-m_perimeter_width) / 2.f; // center of final ramming line
if ( (m_current_shape == SHAPE_REVERSED && ramming_end_y < sparse_beginning_y - 0.5f*m_perimeter_width ) ||
(m_current_shape == SHAPE_NORMAL && ramming_end_y > sparse_beginning_y + 0.5f*m_perimeter_width ) )
{
writer.extrude(xl + tch.first_wipe_line-1.f*m_perimeter_width,writer.y());
remaining -= tch.first_wipe_line-1.f*m_perimeter_width;
}
break;
}
sum_of_depths += tch.required_depth;
}
}
writer.disable_linear_advance();
// now the ramming itself:
while (i < m_filpar[m_current_tool].ramming_speed.size())
{
const float x = volume_to_length(m_filpar[m_current_tool].ramming_speed[i] * 0.25f, line_width, m_layer_height);
const float e = m_filpar[m_current_tool].ramming_speed[i] * 0.25f / filament_area(); // transform volume per sec to E move;
const float dist = std::min(x - e_done, remaining); // distance to travel for either the next 0.25s, or to the next turnaround
const float actual_time = dist/x * 0.25f;
writer.ram(writer.x(), writer.x() + (m_left_to_right ? 1.f : -1.f) * dist, 0.f, 0.f, e * (dist / x), dist / (actual_time / 60.f));
remaining -= dist;
if (remaining < WT_EPSILON) { // we reached a turning point
writer.travel(writer.x(), writer.y() + y_step, 7200);
m_left_to_right = !m_left_to_right;
remaining = xr - xl;
}
e_done += dist; // subtract what was actually done
if (e_done > x - WT_EPSILON) { // current segment finished
++i;
e_done = 0;
}
}
Vec2f end_of_ramming(writer.x(),writer.y());
#if ENABLE_TOOLPATHS_WIDTH_HEIGHT_FROM_GCODE || ENABLE_GCODE_VIEWER_DATA_CHECKING
writer.change_analyzer_line_width(m_perimeter_width); // so the next lines are not affected by ramming_line_width_multiplier
#endif // ENABLE_TOOLPATHS_WIDTH_HEIGHT_FROM_GCODE || ENABLE_GCODE_VIEWER_DATA_CHECKING
// Retraction:
float old_x = writer.x();
float turning_point = (!m_left_to_right ? xl : xr );
if (m_semm && (m_cooling_tube_retraction != 0 || m_cooling_tube_length != 0)) {
float total_retraction_distance = m_cooling_tube_retraction + m_cooling_tube_length/2.f - 15.f; // the 15mm is reserved for the first part after ramming
writer.suppress_preview()
.retract(15.f, m_filpar[m_current_tool].unloading_speed_start * 60.f) // feedrate 5000mm/min = 83mm/s
.retract(0.70f * total_retraction_distance, 1.0f * m_filpar[m_current_tool].unloading_speed * 60.f)
.retract(0.20f * total_retraction_distance, 0.5f * m_filpar[m_current_tool].unloading_speed * 60.f)
.retract(0.10f * total_retraction_distance, 0.3f * m_filpar[m_current_tool].unloading_speed * 60.f)
.resume_preview();
}
// Wipe tower should only change temperature with single extruder MM. Otherwise, all temperatures should
// be already set and there is no need to change anything. Also, the temperature could be changed
// for wrong extruder.
if (m_semm) {
if (new_temperature != 0 && (new_temperature != m_old_temperature || m_is_first_layer) ) { // Set the extruder temperature, but don't wait.
// If the required temperature is the same as last time, don't emit the M104 again (if user adjusted the value, it would be reset)
// However, always change temperatures on the first layer (this is to avoid issues with priming lines turned off).
writer.set_extruder_temp(new_temperature, false);
m_old_temperature = new_temperature;
}
}
// Cooling:
const int& number_of_moves = m_filpar[m_current_tool].cooling_moves;
if (number_of_moves > 0) {
const float& initial_speed = m_filpar[m_current_tool].cooling_initial_speed;
const float& final_speed = m_filpar[m_current_tool].cooling_final_speed;
float speed_inc = (final_speed - initial_speed) / (2.f * number_of_moves - 1.f);
writer.suppress_preview()
.travel(writer.x(), writer.y() + y_step);
old_x = writer.x();
turning_point = xr-old_x > old_x-xl ? xr : xl;
for (int i=0; i<number_of_moves; ++i) {
float speed = initial_speed + speed_inc * 2*i;
writer.load_move_x_advanced(turning_point, m_cooling_tube_length, speed);
speed += speed_inc;
writer.load_move_x_advanced(old_x, -m_cooling_tube_length, speed);
}
}
// let's wait is necessary:
writer.wait(m_filpar[m_current_tool].delay);
// we should be at the beginning of the cooling tube again - let's move to parking position:
writer.retract(-m_cooling_tube_length/2.f+m_parking_pos_retraction-m_cooling_tube_retraction, 2000);
// this is to align ramming and future wiping extrusions, so the future y-steps can be uniform from the start:
// the perimeter_width will later be subtracted, it is there to not load while moving over just extruded material
writer.travel(end_of_ramming.x(), end_of_ramming.y() + (y_step/m_extra_spacing-m_perimeter_width) / 2.f + m_perimeter_width, 2400.f);
writer.resume_preview()
.flush_planner_queue();
}
// Change the tool, set a speed override for soluble and flex materials.
void WipeTower::toolchange_Change(
WipeTowerWriter &writer,
const size_t new_tool,
const std::string& new_material)
{
// Ask the writer about how much of the old filament we consumed:
if (m_current_tool < m_used_filament_length.size())
m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length();
// This is where we want to place the custom gcodes. We will use placeholders for this.
// These will be substituted by the actual gcodes when the gcode is generated.
writer.append("[end_filament_gcode]\n");
writer.append("[toolchange_gcode]\n");
// Travel to where we assume we are. Custom toolchange or some special T code handling (parking extruder etc)
// gcode could have left the extruder somewhere, we cannot just start extruding. We should also inform the
// postprocessor that we absolutely want to have this in the gcode, even if it thought it is the same as before.
Vec2f current_pos = writer.pos_rotated();
writer.append(std::string("G1 X") + std::to_string(current_pos.x()) + " Y" + std::to_string(current_pos.y()) + never_skip_tag() + "\n");
// The toolchange Tn command will be inserted later, only in case that the user does
// not provide a custom toolchange gcode.
writer.set_tool(new_tool); // This outputs nothing, the writer just needs to know the tool has changed.
writer.append("[start_filament_gcode]\n");
writer.flush_planner_queue();
m_current_tool = new_tool;
}
void WipeTower::toolchange_Load(
WipeTowerWriter &writer,
const box_coordinates &cleaning_box)
{
if (m_semm && (m_parking_pos_retraction != 0 || m_extra_loading_move != 0)) {
float xl = cleaning_box.ld.x() + m_perimeter_width * 0.75f;
float xr = cleaning_box.rd.x() - m_perimeter_width * 0.75f;
float oldx = writer.x(); // the nozzle is in place to do the first wiping moves, we will remember the position
// Load the filament while moving left / right, so the excess material will not create a blob at a single position.
float turning_point = ( oldx-xl < xr-oldx ? xr : xl );
float edist = m_parking_pos_retraction+m_extra_loading_move;
writer.append("; CP TOOLCHANGE LOAD\n")
.suppress_preview()
.load(0.2f * edist, 60.f * m_filpar[m_current_tool].loading_speed_start)
.load_move_x_advanced(turning_point, 0.7f * edist, m_filpar[m_current_tool].loading_speed) // Fast phase
.load_move_x_advanced(oldx, 0.1f * edist, 0.1f * m_filpar[m_current_tool].loading_speed) // Super slow*/
.travel(oldx, writer.y()) // in case last move was shortened to limit x feedrate
.resume_preview();
// Reset the extruder current to the normal value.
if (m_set_extruder_trimpot)
writer.set_extruder_trimpot(550);
}
}
// Wipe the newly loaded filament until the end of the assigned wipe area.
void WipeTower::toolchange_Wipe(
WipeTowerWriter &writer,
const box_coordinates &cleaning_box,
float wipe_volume)
{
// Increase flow on first layer, slow down print.
writer.set_extrusion_flow(m_extrusion_flow * (m_is_first_layer ? 1.18f : 1.f))
.append("; CP TOOLCHANGE WIPE\n");
float wipe_coeff = m_is_first_layer ? 0.5f : 1.f;
const float& xl = cleaning_box.ld.x();
const float& xr = cleaning_box.rd.x();
// Variables x_to_wipe and traversed_x are here to be able to make sure it always wipes at least
// the ordered volume, even if it means violating the box. This can later be removed and simply
// wipe until the end of the assigned area.
float x_to_wipe = volume_to_length(wipe_volume, m_perimeter_width, m_layer_height);
float dy = m_extra_spacing*m_perimeter_width;
float wipe_speed = 1600.f;
// if there is less than 2.5*m_perimeter_width to the edge, advance straightaway (there is likely a blob anyway)
if ((m_left_to_right ? xr-writer.x() : writer.x()-xl) < 2.5f*m_perimeter_width) {
writer.travel((m_left_to_right ? xr-m_perimeter_width : xl+m_perimeter_width),writer.y()+dy);
m_left_to_right = !m_left_to_right;
}
// now the wiping itself:
for (int i = 0; true; ++i) {
if (i!=0) {
if (wipe_speed < 1610.f) wipe_speed = 1800.f;
else if (wipe_speed < 1810.f) wipe_speed = 2200.f;
else if (wipe_speed < 2210.f) wipe_speed = 4200.f;
else wipe_speed = std::min(4800.f, wipe_speed + 50.f);
}
float traversed_x = writer.x();
if (m_left_to_right)
writer.extrude(xr - (i % 4 == 0 ? 0 : 1.5f*m_perimeter_width), writer.y(), wipe_speed * wipe_coeff);
else
writer.extrude(xl + (i % 4 == 1 ? 0 : 1.5f*m_perimeter_width), writer.y(), wipe_speed * wipe_coeff);
if (writer.y()+float(EPSILON) > cleaning_box.lu.y()-0.5f*m_perimeter_width)
break; // in case next line would not fit
traversed_x -= writer.x();
x_to_wipe -= std::abs(traversed_x);
if (x_to_wipe < WT_EPSILON) {
writer.travel(m_left_to_right ? xl + 1.5f*m_perimeter_width : xr - 1.5f*m_perimeter_width, writer.y(), 7200);
break;
}
// stepping to the next line:
writer.extrude(writer.x() + (i % 4 == 0 ? -1.f : (i % 4 == 1 ? 1.f : 0.f)) * 1.5f*m_perimeter_width, writer.y() + dy);
m_left_to_right = !m_left_to_right;
}
// this is neither priming nor not the last toolchange on this layer - we are
// going back to the model - wipe the nozzle.
if (m_layer_info != m_plan.end() && m_current_tool != m_layer_info->tool_changes.back().new_tool) {
m_left_to_right = !m_left_to_right;
writer.add_wipe_point(writer.x(), writer.y())
.add_wipe_point(writer.x(), writer.y() - dy)
.add_wipe_point(m_left_to_right ? m_wipe_tower_width : 0.f, writer.y() - dy);
}
writer.set_extrusion_flow(m_extrusion_flow); // Reset the extrusion flow.
}
WipeTower::ToolChangeResult WipeTower::finish_layer()
{
// This should only be called if the layer is not finished yet.
// Otherwise the caller would likely travel to the wipe tower in vain.
assert(! this->layer_finished());
size_t old_tool = m_current_tool;
WipeTowerWriter writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar);
writer.set_extrusion_flow(m_extrusion_flow)
.set_z(m_z_pos)
.set_initial_tool(m_current_tool)
.set_y_shift(m_y_shift - (m_current_shape == SHAPE_REVERSED && !m_peters_wipe_tower ? m_layer_info->toolchanges_depth() : 0.f))
.append(";--------------------\n"
"; CP EMPTY GRID START\n")
.comment_with_value(" layer #", m_num_layer_changes + 1);
// Slow down on the 1st layer.
float speed_factor = m_is_first_layer ? 0.5f : 1.f;
float current_depth = m_layer_info->depth - m_layer_info->toolchanges_depth();
box_coordinates fill_box(Vec2f(m_perimeter_width, m_depth_traversed + m_perimeter_width),
m_wipe_tower_width - 2 * m_perimeter_width, current_depth-m_perimeter_width);
writer.set_initial_position((m_left_to_right ? fill_box.ru : fill_box.lu), // so there is never a diagonal travel
m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation);
bool toolchanges_on_layer = m_layer_info->toolchanges_depth() > WT_EPSILON;
box_coordinates box = fill_box;
for (int i=0;i<2;++i) {
if (! toolchanges_on_layer) {
if (i==0) box.expand(m_perimeter_width);
else box.expand(-m_perimeter_width);
}
else i=2; // only draw the inner perimeter, outer has been already drawn by tool_change(...)
writer.rectangle(box.ld, box.rd.x()-box.ld.x(), box.ru.y()-box.rd.y(), 2900*speed_factor);
}
// we are in one of the corners, travel to ld along the perimeter:
if (writer.x() > fill_box.ld.x()+EPSILON) writer.travel(fill_box.ld.x(),writer.y());
if (writer.y() > fill_box.ld.y()+EPSILON) writer.travel(writer.x(),fill_box.ld.y());
if (m_is_first_layer && m_adhesion) {
// Extrude a dense infill at the 1st layer to improve 1st layer adhesion of the wipe tower.
box.expand(-m_perimeter_width/2.f);
int nsteps = int(floor((box.lu.y() - box.ld.y()) / (2*m_perimeter_width)));
float step = (box.lu.y() - box.ld.y()) / nsteps;
writer.travel(box.ld - Vec2f(m_perimeter_width/2.f, m_perimeter_width/2.f));
if (nsteps >= 0)
for (int i = 0; i < nsteps; ++i) {
writer.extrude(box.ld.x()+m_perimeter_width/2.f, writer.y() + 0.5f * step);
writer.extrude(box.rd.x() - m_perimeter_width / 2.f, writer.y());
writer.extrude(box.rd.x() - m_perimeter_width / 2.f, writer.y() + 0.5f * step);
writer.extrude(box.ld.x() + m_perimeter_width / 2.f, writer.y());
}
writer.add_wipe_point(writer.x(), writer.y())
.add_wipe_point(box.rd.x()-m_perimeter_width/2.f,writer.y());
}
else { // Extrude a sparse infill to support the material to be printed above.
const float dy = (fill_box.lu.y() - fill_box.ld.y() - m_perimeter_width);
const float left = fill_box.lu.x() + 2*m_perimeter_width;
const float right = fill_box.ru.x() - 2 * m_perimeter_width;
if (dy > m_perimeter_width)
{
// Extrude an inverse U at the left of the region.
writer.travel(fill_box.ld + Vec2f(m_perimeter_width * 2, 0.f))
.extrude(fill_box.lu + Vec2f(m_perimeter_width * 2, 0.f), 2900 * speed_factor);
const int n = 1+int((right-left)/m_bridging);
const float dx = (right-left)/n;
for (int i=1;i<=n;++i) {
float x=left+dx*i;
writer.travel(x,writer.y());
writer.extrude(x,i%2 ? fill_box.rd.y() : fill_box.ru.y());
}
writer.add_wipe_point(Vec2f(writer.x(), writer.y()))
.add_wipe_point(Vec2f(left, writer.y()));
}
else {
writer.add_wipe_point(Vec2f(writer.x(), writer.y()))
.add_wipe_point(Vec2f(right, writer.y()));
}
}
writer.append("; CP EMPTY GRID END\n"
";------------------\n\n\n\n\n\n\n");
m_depth_traversed = m_wipe_tower_depth-m_perimeter_width;
// Ask our writer about how much material was consumed.
// Skip this in case the layer is sparse and config option to not print sparse layers is enabled.
if (! m_no_sparse_layers || toolchanges_on_layer)
if (m_current_tool < m_used_filament_length.size())
m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length();
return construct_tcr(writer, false, old_tool);
}
// Appends a toolchange into m_plan and calculates neccessary depth of the corresponding box
void WipeTower::plan_toolchange(float z_par, float layer_height_par, unsigned int old_tool, unsigned int new_tool, bool brim, float wipe_volume)
{
assert(m_plan.empty() || m_plan.back().z <= z_par + WT_EPSILON); // refuses to add a layer below the last one
if (m_plan.empty() || m_plan.back().z + WT_EPSILON < z_par) // if we moved to a new layer, we'll add it to m_plan first
m_plan.push_back(WipeTowerInfo(z_par, layer_height_par));
if (brim) { // this toolchange prints brim - we must add it to m_plan, but not to count its depth
m_plan.back().tool_changes.push_back(WipeTowerInfo::ToolChange(old_tool, new_tool));
return;
}
if (old_tool==new_tool) // new layer without toolchanges - we are done
return;
// this is an actual toolchange - let's calculate depth to reserve on the wipe tower
float depth = 0.f;
float width = m_wipe_tower_width - 3*m_perimeter_width;
float length_to_extrude = volume_to_length(0.25f * std::accumulate(m_filpar[old_tool].ramming_speed.begin(), m_filpar[old_tool].ramming_speed.end(), 0.f),
m_perimeter_width * m_filpar[old_tool].ramming_line_width_multiplicator,
layer_height_par);
depth = (int(length_to_extrude / width) + 1) * (m_perimeter_width * m_filpar[old_tool].ramming_line_width_multiplicator * m_filpar[old_tool].ramming_step_multiplicator);
float ramming_depth = depth;
length_to_extrude = width*((length_to_extrude / width)-int(length_to_extrude / width)) - width;
float first_wipe_line = -length_to_extrude;
length_to_extrude += volume_to_length(wipe_volume, m_perimeter_width, layer_height_par);
length_to_extrude = std::max(length_to_extrude,0.f);
depth += (int(length_to_extrude / width) + 1) * m_perimeter_width;
depth *= m_extra_spacing;
m_plan.back().tool_changes.push_back(WipeTowerInfo::ToolChange(old_tool, new_tool, depth, ramming_depth, first_wipe_line, wipe_volume));
}
void WipeTower::plan_tower()
{
// Calculate m_wipe_tower_depth (maximum depth for all the layers) and propagate depths downwards
m_wipe_tower_depth = 0.f;
for (auto& layer : m_plan)
layer.depth = 0.f;
for (int layer_index = int(m_plan.size()) - 1; layer_index >= 0; --layer_index)
{
float this_layer_depth = std::max(m_plan[layer_index].depth, m_plan[layer_index].toolchanges_depth());
m_plan[layer_index].depth = this_layer_depth;
if (this_layer_depth > m_wipe_tower_depth - m_perimeter_width)
m_wipe_tower_depth = this_layer_depth + m_perimeter_width;
for (int i = layer_index - 1; i >= 0 ; i--)
{
if (m_plan[i].depth - this_layer_depth < 2*m_perimeter_width )
m_plan[i].depth = this_layer_depth;
}
}
}
void WipeTower::save_on_last_wipe()
{
for (m_layer_info=m_plan.begin();m_layer_info<m_plan.end();++m_layer_info) {
set_layer(m_layer_info->z, m_layer_info->height, 0, m_layer_info->z == m_plan.front().z, m_layer_info->z == m_plan.back().z);
if (m_layer_info->tool_changes.size()==0) // we have no way to save anything on an empty layer
continue;
for (const auto &toolchange : m_layer_info->tool_changes)
tool_change(toolchange.new_tool);
float width = m_wipe_tower_width - 3*m_perimeter_width; // width we draw into
float length_to_save = 2*(m_wipe_tower_width+m_wipe_tower_depth) + (!layer_finished() ? finish_layer().total_extrusion_length_in_plane() : 0.f);
float length_to_wipe = volume_to_length(m_layer_info->tool_changes.back().wipe_volume,
m_perimeter_width,m_layer_info->height) - m_layer_info->tool_changes.back().first_wipe_line - length_to_save;
length_to_wipe = std::max(length_to_wipe,0.f);
float depth_to_wipe = m_perimeter_width * (std::floor(length_to_wipe/width) + ( length_to_wipe > 0.f ? 1.f : 0.f ) ) * m_extra_spacing;
//depth += (int(length_to_extrude / width) + 1) * m_perimeter_width;
m_layer_info->tool_changes.back().required_depth = m_layer_info->tool_changes.back().ramming_depth + depth_to_wipe;
}
}
// Processes vector m_plan and calls respective functions to generate G-code for the wipe tower
// Resulting ToolChangeResults are appended into vector "result"
void WipeTower::generate(std::vector<std::vector<WipeTower::ToolChangeResult>> &result)
{
if (m_plan.empty())
return;
m_extra_spacing = 1.f;
plan_tower();
for (int i=0;i<5;++i) {
save_on_last_wipe();
plan_tower();
}
if (m_peters_wipe_tower)
make_wipe_tower_square();
m_layer_info = m_plan.begin();
// we don't know which extruder to start with - we'll set it according to the first toolchange
for (const auto& layer : m_plan) {
if (!layer.tool_changes.empty()) {
m_current_tool = layer.tool_changes.front().old_tool;
break;
}
}
for (auto& used : m_used_filament_length) // reset used filament stats
used = 0.f;
m_old_temperature = -1; // reset last temperature written in the gcode
std::vector<WipeTower::ToolChangeResult> layer_result;
for (auto layer : m_plan)
{
set_layer(layer.z,layer.height,0,layer.z == m_plan.front().z,layer.z == m_plan.back().z);
if (m_peters_wipe_tower)
m_internal_rotation += 90.f;
else
m_internal_rotation += 180.f;
if (!m_peters_wipe_tower && m_layer_info->depth < m_wipe_tower_depth - m_perimeter_width)
m_y_shift = (m_wipe_tower_depth-m_layer_info->depth-m_perimeter_width)/2.f;
for (const auto &toolchange : layer.tool_changes)
layer_result.emplace_back(tool_change(toolchange.new_tool));
if (! layer_finished()) {
auto finish_layer_toolchange = finish_layer();
if ( ! layer.tool_changes.empty() ) { // we will merge it to the last toolchange
auto& last_toolchange = layer_result.back();
if (last_toolchange.end_pos != finish_layer_toolchange.start_pos) {
char buf[2048]; // Add a travel move from tc1.end_pos to tc2.start_pos.
sprintf(buf, "G1 X%.3f Y%.3f F7200\n", finish_layer_toolchange.start_pos.x(), finish_layer_toolchange.start_pos.y());
last_toolchange.gcode += buf;
}
last_toolchange.gcode += finish_layer_toolchange.gcode;
last_toolchange.extrusions.insert(last_toolchange.extrusions.end(), finish_layer_toolchange.extrusions.begin(), finish_layer_toolchange.extrusions.end());
last_toolchange.end_pos = finish_layer_toolchange.end_pos;
last_toolchange.wipe_path = finish_layer_toolchange.wipe_path;
}
else
layer_result.emplace_back(std::move(finish_layer_toolchange));
}
result.emplace_back(std::move(layer_result));
m_is_first_layer = false;
}
}
void WipeTower::make_wipe_tower_square()
{
const float width = m_wipe_tower_width - 3 * m_perimeter_width;
const float depth = m_wipe_tower_depth - m_perimeter_width;
// area that we actually print into is width*depth
float side = sqrt(depth * width);
m_wipe_tower_width = side + 3 * m_perimeter_width;
m_wipe_tower_depth = side + 2 * m_perimeter_width;
// For all layers, find how depth changed and update all toolchange depths
for (auto &lay : m_plan)
{
side = sqrt(lay.depth * width);
float width_ratio = width / side;
//lay.extra_spacing = width_ratio;
for (auto &tch : lay.tool_changes)
tch.required_depth *= width_ratio;
}
plan_tower(); // propagates depth downwards again (width has changed)
for (auto& lay : m_plan) // depths set, now the spacing
lay.extra_spacing = lay.depth / lay.toolchanges_depth();
}
} // namespace Slic3r