PrusaSlicer-NonPlainar/xs/src/libslic3r/ExtrusionSimulator.cpp
bubnikv a6ea01a23f Moved some math macros (sqr, lerp, clamp) to libslic3r.h
Added UNUSED macro to libslic3r.h, used it to reduce some compile warnings.

Split the Int128 class from Clipper library to a separate file,
extended Int128 with intrinsic types wherever possible for performance,
added new geometric predicates.

Added a draft of new FillRectilinear3, which should reduce overfill near the perimeters in the future.
2017-07-27 10:39:43 +02:00

1030 lines
32 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Optimize the extrusion simulator to the bones.
//#pragma GCC optimize ("O3")
//#undef SLIC3R_DEBUG
//#define NDEBUG
#include <cmath>
#include <cassert>
#include <boost/geometry.hpp>
#include <boost/geometry/geometries/box.hpp>
#include <boost/geometry/geometries/point.hpp>
#include <boost/geometry/geometries/point_xy.hpp>
#include <boost/multi_array.hpp>
#include "libslic3r.h"
#include "ExtrusionSimulator.hpp"
#ifndef M_PI
#define M_PI 3.1415926535897932384626433832795
#endif
namespace Slic3r {
// Replacement for a template alias.
// Shorthand for the point_xy.
template<typename T>
struct V2
{
typedef boost::geometry::model::d2::point_xy<T> Type;
};
// Replacement for a template alias.
// Shorthand for the point with a cartesian coordinate system.
template<typename T>
struct V3
{
typedef boost::geometry::model::point<T, 3, boost::geometry::cs::cartesian> Type;
};
// Replacement for a template alias.
// Shorthand for the point with a cartesian coordinate system.
template<typename T>
struct V4
{
typedef boost::geometry::model::point<T, 4, boost::geometry::cs::cartesian> Type;
};
typedef V2<int >::Type V2i;
typedef V2<float >::Type V2f;
typedef V2<double>::Type V2d;
// Used for an RGB color.
typedef V3<unsigned char>::Type V3uc;
// Used for an RGBA color.
typedef V4<unsigned char>::Type V4uc;
typedef boost::geometry::model::box<V2i> B2i;
typedef boost::geometry::model::box<V2f> B2f;
typedef boost::geometry::model::box<V2d> B2d;
typedef boost::multi_array<unsigned char, 2> A2uc;
typedef boost::multi_array<int , 2> A2i;
typedef boost::multi_array<float , 2> A2f;
typedef boost::multi_array<double , 2> A2d;
template<typename T>
inline void operator+=(
boost::geometry::model::d2::point_xy<T> &v1,
const boost::geometry::model::d2::point_xy<T> &v2)
{
boost::geometry::add_point(v1, v2);
}
template<typename T>
inline void operator-=(
boost::geometry::model::d2::point_xy<T> &v1,
const boost::geometry::model::d2::point_xy<T> &v2)
{
boost::geometry::subtract_point(v1, v2);
}
template<typename T>
inline void operator*=(boost::geometry::model::d2::point_xy<T> &v, const T c)
{
boost::geometry::multiply_value(v, c);
}
template<typename T>
inline void operator/=(boost::geometry::model::d2::point_xy<T> &v, const T c)
{
boost::geometry::divide_value(v, c);
}
template<typename T>
inline typename boost::geometry::model::d2::point_xy<T> operator+(
const boost::geometry::model::d2::point_xy<T> &v1,
const boost::geometry::model::d2::point_xy<T> &v2)
{
boost::geometry::model::d2::point_xy<T> out(v1);
out += v2;
return out;
}
template<typename T>
inline boost::geometry::model::d2::point_xy<T> operator-(
const boost::geometry::model::d2::point_xy<T> &v1,
const boost::geometry::model::d2::point_xy<T> &v2)
{
boost::geometry::model::d2::point_xy<T> out(v1);
out -= v2;
return out;
}
template<typename T>
inline boost::geometry::model::d2::point_xy<T> operator*(
const boost::geometry::model::d2::point_xy<T> &v, const T c)
{
boost::geometry::model::d2::point_xy<T> out(v);
out *= c;
return out;
}
template<typename T>
inline typename boost::geometry::model::d2::point_xy<T> operator*(
const T c, const boost::geometry::model::d2::point_xy<T> &v)
{
boost::geometry::model::d2::point_xy<T> out(v);
out *= c;
return out;
}
template<typename T>
inline typename boost::geometry::model::d2::point_xy<T> operator/(
const boost::geometry::model::d2::point_xy<T> &v, const T c)
{
boost::geometry::model::d2::point_xy<T> out(v);
out /= c;
return out;
}
template<typename T>
inline T dot(
const boost::geometry::model::d2::point_xy<T> &v1,
const boost::geometry::model::d2::point_xy<T> &v2)
{
return boost::geometry::dot_product(v1, v2);
}
template<typename T>
inline T dot(const boost::geometry::model::d2::point_xy<T> &v)
{
return boost::geometry::dot_product(v, v);
}
template <typename T>
inline T cross(
const boost::geometry::model::d2::point_xy<T> &v1,
const boost::geometry::model::d2::point_xy<T> &v2)
{
return v1.x() * v2.y() - v2.x() * v1.y();
}
// Euclidian measure
template<typename T>
inline T l2(const boost::geometry::model::d2::point_xy<T> &v)
{
return std::sqrt(dot(v));
}
// Euclidian measure
template<typename T>
inline T mag(const boost::geometry::model::d2::point_xy<T> &v)
{
return l2(v);
}
template<typename T>
inline T dist2_to_line(
const boost::geometry::model::d2::point_xy<T> &p0,
const boost::geometry::model::d2::point_xy<T> &p1,
const boost::geometry::model::d2::point_xy<T> &px)
{
boost::geometry::model::d2::point_xy<T> v = p1 - p0;
boost::geometry::model::d2::point_xy<T> vx = px - p0;
T l = dot(v);
T t = dot(v, vx);
if (l != T(0) && t > T(0.)) {
t /= l;
vx = px - ((t > T(1.)) ? p1 : (p0 + t * v));
}
return dot(vx);
}
// Intersect a circle with a line segment.
// Returns number of intersection points.
template<typename T>
int line_circle_intersection(
const boost::geometry::model::d2::point_xy<T> &p0,
const boost::geometry::model::d2::point_xy<T> &p1,
const boost::geometry::model::d2::point_xy<T> &center,
const T radius,
boost::geometry::model::d2::point_xy<T> intersection[2])
{
typedef typename V2<T>::Type V2T;
V2T v = p1 - p0;
V2T vc = p0 - center;
T a = dot(v);
T b = T(2.) * dot(vc, v);
T c = dot(vc) - radius * radius;
T d = b * b - T(4.) * a * c;
if (d < T(0))
// The circle misses the ray.
return 0;
int n = 0;
if (d == T(0)) {
// The circle touches the ray at a single tangent point.
T t = - b / (T(2.) * a);
if (t >= T(0.) && t <= T(1.))
intersection[n ++] = p0 + t * v;
} else {
// The circle intersects the ray in two points.
d = sqrt(d);
T t = (- b - d) / (T(2.) * a);
if (t >= T(0.) && t <= T(1.))
intersection[n ++] = p0 + t * v;
t = (- b + d) / (T(2.) * a);
if (t >= T(0.) && t <= T(1.))
intersection[n ++] = p0 + t * v;
}
return n;
}
// SutherlandHodgman clipping of a rectangle against an AABB.
// Expects the first 4 points of rect to be filled at the beginning.
// The clipping may produce up to 8 points.
// Returns the number of resulting points.
template<typename T>
int clip_rect_by_AABB(
boost::geometry::model::d2::point_xy<T> rect[8],
const boost::geometry::model::box<boost::geometry::model::d2::point_xy<T> > &aabb)
{
typedef typename V2<T>::Type V2T;
V2T result[8];
int nin = 4;
int nout = 0;
V2T *in = rect;
V2T *out = result;
// Clip left
{
const V2T *S = in + nin - 1;
T left = aabb.min_corner().x();
for (int i = 0; i < nin; ++i) {
const V2T &E = in[i];
if (E.x() == left) {
out[nout++] = E;
}
else if (E.x() > left) {
// E is inside the AABB.
if (S->x() < left) {
// S is outside the AABB. Calculate an intersection point.
T t = (left - S->x()) / (E.x() - S->x());
out[nout++] = V2T(left, S->y() + t * (E.y() - S->y()));
}
out[nout++] = E;
}
else if (S->x() > left) {
// S is inside the AABB, E is outside the AABB.
T t = (left - S->x()) / (E.x() - S->x());
out[nout++] = V2T(left, S->y() + t * (E.y() - S->y()));
}
S = &E;
}
assert(nout <= 8);
}
// Clip bottom
{
std::swap(in, out);
nin = nout;
nout = 0;
const V2T *S = in + nin - 1;
T bottom = aabb.min_corner().y();
for (int i = 0; i < nin; ++i) {
const V2T &E = in[i];
if (E.y() == bottom) {
out[nout++] = E;
}
else if (E.y() > bottom) {
// E is inside the AABB.
if (S->y() < bottom) {
// S is outside the AABB. Calculate an intersection point.
T t = (bottom - S->y()) / (E.y() - S->y());
out[nout++] = V2T(S->x() + t * (E.x() - S->x()), bottom);
}
out[nout++] = E;
}
else if (S->y() > bottom) {
// S is inside the AABB, E is outside the AABB.
T t = (bottom - S->y()) / (E.y() - S->y());
out[nout++] = V2T(S->x() + t * (E.x() - S->x()), bottom);
}
S = &E;
}
assert(nout <= 8);
}
// Clip right
{
std::swap(in, out);
nin = nout;
nout = 0;
const V2T *S = in + nin - 1;
T right = aabb.max_corner().x();
for (int i = 0; i < nin; ++i) {
const V2T &E = in[i];
if (E.x() == right) {
out[nout++] = E;
}
else if (E.x() < right) {
// E is inside the AABB.
if (S->x() > right) {
// S is outside the AABB. Calculate an intersection point.
T t = (right - S->x()) / (E.x() - S->x());
out[nout++] = V2T(right, S->y() + t * (E.y() - S->y()));
}
out[nout++] = E;
}
else if (S->x() < right) {
// S is inside the AABB, E is outside the AABB.
T t = (right - S->x()) / (E.x() - S->x());
out[nout++] = V2T(right, S->y() + t * (E.y() - S->y()));
}
S = &E;
}
assert(nout <= 8);
}
// Clip top
{
std::swap(in, out);
nin = nout;
nout = 0;
const V2T *S = in + nin - 1;
T top = aabb.max_corner().y();
for (int i = 0; i < nin; ++i) {
const V2T &E = in[i];
if (E.y() == top) {
out[nout++] = E;
}
else if (E.y() < top) {
// E is inside the AABB.
if (S->y() > top) {
// S is outside the AABB. Calculate an intersection point.
T t = (top - S->y()) / (E.y() - S->y());
out[nout++] = V2T(S->x() + t * (E.x() - S->x()), top);
}
out[nout++] = E;
}
else if (S->y() < top) {
// S is inside the AABB, E is outside the AABB.
T t = (top - S->y()) / (E.y() - S->y());
out[nout++] = V2T(S->x() + t * (E.x() - S->x()), top);
}
S = &E;
}
assert(nout <= 8);
}
assert(nout <= 8);
return nout;
}
// Calculate area of the circle x AABB intersection.
// The calculation is approximate in a way, that the circular segment
// intersecting the cell is approximated by its chord (a linear segment).
template<typename T>
int clip_circle_by_AABB(
const boost::geometry::model::d2::point_xy<T> &center,
const T radius,
const boost::geometry::model::box<boost::geometry::model::d2::point_xy<T> > &aabb,
boost::geometry::model::d2::point_xy<T> result[8],
bool result_arc[8])
{
typedef typename V2<T>::Type V2T;
V2T rect[4] = {
aabb.min_corner(),
V2T(aabb.max_corner().x(), aabb.min_corner().y()),
aabb.max_corner(),
V2T(aabb.min_corner().x(), aabb.max_corner().y())
};
int bits_corners = 0;
T r2 = sqr(radius);
for (int i = 0; i < 4; ++ i, bits_corners <<= 1)
bits_corners |= dot(rect[i] - center) >= r2;
bits_corners >>= 1;
if (bits_corners == 0) {
// all inside
memcpy(result, rect, sizeof(rect));
memset(result_arc, true, 4);
return 4;
}
if (bits_corners == 0x0f)
// all outside
return 0;
// Some corners are outside, some are inside. Trim the rectangle.
int n = 0;
for (int i = 0; i < 4; ++ i) {
bool inside = (bits_corners & 0x08) == 0;
bits_corners <<= 1;
V2T chordal_points[2];
int n_chordal_points = line_circle_intersection(rect[i], rect[(i + 1)%4], center, radius, chordal_points);
if (n_chordal_points == 2) {
result_arc[n] = true;
result[n ++] = chordal_points[0];
result_arc[n] = true;
result[n ++] = chordal_points[1];
} else {
if (inside) {
result_arc[n] = false;
result[n ++] = rect[i];
}
if (n_chordal_points == 1) {
result_arc[n] = false;
result[n ++] = chordal_points[0];
}
}
}
return n;
}
/*
// Calculate area of the circle x AABB intersection.
// The calculation is approximate in a way, that the circular segment
// intersecting the cell is approximated by its chord (a linear segment).
template<typename T>
T circle_AABB_intersection_area(
const boost::geometry::model::d2::point_xy<T> &center,
const T radius,
const boost::geometry::model::box<boost::geometry::model::d2::point_xy<T> > &aabb)
{
typedef typename V2<T>::Type V2T;
typedef typename boost::geometry::model::box<V2T> B2T;
T radius2 = radius * radius;
bool intersectionLeft = sqr(aabb.min_corner().x() - center.x()) < radius2;
bool intersectionRight = sqr(aabb.max_corner().x() - center.x()) < radius2;
bool intersectionBottom = sqr(aabb.min_corner().y() - center.y()) < radius2;
bool intersectionTop = sqr(aabb.max_corner().y() - center.y()) < radius2;
if (! (intersectionLeft || intersectionRight || intersectionTop || intersectionBottom))
// No intersection between the aabb and the center.
return boost::geometry::point_in_box<V2T, B2T>()::apply(center, aabb) ? 1.f : 0.f;
V2T rect[4] = {
aabb.min_corner(),
V2T(aabb.max_corner().x(), aabb.min_corner().y()),
aabb.max_corner(),
V2T(aabb.min_corner().x(), aabb.max_corner().y())
};
int bits_corners = 0;
T r2 = sqr(radius);
for (int i = 0; i < 4; ++ i, bits_corners <<= 1)
bits_corners |= dot(rect[i] - center) >= r2;
bits_corners >>= 1;
if (bits_corners == 0) {
// all inside
memcpy(result, rect, sizeof(rect));
memset(result_arc, true, 4);
return 4;
}
if (bits_corners == 0x0f)
// all outside
return 0;
// Some corners are outside, some are inside. Trim the rectangle.
int n = 0;
for (int i = 0; i < 4; ++ i) {
bool inside = (bits_corners & 0x08) == 0;
bits_corners <<= 1;
V2T chordal_points[2];
int n_chordal_points = line_circle_intersection(rect[i], rect[(i + 1)%4], center, radius, chordal_points);
if (n_chordal_points == 2) {
result_arc[n] = true;
result[n ++] = chordal_points[0];
result_arc[n] = true;
result[n ++] = chordal_points[1];
} else {
if (inside) {
result_arc[n] = false;
result[n ++] = rect[i];
}
if (n_chordal_points == 1) {
result_arc[n] = false;
result[n ++] = chordal_points[0];
}
}
}
return n;
}
*/
template<typename T>
inline T polyArea(const boost::geometry::model::d2::point_xy<T> *poly, int n)
{
T area = T(0);
for (int i = 1; i + 1 < n; ++i)
area += cross(poly[i] - poly[0], poly[i + 1] - poly[0]);
return T(0.5) * area;
}
template<typename T>
boost::geometry::model::d2::point_xy<T> polyCentroid(const boost::geometry::model::d2::point_xy<T> *poly, int n)
{
boost::geometry::model::d2::point_xy<T> centroid(T(0), T(0));
for (int i = 0; i < n; ++i)
centroid += poly[i];
return (n == 0) ? centroid : (centroid / float(n));
}
void gcode_paint_layer(
const std::vector<V2f> &polyline,
float width,
float thickness,
A2f &acc)
{
int nc = acc.shape()[1];
int nr = acc.shape()[0];
// printf("gcode_paint_layer %d,%d\n", nc, nr);
for (size_t iLine = 1; iLine != polyline.size(); ++iLine) {
const V2f &p1 = polyline[iLine - 1];
const V2f &p2 = polyline[iLine];
// printf("p1, p2: %f,%f %f,%f\n", p1.x(), p1.y(), p2.x(), p2.y());
const V2f dir = p2 - p1;
V2f vperp(- dir.y(), dir.x());
vperp = vperp * 0.5f * width / l2(vperp);
// Rectangle of the extrusion.
V2f rect[4] = { p1 + vperp, p1 - vperp, p2 - vperp, p2 + vperp };
// Bounding box of the extrusion.
B2f bboxLine(rect[0], rect[0]);
boost::geometry::expand(bboxLine, rect[1]);
boost::geometry::expand(bboxLine, rect[2]);
boost::geometry::expand(bboxLine, rect[3]);
B2i bboxLinei(
V2i(clamp(0, nc-1, int(floor(bboxLine.min_corner().x()))),
clamp(0, nr-1, int(floor(bboxLine.min_corner().y())))),
V2i(clamp(0, nc-1, int(ceil (bboxLine.max_corner().x()))),
clamp(0, nr-1, int(ceil (bboxLine.max_corner().y())))));
// printf("bboxLinei %d,%d %d,%d\n", bboxLinei.min_corner().x(), bboxLinei.min_corner().y(), bboxLinei.max_corner().x(), bboxLinei.max_corner().y());
#ifdef _DEBUG
float area = polyArea(rect, 4);
assert(area > 0.f);
#endif /* _DEBUG */
for (int j = bboxLinei.min_corner().y(); j + 1 < bboxLinei.max_corner().y(); ++ j) {
for (int i = bboxLinei.min_corner().x(); i + 1 < bboxLinei.max_corner().x(); ++i) {
V2f rect2[8];
memcpy(rect2, rect, sizeof(rect));
int n = clip_rect_by_AABB(rect2, B2f(V2f(float(i), float(j)), V2f(float(i + 1), float(j + 1))));
float area = polyArea(rect2, n);
assert(area >= 0.f && area <= 1.000001f);
acc[j][i] += area * thickness;
}
}
}
}
void gcode_paint_bitmap(
const std::vector<V2f> &polyline,
float width,
A2uc &bitmap,
float scale)
{
int nc = bitmap.shape()[1];
int nr = bitmap.shape()[0];
float r2 = width * width * 0.25f;
// printf("gcode_paint_layer %d,%d\n", nc, nr);
for (size_t iLine = 1; iLine != polyline.size(); ++iLine) {
const V2f &p1 = polyline[iLine - 1];
const V2f &p2 = polyline[iLine];
// printf("p1, p2: %f,%f %f,%f\n", p1.x(), p1.y(), p2.x(), p2.y());
V2f dir = p2 - p1;
dir = dir * 0.5f * width / l2(dir);
V2f vperp(- dir.y(), dir.x());
// Rectangle of the extrusion.
V2f rect[4] = { (p1 + vperp - dir) * scale, (p1 - vperp - dir) * scale, (p2 - vperp + dir) * scale, (p2 + vperp + dir) * scale };
// Bounding box of the extrusion.
B2f bboxLine(rect[0], rect[0]);
boost::geometry::expand(bboxLine, rect[1]);
boost::geometry::expand(bboxLine, rect[2]);
boost::geometry::expand(bboxLine, rect[3]);
B2i bboxLinei(
V2i(clamp(0, nc-1, int(floor(bboxLine.min_corner().x()))),
clamp(0, nr-1, int(floor(bboxLine.min_corner().y())))),
V2i(clamp(0, nc-1, int(ceil (bboxLine.max_corner().x()))),
clamp(0, nr-1, int(ceil (bboxLine.max_corner().y())))));
// printf("bboxLinei %d,%d %d,%d\n", bboxLinei.min_corner().x(), bboxLinei.min_corner().y(), bboxLinei.max_corner().x(), bboxLinei.max_corner().y());
for (int j = bboxLinei.min_corner().y(); j + 1 < bboxLinei.max_corner().y(); ++ j) {
for (int i = bboxLinei.min_corner().x(); i + 1 < bboxLinei.max_corner().x(); ++i) {
float d2 = dist2_to_line(p1, p2, V2f(float(i) + 0.5f, float(j) + 0.5f) / scale);
if (d2 < r2)
bitmap[j][i] = 1;
}
}
}
}
struct Cell
{
// Cell index in the grid.
V2i idx;
// Total volume of the material stored in this cell.
float volume;
// Area covered inside this cell, <0,1>.
float area;
// Fraction of the area covered by the print head. <0,1>
float fraction_covered;
// Height of the covered part in excess to the expected layer height.
float excess_height;
bool operator<(const Cell &c2) const {
return this->excess_height < c2.excess_height;
}
};
struct ExtrusionPoint {
V2f center;
float radius;
float height;
};
typedef std::vector<ExtrusionPoint> ExtrusionPoints;
void gcode_spread_points(
A2f &acc,
const A2f &mask,
const ExtrusionPoints &points,
ExtrusionSimulationType simulationType)
{
int nc = acc.shape()[1];
int nr = acc.shape()[0];
// Maximum radius of the spreading points, to allocate a large enough cell array.
float rmax = 0.f;
for (ExtrusionPoints::const_iterator it = points.begin(); it != points.end(); ++ it)
rmax = std::max(rmax, it->radius);
size_t n_rows_max = size_t(ceil(rmax * 2.f + 2.f));
size_t n_cells_max = sqr(n_rows_max);
std::vector<std::pair<float, float> > spans;
std::vector<Cell> cells(n_cells_max, Cell());
std::vector<float> areas_sum(n_cells_max, 0.f);
for (ExtrusionPoints::const_iterator it = points.begin(); it != points.end(); ++ it) {
const V2f &center = it->center;
const float radius = it->radius;
const float radius2 = radius * radius;
const float height_target = it->height;
B2f bbox(center - V2f(radius, radius), center + V2f(radius, radius));
B2i bboxi(
V2i(clamp(0, nc-1, int(floor(bbox.min_corner().x()))),
clamp(0, nr-1, int(floor(bbox.min_corner().y())))),
V2i(clamp(0, nc-1, int(ceil (bbox.max_corner().x()))),
clamp(0, nr-1, int(ceil (bbox.max_corner().y())))));
/*
// Fill in the spans, at which the circle intersects the rows.
int row_first = bboxi.min_corner().y();
int row_last = bboxi.max_corner().y();
for (; row_first <= row_last; ++ row_first) {
float y = float(j) - center.y();
float discr = radius2 - sqr(y);
if (discr > 0) {
// Circle intersects the row j at 2 points.
float d = sqrt(discr);
spans.push_back(std.pair<float, float>(center.x() - d, center.x() + d)));
break;
}
}
for (int j = row_first + 1; j <= row_last; ++ j) {
float y = float(j) - center.y();
float discr = radius2 - sqr(y);
if (discr > 0) {
// Circle intersects the row j at 2 points.
float d = sqrt(discr);
spans.push_back(std.pair<float, float>(center.x() - d, center.x() + d)));
} else {
row_last = j - 1;
break;
}
}
*/
float area_total = 0;
float volume_total = 0;
float volume_excess = 0;
float volume_deficit = 0;
size_t n_cells = 0;
float area_circle_total = 0;
#if 0
// The intermediate lines.
for (int j = row_first; j < row_last; ++ j) {
const std::pair<float, float> &span1 = spans[j];
const std::pair<float, float> &span2 = spans[j+1];
float l1 = span1.first;
float l2 = span2.first;
float r1 = span1.second;
float r2 = span2.second;
if (l2 < l1)
std::swap(l1, l2);
if (r1 > r2)
std::swap(r1, r2);
int il1 = int(floor(l1));
int il2 = int(ceil(l2));
int ir1 = int(floor(r1));
int ir2 = int(floor(r2));
assert(il2 <= ir1);
for (int i = il1; i < il2; ++ i) {
Cell &cell = cells[n_cells ++];
cell.idx.x(i);
cell.idx.y(j);
cell.area = area;
}
for (int i = il2; i < ir1; ++ i) {
Cell &cell = cells[n_cells ++];
cell.idx.x(i);
cell.idx.y(j);
cell.area = 1.f;
}
for (int i = ir1; i < ir2; ++ i) {
Cell &cell = cells[n_cells ++];
cell.idx.x(i);
cell.idx.y(j);
cell.area = area;
}
}
#else
for (int j = bboxi.min_corner().y(); j < bboxi.max_corner().y(); ++ j) {
for (int i = bboxi.min_corner().x(); i < bboxi.max_corner().x(); ++i) {
B2f bb(V2f(float(i), float(j)), V2f(float(i + 1), float(j + 1)));
V2f poly[8];
bool poly_arc[8];
int n = clip_circle_by_AABB(center, radius, bb, poly, poly_arc);
float area = polyArea(poly, n);
assert(area >= 0.f && area <= 1.000001f);
if (area == 0.f)
continue;
Cell &cell = cells[n_cells ++];
cell.idx.x(i);
cell.idx.y(j);
cell.volume = acc[j][i];
cell.area = mask[j][i];
assert(cell.area >= 0.f && cell.area <= 1.000001f);
area_circle_total += area;
if (cell.area < area)
cell.area = area;
cell.fraction_covered = clamp(0.f, 1.f, (cell.area > 0) ? (area / cell.area) : 0);
if (cell.fraction_covered == 0) {
-- n_cells;
continue;
}
float cell_height = cell.volume / cell.area;
cell.excess_height = cell_height - height_target;
if (cell.excess_height > 0.f)
volume_excess += cell.excess_height * cell.area * cell.fraction_covered;
else
volume_deficit -= cell.excess_height * cell.area * cell.fraction_covered;
volume_total += cell.volume * cell.fraction_covered;
area_total += cell.area * cell.fraction_covered;
}
}
#endif
float area_circle_total2 = float(M_PI) * sqr(radius);
float area_err = fabs(area_circle_total2 - area_circle_total) / area_circle_total2;
// printf("area_circle_total: %f, %f, %f\n", area_circle_total, area_circle_total2, area_err);
float volume_full = float(M_PI) * sqr(radius) * height_target;
// if (true) {
// printf("volume_total: %f, volume_full: %f, fill factor: %f\n", volume_total, volume_full, 100.f - 100.f * volume_total / volume_full);
// printf("volume_full: %f, volume_excess+deficit: %f, volume_excess: %f, volume_deficit: %f\n", volume_full, volume_excess+volume_deficit, volume_excess, volume_deficit);
if (simulationType == ExtrusionSimulationSpreadFull || volume_total <= volume_full) {
// The volume under the circle is spreaded fully.
float height_avg = volume_total / area_total;
for (size_t i = 0; i < n_cells; ++ i) {
const Cell &cell = cells[i];
acc[cell.idx.y()][cell.idx.x()] = (1.f - cell.fraction_covered) * cell.volume + cell.fraction_covered * cell.area * height_avg;
}
} else if (simulationType == ExtrusionSimulationSpreadExcess) {
// The volume under the circle does not fit.
// 1) Fill the underfilled cells and remove them from the list.
float volume_borrowed_total = 0.;
for (size_t i = 0; i < n_cells;) {
Cell &cell = cells[i];
if (cell.excess_height <= 0) {
// Fill in the part of the cell below the circle.
float volume_borrowed = - cell.excess_height * cell.area * cell.fraction_covered;
assert(volume_borrowed >= 0.f);
acc[cell.idx.y()][cell.idx.x()] = cell.volume + volume_borrowed;
volume_borrowed_total += volume_borrowed;
cell = cells[-- n_cells];
} else
++ i;
}
// 2) Sort the remaining cells by their excess height.
std::sort(cells.begin(), cells.begin() + n_cells);
// 3) Prefix sum the areas per excess height.
// The excess height is discrete with the number of excess cells.
areas_sum[n_cells-1] = cells[n_cells-1].area * cells[n_cells-1].fraction_covered;
for (int i = n_cells - 2; i >= 0; -- i) {
const Cell &cell = cells[i];
areas_sum[i] = areas_sum[i + 1] + cell.area * cell.fraction_covered;
}
// 4) Find the excess height, where the volume_excess is over the volume_borrowed_total.
float volume_current = 0.f;
float excess_height_prev = 0.f;
size_t i_top = n_cells;
for (size_t i = 0; i < n_cells; ++ i) {
const Cell &cell = cells[i];
volume_current += (cell.excess_height - excess_height_prev) * areas_sum[i];
excess_height_prev = cell.excess_height;
if (volume_current > volume_borrowed_total) {
i_top = i;
break;
}
}
// 5) Remove material from the cells with deficit.
// First remove all the excess material from the cells, where the deficit is low.
for (size_t i = 0; i < i_top; ++ i) {
const Cell &cell = cells[i];
float volume_removed = cell.excess_height * cell.area * cell.fraction_covered;
acc[cell.idx.y()][cell.idx.x()] = cell.volume - volume_removed;
volume_borrowed_total -= volume_removed;
}
// Second remove some excess material from the cells, where the deficit is high.
if (i_top < n_cells) {
float height_diff = volume_borrowed_total / areas_sum[i_top];
for (size_t i = i_top; i < n_cells; ++ i) {
const Cell &cell = cells[i];
acc[cell.idx.y()][cell.idx.x()] = cell.volume - height_diff * cell.area * cell.fraction_covered;
}
}
}
}
}
inline std::vector<V3uc> CreatePowerColorGradient24bit()
{
int i;
int iColor = 0;
std::vector<V3uc> out(6 * 255 + 1, V3uc(0, 0, 0));
for (i = 0; i < 256; ++i)
out[iColor++] = V3uc(0, 0, i);
for (i = 1; i < 256; ++i)
out[iColor++] = V3uc(0, i, 255);
for (i = 1; i < 256; ++i)
out[iColor++] = V3uc(0, 255, 256 - i);
for (i = 1; i < 256; ++i)
out[iColor++] = V3uc(i, 255, 0);
for (i = 1; i < 256; ++i)
out[iColor++] = V3uc(255, 256 - i, 0);
for (i = 1; i < 256; ++i)
out[iColor++] = V3uc(255, 0, i);
return out;
}
class ExtrusionSimulatorImpl {
public:
std::vector<unsigned char> image_data;
A2f accumulator;
A2uc bitmap;
unsigned int bitmap_oversampled;
ExtrusionPoints extrusion_points;
// RGB gradient to color map the fullness of an accumulator bucket into the output image.
std::vector<boost::geometry::model::point<unsigned char, 3, boost::geometry::cs::cartesian> > color_gradient;
};
ExtrusionSimulator::ExtrusionSimulator() :
pimpl(new ExtrusionSimulatorImpl)
{
pimpl->color_gradient = CreatePowerColorGradient24bit();
pimpl->bitmap_oversampled = 4;
}
ExtrusionSimulator::~ExtrusionSimulator()
{
delete pimpl;
pimpl = NULL;
}
void ExtrusionSimulator::set_image_size(const Point &image_size)
{
// printf("ExtrusionSimulator::set_image_size()\n");
if (this->image_size.x == image_size.x &&
this->image_size.y == image_size.y)
return;
// printf("Setting image size: %d, %d\n", image_size.x, image_size.y);
this->image_size = image_size;
// Allocate the image data in an RGBA format.
// printf("Allocating image data, size %d\n", image_size.x * image_size.y * 4);
pimpl->image_data.assign(image_size.x * image_size.y * 4, 0);
// printf("Allocating image data, allocated\n");
//FIXME fill the image with red vertical lines.
for (size_t r = 0; r < image_size.y; ++ r) {
for (size_t c = 0; c < image_size.x; c += 2) {
// Color red
pimpl->image_data[r * image_size.x * 4 + c * 4] = 255;
// Opacity full
pimpl->image_data[r * image_size.x * 4 + c * 4 + 3] = 255;
}
}
// printf("Allocating image data, set\n");
}
void ExtrusionSimulator::set_viewport(const BoundingBox &viewport)
{
// printf("ExtrusionSimulator::set_viewport(%d, %d, %d, %d)\n", viewport.min.x, viewport.min.y, viewport.max.x, viewport.max.y);
if (this->viewport != viewport) {
this->viewport = viewport;
Point sz = viewport.size();
pimpl->accumulator.resize(boost::extents[sz.y][sz.x]);
pimpl->bitmap.resize(boost::extents[sz.y*pimpl->bitmap_oversampled][sz.x*pimpl->bitmap_oversampled]);
// printf("Accumulator size: %d, %d\n", sz.y, sz.x);
}
}
void ExtrusionSimulator::set_bounding_box(const BoundingBox &bbox)
{
this->bbox = bbox;
}
const void* ExtrusionSimulator::image_ptr() const
{
return (pimpl->image_data.empty()) ? NULL : (void*)&pimpl->image_data.front();
}
void ExtrusionSimulator::reset_accumulator()
{
// printf("ExtrusionSimulator::reset_accumulator()\n");
Point sz = viewport.size();
// printf("Reset accumulator, Accumulator size: %d, %d\n", sz.y, sz.x);
memset(&pimpl->accumulator[0][0], 0, sizeof(float) * sz.x * sz.y);
memset(&pimpl->bitmap[0][0], 0, sz.x * sz.y * pimpl->bitmap_oversampled * pimpl->bitmap_oversampled);
pimpl->extrusion_points.clear();
// printf("Reset accumulator, done.\n");
}
void ExtrusionSimulator::extrude_to_accumulator(const ExtrusionPath &path, const Point &shift, ExtrusionSimulationType simulationType)
{
// printf("Extruding a path. Nr points: %d, width: %f, height: %f\r\n", path.polyline.points.size(), path.width, path.height);
// Convert the path to V2f points, shift and scale them to the viewport.
std::vector<V2f> polyline;
polyline.reserve(path.polyline.points.size());
float scalex = float(viewport.size().x) / float(bbox.size().x);
float scaley = float(viewport.size().y) / float(bbox.size().y);
float w = scale_(path.width) * scalex;
float h = scale_(path.height) * scalex;
w = scale_(path.mm3_per_mm / path.height) * scalex;
// printf("scalex: %f, scaley: %f\n", scalex, scaley);
// printf("bbox: %d,%d %d,%d\n", bbox.min.x, bbox.min.y, bbox.max.x, bbox.max.y);
for (Points::const_iterator it = path.polyline.points.begin(); it != path.polyline.points.end(); ++ it) {
// printf("point %d,%d\n", it->x+shift.x, it->y+shift.y);
ExtrusionPoint ept;
ept.center = V2f(float(it->x+shift.x-bbox.min.x) * scalex, float(it->y+shift.y-bbox.min.y) * scaley);
ept.radius = w/2.f;
ept.height = 0.5f;
polyline.push_back(ept.center);
pimpl->extrusion_points.push_back(ept);
}
// Extrude the polyline into an accumulator.
// printf("width scaled: %f, height scaled: %f\n", w, h);
gcode_paint_layer(polyline, w, 0.5f, pimpl->accumulator);
if (simulationType > ExtrusionSimulationDontSpread)
gcode_paint_bitmap(polyline, w, pimpl->bitmap, pimpl->bitmap_oversampled);
// double path.mm3_per_mm; // mm^3 of plastic per mm of linear head motion
// float path.width;
// float path.height;
}
void ExtrusionSimulator::evaluate_accumulator(ExtrusionSimulationType simulationType)
{
// printf("ExtrusionSimulator::evaluate_accumulator()\n");
Point sz = viewport.size();
if (simulationType > ExtrusionSimulationDontSpread) {
// Average the cells of a bitmap into a lower resolution floating point mask.
A2f mask(boost::extents[sz.y][sz.x]);
for (int r = 0; r < sz.y; ++r) {
for (int c = 0; c < sz.x; ++c) {
float p = 0;
for (int j = 0; j < pimpl->bitmap_oversampled; ++ j) {
for (int i = 0; i < pimpl->bitmap_oversampled; ++ i) {
if (pimpl->bitmap[r * pimpl->bitmap_oversampled + j][c * pimpl->bitmap_oversampled + i])
p += 1.f;
}
}
p /= float(pimpl->bitmap_oversampled * pimpl->bitmap_oversampled * 2);
mask[r][c] = p;
}
}
// Spread the excess of the material.
gcode_spread_points(pimpl->accumulator, mask, pimpl->extrusion_points, simulationType);
}
// Color map the accumulator.
for (int r = 0; r < sz.y; ++r) {
unsigned char *ptr = &pimpl->image_data[(image_size.x * (viewport.min.y + r) + viewport.min.x) * 4];
for (int c = 0; c < sz.x; ++c) {
#if 1
float p = pimpl->accumulator[r][c];
#else
float p = mask[r][c];
#endif
int idx = int(floor(p * float(pimpl->color_gradient.size()) + 0.5f));
V3uc clr = pimpl->color_gradient[clamp(0, int(pimpl->color_gradient.size()-1), idx)];
*ptr ++ = clr.get<0>();
*ptr ++ = clr.get<1>();
*ptr ++ = clr.get<2>();
*ptr ++ = (idx == 0) ? 0 : 255;
}
}
}
} // namespace Slic3r