PrusaSlicer-NonPlainar/xs/src/libslic3r/Line.cpp
2018-01-17 10:39:05 +01:00

248 lines
5 KiB
C++

#include "Geometry.hpp"
#include "Line.hpp"
#include "Polyline.hpp"
#include <algorithm>
#include <cmath>
#include <sstream>
namespace Slic3r {
std::string
Line::wkt() const
{
std::ostringstream ss;
ss << "LINESTRING(" << this->a.x << " " << this->a.y << ","
<< this->b.x << " " << this->b.y << ")";
return ss.str();
}
Line::operator Lines() const
{
Lines lines;
lines.push_back(*this);
return lines;
}
Line::operator Polyline() const
{
Polyline pl;
pl.points.push_back(this->a);
pl.points.push_back(this->b);
return pl;
}
void
Line::scale(double factor)
{
this->a.scale(factor);
this->b.scale(factor);
}
void
Line::translate(double x, double y)
{
this->a.translate(x, y);
this->b.translate(x, y);
}
void
Line::rotate(double angle, const Point &center)
{
this->a.rotate(angle, center);
this->b.rotate(angle, center);
}
void
Line::reverse()
{
std::swap(this->a, this->b);
}
double
Line::length() const
{
return this->a.distance_to(this->b);
}
Point
Line::midpoint() const
{
return Point((this->a.x + this->b.x) / 2.0, (this->a.y + this->b.y) / 2.0);
}
void
Line::point_at(double distance, Point* point) const
{
double len = this->length();
*point = this->a;
if (this->a.x != this->b.x)
point->x = this->a.x + (this->b.x - this->a.x) * distance / len;
if (this->a.y != this->b.y)
point->y = this->a.y + (this->b.y - this->a.y) * distance / len;
}
Point
Line::point_at(double distance) const
{
Point p;
this->point_at(distance, &p);
return p;
}
bool
Line::intersection_infinite(const Line &other, Point* point) const
{
Vector x = this->a.vector_to(other.a);
Vector d1 = this->vector();
Vector d2 = other.vector();
double cross = d1.x * d2.y - d1.y * d2.x;
if (std::fabs(cross) < EPSILON)
return false;
double t1 = (x.x * d2.y - x.y * d2.x)/cross;
point->x = this->a.x + d1.x * t1;
point->y = this->a.y + d1.y * t1;
return true;
}
bool
Line::coincides_with(const Line &line) const
{
return this->a.coincides_with(line.a) && this->b.coincides_with(line.b);
}
double
Line::distance_to(const Point &point) const
{
return point.distance_to(*this);
}
double
Line::atan2_() const
{
return atan2(this->b.y - this->a.y, this->b.x - this->a.x);
}
double
Line::orientation() const
{
double angle = this->atan2_();
if (angle < 0) angle = 2*PI + angle;
return angle;
}
double
Line::direction() const
{
double atan2 = this->atan2_();
return (fabs(atan2 - PI) < EPSILON) ? 0
: (atan2 < 0) ? (atan2 + PI)
: atan2;
}
bool
Line::parallel_to(double angle) const {
return Slic3r::Geometry::directions_parallel(this->direction(), angle);
}
bool
Line::parallel_to(const Line &line) const {
return this->parallel_to(line.direction());
}
Vector
Line::vector() const
{
return Vector(this->b.x - this->a.x, this->b.y - this->a.y);
}
Vector
Line::normal() const
{
return Vector((this->b.y - this->a.y), -(this->b.x - this->a.x));
}
void
Line::extend_end(double distance)
{
// relocate last point by extending the segment by the specified length
Line line = *this;
line.reverse();
this->b = line.point_at(-distance);
}
void
Line::extend_start(double distance)
{
// relocate first point by extending the first segment by the specified length
this->a = this->point_at(-distance);
}
bool
Line::intersection(const Line& line, Point* intersection) const
{
double denom = ((double)(line.b.y - line.a.y)*(this->b.x - this->a.x)) -
((double)(line.b.x - line.a.x)*(this->b.y - this->a.y));
double nume_a = ((double)(line.b.x - line.a.x)*(this->a.y - line.a.y)) -
((double)(line.b.y - line.a.y)*(this->a.x - line.a.x));
double nume_b = ((double)(this->b.x - this->a.x)*(this->a.y - line.a.y)) -
((double)(this->b.y - this->a.y)*(this->a.x - line.a.x));
if (fabs(denom) < EPSILON) {
if (fabs(nume_a) < EPSILON && fabs(nume_b) < EPSILON) {
return false; // coincident
}
return false; // parallel
}
double ua = nume_a / denom;
double ub = nume_b / denom;
if (ua >= 0 && ua <= 1.0f && ub >= 0 && ub <= 1.0f)
{
// Get the intersection point.
intersection->x = this->a.x + ua*(this->b.x - this->a.x);
intersection->y = this->a.y + ua*(this->b.y - this->a.y);
return true;
}
return false; // not intersecting
}
double
Line::ccw(const Point& point) const
{
return point.ccw(*this);
}
double Line3::length() const
{
return a.distance_to(b);
}
Vector3 Line3::vector() const
{
return Vector3(b.x - a.x, b.y - a.y, b.z - a.z);
}
Pointf3
Linef3::intersect_plane(double z) const
{
return Pointf3(
this->a.x + (this->b.x - this->a.x) * (z - this->a.z) / (this->b.z - this->a.z),
this->a.y + (this->b.y - this->a.y) * (z - this->a.z) / (this->b.z - this->a.z),
z
);
}
void
Linef3::scale(double factor)
{
this->a.scale(factor);
this->b.scale(factor);
}
}