PrusaSlicer-NonPlainar/src/libslic3r/SLA/SupportTreeBuildsteps.cpp
tamasmeszaros 7591637c89 Bugfixes and refactoring for SLA backend
remove duplicate code


Mark conversion constructors of EigenMesh3D `explicit`


Working on mesh simplification for hollowed interior


Fix bug SPE-1074: crash with empty supports and disabled pad.


fix regression after refactor


Remove unfinished code


Fix missing includes and dumb comments
2020-01-24 14:26:19 +01:00

1325 lines
48 KiB
C++

#include <libslic3r/SLA/SupportTreeBuildsteps.hpp>
#include <libnest2d/optimizers/nlopt/genetic.hpp>
#include <libnest2d/optimizers/nlopt/subplex.hpp>
#include <boost/log/trivial.hpp>
namespace Slic3r {
namespace sla {
static const Vec3d DOWN = {0.0, 0.0, -1.0};
using libnest2d::opt::initvals;
using libnest2d::opt::bound;
using libnest2d::opt::StopCriteria;
using libnest2d::opt::GeneticOptimizer;
using libnest2d::opt::SubplexOptimizer;
SupportTreeBuildsteps::SupportTreeBuildsteps(SupportTreeBuilder & builder,
const SupportableMesh &sm)
: m_cfg(sm.cfg)
, m_mesh(sm.emesh)
, m_support_pts(sm.pts)
, m_support_nmls(sm.pts.size(), 3)
, m_builder(builder)
, m_points(sm.pts.size(), 3)
, m_thr(builder.ctl().cancelfn)
{
// Prepare the support points in Eigen/IGL format as well, we will use
// it mostly in this form.
long i = 0;
for (const SupportPoint &sp : m_support_pts) {
m_points.row(i)(X) = double(sp.pos(X));
m_points.row(i)(Y) = double(sp.pos(Y));
m_points.row(i)(Z) = double(sp.pos(Z));
++i;
}
}
bool SupportTreeBuildsteps::execute(SupportTreeBuilder & builder,
const SupportableMesh &sm)
{
if(sm.pts.empty()) return false;
SupportTreeBuildsteps alg(builder, sm);
// Let's define the individual steps of the processing. We can experiment
// later with the ordering and the dependencies between them.
enum Steps {
BEGIN,
FILTER,
PINHEADS,
CLASSIFY,
ROUTING_GROUND,
ROUTING_NONGROUND,
CASCADE_PILLARS,
HEADLESS,
MERGE_RESULT,
DONE,
ABORT,
NUM_STEPS
//...
};
// Collect the algorithm steps into a nice sequence
std::array<std::function<void()>, NUM_STEPS> program = {
[] () {
// Begin...
// Potentially clear up the shared data (not needed for now)
},
std::bind(&SupportTreeBuildsteps::filter, &alg),
std::bind(&SupportTreeBuildsteps::add_pinheads, &alg),
std::bind(&SupportTreeBuildsteps::classify, &alg),
std::bind(&SupportTreeBuildsteps::routing_to_ground, &alg),
std::bind(&SupportTreeBuildsteps::routing_to_model, &alg),
std::bind(&SupportTreeBuildsteps::interconnect_pillars, &alg),
std::bind(&SupportTreeBuildsteps::routing_headless, &alg),
std::bind(&SupportTreeBuildsteps::merge_result, &alg),
[] () {
// Done
},
[] () {
// Abort
}
};
Steps pc = BEGIN;
if(sm.cfg.ground_facing_only) {
program[ROUTING_NONGROUND] = []() {
BOOST_LOG_TRIVIAL(info)
<< "Skipping model-facing supports as requested.";
};
program[HEADLESS] = []() {
BOOST_LOG_TRIVIAL(info) << "Skipping headless stick generation as"
" requested.";
};
}
// Let's define a simple automaton that will run our program.
auto progress = [&builder, &pc] () {
static const std::array<std::string, NUM_STEPS> stepstr {
"Starting",
"Filtering",
"Generate pinheads",
"Classification",
"Routing to ground",
"Routing supports to model surface",
"Interconnecting pillars",
"Processing small holes",
"Merging support mesh",
"Done",
"Abort"
};
static const std::array<unsigned, NUM_STEPS> stepstate {
0,
10,
30,
50,
60,
70,
80,
85,
99,
100,
0
};
if(builder.ctl().stopcondition()) pc = ABORT;
switch(pc) {
case BEGIN: pc = FILTER; break;
case FILTER: pc = PINHEADS; break;
case PINHEADS: pc = CLASSIFY; break;
case CLASSIFY: pc = ROUTING_GROUND; break;
case ROUTING_GROUND: pc = ROUTING_NONGROUND; break;
case ROUTING_NONGROUND: pc = CASCADE_PILLARS; break;
case CASCADE_PILLARS: pc = HEADLESS; break;
case HEADLESS: pc = MERGE_RESULT; break;
case MERGE_RESULT: pc = DONE; break;
case DONE:
case ABORT: break;
default: ;
}
builder.ctl().statuscb(stepstate[pc], stepstr[pc]);
};
// Just here we run the computation...
while(pc < DONE) {
progress();
program[pc]();
}
return pc == ABORT;
}
// Give points on a 3D ring with given center, radius and orientation
// method based on:
// https://math.stackexchange.com/questions/73237/parametric-equation-of-a-circle-in-3d-space
template<size_t N>
class PointRing {
std::array<double, N> m_phis;
// Two vectors that will be perpendicular to each other and to the
// axis. Values for a(X) and a(Y) are now arbitrary, a(Z) is just a
// placeholder.
// a and b vectors are perpendicular to the ring direction and to each other.
// Together they define the plane where we have to iterate with the
// given angles in the 'm_phis' vector
Vec3d a = {0, 1, 0}, b;
double m_radius = 0.;
static inline bool constexpr is_one(double val)
{
return std::abs(std::abs(val) - 1) < 1e-20;
}
public:
PointRing(const Vec3d &n)
{
m_phis = linspace_array<N>(0., 2 * PI);
// We have to address the case when the direction vector v (same as
// dir) is coincident with one of the world axes. In this case two of
// its components will be completely zero and one is 1.0. Our method
// becomes dangerous here due to division with zero. Instead, vector
// 'a' can be an element-wise rotated version of 'v'
if(is_one(n(X)) || is_one(n(Y)) || is_one(n(Z))) {
a = {n(Z), n(X), n(Y)};
b = {n(Y), n(Z), n(X)};
}
else {
a(Z) = -(n(Y)*a(Y)) / n(Z); a.normalize();
b = a.cross(n);
}
}
Vec3d get(size_t idx, const Vec3d src, double r) const
{
double phi = m_phis[idx];
double sinphi = std::sin(phi);
double cosphi = std::cos(phi);
double rpscos = r * cosphi;
double rpssin = r * sinphi;
// Point on the sphere
return {src(X) + rpscos * a(X) + rpssin * b(X),
src(Y) + rpscos * a(Y) + rpssin * b(Y),
src(Z) + rpscos * a(Z) + rpssin * b(Z)};
}
};
template<class C, class Hit = EigenMesh3D::hit_result>
static Hit min_hit(const C &hits)
{
auto mit = std::min_element(hits.begin(), hits.end(),
[](const Hit &h1, const Hit &h2) {
return h1.distance() < h2.distance();
});
return *mit;
}
EigenMesh3D::hit_result SupportTreeBuildsteps::pinhead_mesh_intersect(
const Vec3d &s, const Vec3d &dir, double r_pin, double r_back, double width)
{
static const size_t SAMPLES = 8;
// Move away slightly from the touching point to avoid raycasting on the
// inner surface of the mesh.
const double& sd = m_cfg.safety_distance_mm;
auto& m = m_mesh;
using HitResult = EigenMesh3D::hit_result;
// Hit results
std::array<HitResult, SAMPLES> hits;
struct Rings {
double rpin;
double rback;
Vec3d spin;
Vec3d sback;
PointRing<SAMPLES> ring;
Vec3d backring(size_t idx) { return ring.get(idx, sback, rback); }
Vec3d pinring(size_t idx) { return ring.get(idx, spin, rpin); }
} rings {r_pin + sd, r_back + sd, s, s + width * dir, dir};
// We will shoot multiple rays from the head pinpoint in the direction
// of the pinhead robe (side) surface. The result will be the smallest
// hit distance.
ccr::enumerate(hits.begin(), hits.end(),
[&m, &rings, sd](HitResult &hit, size_t i) {
// Point on the circle on the pin sphere
Vec3d ps = rings.pinring(i);
// This is the point on the circle on the back sphere
Vec3d p = rings.backring(i);
// Point ps is not on mesh but can be inside or
// outside as well. This would cause many problems
// with ray-casting. To detect the position we will
// use the ray-casting result (which has an is_inside
// predicate).
Vec3d n = (p - ps).normalized();
auto q = m.query_ray_hit(ps + sd * n, n);
if (q.is_inside()) { // the hit is inside the model
if (q.distance() > rings.rpin) {
// If we are inside the model and the hit
// distance is bigger than our pin circle
// diameter, it probably indicates that the
// support point was already inside the
// model, or there is really no space
// around the point. We will assign a zero
// hit distance to these cases which will
// enforce the function return value to be
// an invalid ray with zero hit distance.
// (see min_element at the end)
hit = HitResult(0.0);
} else {
// re-cast the ray from the outside of the
// object. The starting point has an offset
// of 2*safety_distance because the
// original ray has also had an offset
auto q2 = m.query_ray_hit(ps + (q.distance() + 2 * sd) * n, n);
hit = q2;
}
} else
hit = q;
});
return min_hit(hits);
}
EigenMesh3D::hit_result SupportTreeBuildsteps::bridge_mesh_intersect(
const Vec3d &src, const Vec3d &dir, double r, bool ins_check)
{
static const size_t SAMPLES = 8;
PointRing<SAMPLES> ring{dir};
using Hit = EigenMesh3D::hit_result;
// Hit results
std::array<Hit, SAMPLES> hits;
ccr::enumerate(hits.begin(), hits.end(),
[this, r, src, ins_check, &ring, dir] (Hit &hit, size_t i) {
const double sd = m_cfg.safety_distance_mm;
// Point on the circle on the pin sphere
Vec3d p = ring.get(i, src, r + sd);
auto hr = m_mesh.query_ray_hit(p + sd * dir, dir);
if(ins_check && hr.is_inside()) {
if(hr.distance() > 2 * r + sd) hit = Hit(0.0);
else {
// re-cast the ray from the outside of the object
hit = m_mesh.query_ray_hit(p + (hr.distance() + 2 * sd) * dir, dir);
}
} else hit = hr;
});
return min_hit(hits);
}
bool SupportTreeBuildsteps::interconnect(const Pillar &pillar,
const Pillar &nextpillar)
{
// We need to get the starting point of the zig-zag pattern. We have to
// be aware that the two head junctions are at different heights. We
// may start from the lowest junction and call it a day but this
// strategy would leave unconnected a lot of pillar duos where the
// shorter pillar is too short to start a new bridge but the taller
// pillar could still be bridged with the shorter one.
bool was_connected = false;
Vec3d supper = pillar.startpoint();
Vec3d slower = nextpillar.startpoint();
Vec3d eupper = pillar.endpoint();
Vec3d elower = nextpillar.endpoint();
double zmin = m_builder.ground_level + m_cfg.base_height_mm;
eupper(Z) = std::max(eupper(Z), zmin);
elower(Z) = std::max(elower(Z), zmin);
// The usable length of both pillars should be positive
if(slower(Z) - elower(Z) < 0) return false;
if(supper(Z) - eupper(Z) < 0) return false;
double pillar_dist = distance(Vec2d{slower(X), slower(Y)},
Vec2d{supper(X), supper(Y)});
double bridge_distance = pillar_dist / std::cos(-m_cfg.bridge_slope);
double zstep = pillar_dist * std::tan(-m_cfg.bridge_slope);
if(pillar_dist < 2 * m_cfg.head_back_radius_mm ||
pillar_dist > m_cfg.max_pillar_link_distance_mm) return false;
if(supper(Z) < slower(Z)) supper.swap(slower);
if(eupper(Z) < elower(Z)) eupper.swap(elower);
double startz = 0, endz = 0;
startz = slower(Z) - zstep < supper(Z) ? slower(Z) - zstep : slower(Z);
endz = eupper(Z) + zstep > elower(Z) ? eupper(Z) + zstep : eupper(Z);
if(slower(Z) - eupper(Z) < std::abs(zstep)) {
// no space for even one cross
// Get max available space
startz = std::min(supper(Z), slower(Z) - zstep);
endz = std::max(eupper(Z) + zstep, elower(Z));
// Align to center
double available_dist = (startz - endz);
double rounds = std::floor(available_dist / std::abs(zstep));
startz -= 0.5 * (available_dist - rounds * std::abs(zstep));
}
auto pcm = m_cfg.pillar_connection_mode;
bool docrosses =
pcm == PillarConnectionMode::cross ||
(pcm == PillarConnectionMode::dynamic &&
pillar_dist > 2*m_cfg.base_radius_mm);
// 'sj' means starting junction, 'ej' is the end junction of a bridge.
// They will be swapped in every iteration thus the zig-zag pattern.
// According to a config parameter, a second bridge may be added which
// results in a cross connection between the pillars.
Vec3d sj = supper, ej = slower; sj(Z) = startz; ej(Z) = sj(Z) + zstep;
// TODO: This is a workaround to not have a faulty last bridge
while(ej(Z) >= eupper(Z) /*endz*/) {
if(bridge_mesh_distance(sj, dirv(sj, ej), pillar.r) >= bridge_distance)
{
m_builder.add_crossbridge(sj, ej, pillar.r);
was_connected = true;
}
// double bridging: (crosses)
if(docrosses) {
Vec3d sjback(ej(X), ej(Y), sj(Z));
Vec3d ejback(sj(X), sj(Y), ej(Z));
if (sjback(Z) <= slower(Z) && ejback(Z) >= eupper(Z) &&
bridge_mesh_distance(sjback, dirv(sjback, ejback),
pillar.r) >= bridge_distance) {
// need to check collision for the cross stick
m_builder.add_crossbridge(sjback, ejback, pillar.r);
was_connected = true;
}
}
sj.swap(ej);
ej(Z) = sj(Z) + zstep;
}
return was_connected;
}
bool SupportTreeBuildsteps::connect_to_nearpillar(const Head &head,
long nearpillar_id)
{
auto nearpillar = [this, nearpillar_id]() -> const Pillar& {
return m_builder.pillar(nearpillar_id);
};
if (m_builder.bridgecount(nearpillar()) > m_cfg.max_bridges_on_pillar)
return false;
Vec3d headjp = head.junction_point();
Vec3d nearjp_u = nearpillar().startpoint();
Vec3d nearjp_l = nearpillar().endpoint();
double r = head.r_back_mm;
double d2d = distance(to_2d(headjp), to_2d(nearjp_u));
double d3d = distance(headjp, nearjp_u);
double hdiff = nearjp_u(Z) - headjp(Z);
double slope = std::atan2(hdiff, d2d);
Vec3d bridgestart = headjp;
Vec3d bridgeend = nearjp_u;
double max_len = m_cfg.max_bridge_length_mm;
double max_slope = m_cfg.bridge_slope;
double zdiff = 0.0;
// check the default situation if feasible for a bridge
if(d3d > max_len || slope > -max_slope) {
// not feasible to connect the two head junctions. We have to search
// for a suitable touch point.
double Zdown = headjp(Z) + d2d * std::tan(-max_slope);
Vec3d touchjp = bridgeend; touchjp(Z) = Zdown;
double D = distance(headjp, touchjp);
zdiff = Zdown - nearjp_u(Z);
if(zdiff > 0) {
Zdown -= zdiff;
bridgestart(Z) -= zdiff;
touchjp(Z) = Zdown;
double t = bridge_mesh_distance(headjp, DOWN, r);
// We can't insert a pillar under the source head to connect
// with the nearby pillar's starting junction
if(t < zdiff) return false;
}
if(Zdown <= nearjp_u(Z) && Zdown >= nearjp_l(Z) && D < max_len)
bridgeend(Z) = Zdown;
else
return false;
}
// There will be a minimum distance from the ground where the
// bridge is allowed to connect. This is an empiric value.
double minz = m_builder.ground_level + 2 * m_cfg.head_width_mm;
if(bridgeend(Z) < minz) return false;
double t = bridge_mesh_distance(bridgestart, dirv(bridgestart, bridgeend), r);
// Cannot insert the bridge. (further search might not worth the hassle)
if(t < distance(bridgestart, bridgeend)) return false;
std::lock_guard<ccr::BlockingMutex> lk(m_bridge_mutex);
if (m_builder.bridgecount(nearpillar()) < m_cfg.max_bridges_on_pillar) {
// A partial pillar is needed under the starting head.
if(zdiff > 0) {
m_builder.add_pillar(head.id, bridgestart, r);
m_builder.add_junction(bridgestart, r);
m_builder.add_bridge(bridgestart, bridgeend, head.r_back_mm);
} else {
m_builder.add_bridge(head.id, bridgeend);
}
m_builder.increment_bridges(nearpillar());
} else return false;
return true;
}
bool SupportTreeBuildsteps::search_pillar_and_connect(const Head &head)
{
PointIndex spindex = m_pillar_index.guarded_clone();
long nearest_id = ID_UNSET;
Vec3d querypoint = head.junction_point();
while(nearest_id < 0 && !spindex.empty()) { m_thr();
// loop until a suitable head is not found
// if there is a pillar closer than the cluster center
// (this may happen as the clustering is not perfect)
// than we will bridge to this closer pillar
Vec3d qp(querypoint(X), querypoint(Y), m_builder.ground_level);
auto qres = spindex.nearest(qp, 1);
if(qres.empty()) break;
auto ne = qres.front();
nearest_id = ne.second;
if(nearest_id >= 0) {
if(size_t(nearest_id) < m_builder.pillarcount()) {
if(!connect_to_nearpillar(head, nearest_id)) {
nearest_id = ID_UNSET; // continue searching
spindex.remove(ne); // without the current pillar
}
}
}
}
return nearest_id >= 0;
}
void SupportTreeBuildsteps::create_ground_pillar(const Vec3d &jp,
const Vec3d &sourcedir,
double radius,
long head_id)
{
const double SLOPE = 1. / std::cos(m_cfg.bridge_slope);
double gndlvl = m_builder.ground_level;
Vec3d endp = {jp(X), jp(Y), gndlvl};
double sd = m_cfg.pillar_base_safety_distance_mm;
long pillar_id = ID_UNSET;
double min_dist = sd + m_cfg.base_radius_mm + EPSILON;
double dist = 0;
bool can_add_base = true;
bool normal_mode = true;
// If in zero elevation mode and the pillar is too close to the model body,
// the support pillar can not be placed in the gap between the model and
// the pad, and the pillar bases must not touch the model body either.
// To solve this, a corrector bridge is inserted between the starting point
// (jp) and the new pillar.
if (m_cfg.object_elevation_mm < EPSILON
&& (dist = std::sqrt(m_mesh.squared_distance(endp))) < min_dist) {
// Get the distance from the mesh. This can be later optimized
// to get the distance in 2D plane because we are dealing with
// the ground level only.
normal_mode = false;
// The min distance needed to move away from the model in XY plane.
double current_d = min_dist - dist;
double current_bride_d = SLOPE * current_d;
// get a suitable direction for the corrector bridge. It is the
// original sourcedir's azimuth but the polar angle is saturated to the
// configured bridge slope.
auto [polar, azimuth] = dir_to_spheric(sourcedir);
polar = PI - m_cfg.bridge_slope;
auto dir = spheric_to_dir(polar, azimuth).normalized();
StopCriteria scr;
scr.stop_score = min_dist;
SubplexOptimizer solver(scr);
// Search for a distance along the corrector bridge to move the endpoint
// sufficiently away form the model body. The first few optimization
// cycles should succeed here.
auto result = solver.optimize_max(
[this, dir, jp, gndlvl](double mv) {
Vec3d endpt = jp + mv * dir;
endpt(Z) = gndlvl;
return std::sqrt(m_mesh.squared_distance(endpt));
},
initvals(current_bride_d),
bound(0.0, m_cfg.max_bridge_length_mm - current_bride_d));
endp = jp + std::get<0>(result.optimum) * dir;
Vec3d pgnd = {endp(X), endp(Y), gndlvl};
can_add_base = result.score > min_dist;
double gnd_offs = m_mesh.ground_level_offset();
auto abort_in_shame =
[gnd_offs, &normal_mode, &can_add_base, &endp, jp, gndlvl]()
{
normal_mode = true;
can_add_base = false; // Nothing left to do, hope for the best
endp = {jp(X), jp(Y), gndlvl - gnd_offs };
};
// We have to check if the bridge is feasible.
if (bridge_mesh_distance(jp, dir, radius) < (endp - jp).norm())
abort_in_shame();
else {
// If the new endpoint is below ground, do not make a pillar
if (endp(Z) < gndlvl)
endp = endp - SLOPE * (gndlvl - endp(Z)) * dir; // back off
else {
auto hit = bridge_mesh_intersect(endp, DOWN, radius);
if (!std::isinf(hit.distance())) abort_in_shame();
pillar_id = m_builder.add_pillar(endp, pgnd, radius);
if (can_add_base)
m_builder.add_pillar_base(pillar_id, m_cfg.base_height_mm,
m_cfg.base_radius_mm);
}
m_builder.add_bridge(jp, endp, radius);
m_builder.add_junction(endp, radius);
// Add a degenerated pillar and the bridge.
// The degenerate pillar will have zero length and it will
// prevent from queries of head_pillar() to have non-existing
// pillar when the head should have one.
if (head_id >= 0)
m_builder.add_pillar(head_id, jp, radius);
}
}
if (normal_mode) {
pillar_id = head_id >= 0 ? m_builder.add_pillar(head_id, endp, radius) :
m_builder.add_pillar(jp, endp, radius);
if (can_add_base)
m_builder.add_pillar_base(pillar_id, m_cfg.base_height_mm,
m_cfg.base_radius_mm);
}
if(pillar_id >= 0) // Save the pillar endpoint in the spatial index
m_pillar_index.guarded_insert(endp, unsigned(pillar_id));
}
void SupportTreeBuildsteps::filter()
{
// Get the points that are too close to each other and keep only the
// first one
auto aliases = cluster(m_points, D_SP, 2);
PtIndices filtered_indices;
filtered_indices.reserve(aliases.size());
m_iheads.reserve(aliases.size());
m_iheadless.reserve(aliases.size());
for(auto& a : aliases) {
// Here we keep only the front point of the cluster.
filtered_indices.emplace_back(a.front());
}
// calculate the normals to the triangles for filtered points
auto nmls = sla::normals(m_points, m_mesh, m_cfg.head_front_radius_mm,
m_thr, filtered_indices);
// Not all of the support points have to be a valid position for
// support creation. The angle may be inappropriate or there may
// not be enough space for the pinhead. Filtering is applied for
// these reasons.
ccr::SpinningMutex mutex;
auto addfn = [&mutex](PtIndices &container, unsigned val) {
std::lock_guard<ccr::SpinningMutex> lk(mutex);
container.emplace_back(val);
};
auto filterfn = [this, &nmls, addfn](unsigned fidx, size_t i) {
m_thr();
auto n = nmls.row(Eigen::Index(i));
// for all normals we generate the spherical coordinates and
// saturate the polar angle to 45 degrees from the bottom then
// convert back to standard coordinates to get the new normal.
// Then we just create a quaternion from the two normals
// (Quaternion::FromTwoVectors) and apply the rotation to the
// arrow head.
auto [polar, azimuth] = dir_to_spheric(n);
// skip if the tilt is not sane
if(polar >= PI - m_cfg.normal_cutoff_angle) {
// We saturate the polar angle to 3pi/4
polar = std::max(polar, 3*PI / 4);
// save the head (pinpoint) position
Vec3d hp = m_points.row(fidx);
double w = m_cfg.head_width_mm +
m_cfg.head_back_radius_mm +
2*m_cfg.head_front_radius_mm;
double pin_r = double(m_support_pts[fidx].head_front_radius);
// Reassemble the now corrected normal
auto nn = spheric_to_dir(polar, azimuth).normalized();
// check available distance
EigenMesh3D::hit_result t
= pinhead_mesh_intersect(hp, // touching point
nn, // normal
pin_r,
m_cfg.head_back_radius_mm,
w);
if(t.distance() <= w) {
// Let's try to optimize this angle, there might be a
// viable normal that doesn't collide with the model
// geometry and its very close to the default.
StopCriteria stc;
stc.max_iterations = m_cfg.optimizer_max_iterations;
stc.relative_score_difference = m_cfg.optimizer_rel_score_diff;
stc.stop_score = w; // space greater than w is enough
GeneticOptimizer solver(stc);
solver.seed(0); // we want deterministic behavior
auto oresult = solver.optimize_max(
[this, pin_r, w, hp](double plr, double azm)
{
auto dir = spheric_to_dir(plr, azm).normalized();
double score = pinhead_mesh_distance(
hp, dir, pin_r, m_cfg.head_back_radius_mm, w);
return score;
},
initvals(polar, azimuth), // start with what we have
bound(3 * PI / 4, PI), // Must not exceed the tilt limit
bound(-PI, PI) // azimuth can be a full search
);
if(oresult.score > w) {
polar = std::get<0>(oresult.optimum);
azimuth = std::get<1>(oresult.optimum);
nn = spheric_to_dir(polar, azimuth).normalized();
t = EigenMesh3D::hit_result(oresult.score);
}
}
// save the verified and corrected normal
m_support_nmls.row(fidx) = nn;
if (t.distance() > w) {
// Check distance from ground, we might have zero elevation.
if (hp(Z) + w * nn(Z) < m_builder.ground_level) {
addfn(m_iheadless, fidx);
} else {
// mark the point for needing a head.
addfn(m_iheads, fidx);
}
} else if (polar >= 3 * PI / 4) {
// Headless supports do not tilt like the headed ones
// so the normal should point almost to the ground.
addfn(m_iheadless, fidx);
}
}
};
ccr::enumerate(filtered_indices.begin(), filtered_indices.end(), filterfn);
m_thr();
}
void SupportTreeBuildsteps::add_pinheads()
{
for (unsigned i : m_iheads) {
m_thr();
m_builder.add_head(
i,
m_cfg.head_back_radius_mm,
m_support_pts[i].head_front_radius,
m_cfg.head_width_mm,
m_cfg.head_penetration_mm,
m_support_nmls.row(i), // dir
m_support_pts[i].pos.cast<double>() // displacement
);
}
}
void SupportTreeBuildsteps::classify()
{
// We should first get the heads that reach the ground directly
PtIndices ground_head_indices;
ground_head_indices.reserve(m_iheads.size());
m_iheads_onmodel.reserve(m_iheads.size());
// First we decide which heads reach the ground and can be full
// pillars and which shall be connected to the model surface (or
// search a suitable path around the surface that leads to the
// ground -- TODO)
for(unsigned i : m_iheads) {
m_thr();
auto& head = m_builder.head(i);
double r = head.r_back_mm;
Vec3d headjp = head.junction_point();
// collision check
auto hit = bridge_mesh_intersect(headjp, DOWN, r);
if(std::isinf(hit.distance())) ground_head_indices.emplace_back(i);
else if(m_cfg.ground_facing_only) head.invalidate();
else m_iheads_onmodel.emplace_back(i);
m_head_to_ground_scans[i] = hit;
}
// We want to search for clusters of points that are far enough
// from each other in the XY plane to not cross their pillar bases
// These clusters of support points will join in one pillar,
// possibly in their centroid support point.
auto pointfn = [this](unsigned i) {
return m_builder.head(i).junction_point();
};
auto predicate = [this](const PointIndexEl &e1,
const PointIndexEl &e2) {
double d2d = distance(to_2d(e1.first), to_2d(e2.first));
double d3d = distance(e1.first, e2.first);
return d2d < 2 * m_cfg.base_radius_mm
&& d3d < m_cfg.max_bridge_length_mm;
};
m_pillar_clusters = cluster(ground_head_indices, pointfn, predicate,
m_cfg.max_bridges_on_pillar);
}
void SupportTreeBuildsteps::routing_to_ground()
{
const double pradius = m_cfg.head_back_radius_mm;
ClusterEl cl_centroids;
cl_centroids.reserve(m_pillar_clusters.size());
for (auto &cl : m_pillar_clusters) {
m_thr();
// place all the centroid head positions into the index. We
// will query for alternative pillar positions. If a sidehead
// cannot connect to the cluster centroid, we have to search
// for another head with a full pillar. Also when there are two
// elements in the cluster, the centroid is arbitrary and the
// sidehead is allowed to connect to a nearby pillar to
// increase structural stability.
if (cl.empty()) continue;
// get the current cluster centroid
auto & thr = m_thr;
const auto &points = m_points;
long lcid = cluster_centroid(
cl, [&points](size_t idx) { return points.row(long(idx)); },
[thr](const Vec3d &p1, const Vec3d &p2) {
thr();
return distance(Vec2d(p1(X), p1(Y)), Vec2d(p2(X), p2(Y)));
});
assert(lcid >= 0);
unsigned hid = cl[size_t(lcid)]; // Head ID
cl_centroids.emplace_back(hid);
Head &h = m_builder.head(hid);
h.transform();
create_ground_pillar(h.junction_point(), h.dir, h.r_back_mm, h.id);
}
// now we will go through the clusters ones again and connect the
// sidepoints with the cluster centroid (which is a ground pillar)
// or a nearby pillar if the centroid is unreachable.
size_t ci = 0;
for (auto cl : m_pillar_clusters) {
m_thr();
auto cidx = cl_centroids[ci++];
// TODO: don't consider the cluster centroid but calculate a
// central position where the pillar can be placed. this way
// the weight is distributed more effectively on the pillar.
auto centerpillarID = m_builder.head_pillar(cidx).id;
for (auto c : cl) {
m_thr();
if (c == cidx) continue;
auto &sidehead = m_builder.head(c);
sidehead.transform();
if (!connect_to_nearpillar(sidehead, centerpillarID) &&
!search_pillar_and_connect(sidehead)) {
Vec3d pstart = sidehead.junction_point();
// Vec3d pend = Vec3d{pstart(X), pstart(Y), gndlvl};
// Could not find a pillar, create one
create_ground_pillar(pstart, sidehead.dir, pradius, sidehead.id);
}
}
}
}
bool SupportTreeBuildsteps::connect_to_ground(Head &head, const Vec3d &dir)
{
auto hjp = head.junction_point();
double r = head.r_back_mm;
double t = bridge_mesh_distance(hjp, dir, head.r_back_mm);
double d = 0, tdown = 0;
t = std::min(t, m_cfg.max_bridge_length_mm);
while (d < t && !std::isinf(tdown = bridge_mesh_distance(hjp + d * dir, DOWN, r)))
d += r;
if(!std::isinf(tdown)) return false;
Vec3d endp = hjp + d * dir;
m_builder.add_bridge(head.id, endp);
m_builder.add_junction(endp, head.r_back_mm);
this->create_ground_pillar(endp, dir, head.r_back_mm);
return true;
}
bool SupportTreeBuildsteps::connect_to_ground(Head &head)
{
if (connect_to_ground(head, head.dir)) return true;
// Optimize bridge direction:
// Straight path failed so we will try to search for a suitable
// direction out of the cavity.
auto [polar, azimuth] = dir_to_spheric(head.dir);
StopCriteria stc;
stc.max_iterations = m_cfg.optimizer_max_iterations;
stc.relative_score_difference = m_cfg.optimizer_rel_score_diff;
stc.stop_score = 1e6;
GeneticOptimizer solver(stc);
solver.seed(0); // we want deterministic behavior
double r_back = head.r_back_mm;
Vec3d hjp = head.junction_point();
auto oresult = solver.optimize_max(
[this, hjp, r_back](double plr, double azm) {
Vec3d n = spheric_to_dir(plr, azm).normalized();
return bridge_mesh_distance(hjp, n, r_back);
},
initvals(polar, azimuth), // let's start with what we have
bound(3*PI/4, PI), // Must not exceed the slope limit
bound(-PI, PI) // azimuth can be a full range search
);
Vec3d bridgedir = spheric_to_dir(oresult.optimum).normalized();
return connect_to_ground(head, bridgedir);
}
bool SupportTreeBuildsteps::connect_to_model_body(Head &head)
{
if (head.id <= ID_UNSET) return false;
auto it = m_head_to_ground_scans.find(unsigned(head.id));
if (it == m_head_to_ground_scans.end()) return false;
auto &hit = it->second;
Vec3d hjp = head.junction_point();
double zangle = std::asin(hit.direction()(Z));
zangle = std::max(zangle, PI/4);
double h = std::sin(zangle) * head.fullwidth();
// The width of the tail head that we would like to have...
h = std::min(hit.distance() - head.r_back_mm, h);
if(h <= 0.) return false;
Vec3d endp{hjp(X), hjp(Y), hjp(Z) - hit.distance() + h};
auto center_hit = m_mesh.query_ray_hit(hjp, DOWN);
double hitdiff = center_hit.distance() - hit.distance();
Vec3d hitp = std::abs(hitdiff) < 2*head.r_back_mm?
center_hit.position() : hit.position();
head.transform();
long pillar_id = m_builder.add_pillar(head.id, endp, head.r_back_mm);
Pillar &pill = m_builder.pillar(pillar_id);
Vec3d taildir = endp - hitp;
double dist = distance(endp, hitp) + m_cfg.head_penetration_mm;
double w = dist - 2 * head.r_pin_mm - head.r_back_mm;
if (w < 0.) {
BOOST_LOG_TRIVIAL(error) << "Pinhead width is negative!";
w = 0.;
}
Head tailhead(head.r_back_mm, head.r_pin_mm, w,
m_cfg.head_penetration_mm, taildir, hitp);
tailhead.transform();
pill.base = tailhead.mesh;
m_pillar_index.guarded_insert(pill.endpoint(), pill.id);
return true;
}
void SupportTreeBuildsteps::routing_to_model()
{
// We need to check if there is an easy way out to the bed surface.
// If it can be routed there with a bridge shorter than
// min_bridge_distance.
ccr::enumerate(m_iheads_onmodel.begin(), m_iheads_onmodel.end(),
[this] (const unsigned idx, size_t) {
m_thr();
auto& head = m_builder.head(idx);
// Search nearby pillar
if(search_pillar_and_connect(head)) { head.transform(); return; }
// Cannot connect to nearby pillar. We will try to search for
// a route to the ground.
if(connect_to_ground(head)) { head.transform(); return; }
// No route to the ground, so connect to the model body as a last resort
if (connect_to_model_body(head)) { return; }
// We have failed to route this head.
BOOST_LOG_TRIVIAL(warning)
<< "Failed to route model facing support point. ID: " << idx;
head.invalidate();
});
}
void SupportTreeBuildsteps::interconnect_pillars()
{
// Now comes the algorithm that connects pillars with each other.
// Ideally every pillar should be connected with at least one of its
// neighbors if that neighbor is within max_pillar_link_distance
// Pillars with height exceeding H1 will require at least one neighbor
// to connect with. Height exceeding H2 require two neighbors.
double H1 = m_cfg.max_solo_pillar_height_mm;
double H2 = m_cfg.max_dual_pillar_height_mm;
double d = m_cfg.max_pillar_link_distance_mm;
//A connection between two pillars only counts if the height ratio is
// bigger than 50%
double min_height_ratio = 0.5;
std::set<unsigned long> pairs;
// A function to connect one pillar with its neighbors. THe number of
// neighbors is given in the configuration. This function if called
// for every pillar in the pillar index. A pair of pillar will not
// be connected multiple times this is ensured by the 'pairs' set which
// remembers the processed pillar pairs
auto cascadefn =
[this, d, &pairs, min_height_ratio, H1] (const PointIndexEl& el)
{
Vec3d qp = el.first; // endpoint of the pillar
const Pillar& pillar = m_builder.pillar(el.second); // actual pillar
// Get the max number of neighbors a pillar should connect to
unsigned neighbors = m_cfg.pillar_cascade_neighbors;
// connections are already enough for the pillar
if(pillar.links >= neighbors) return;
// Query all remaining points within reach
auto qres = m_pillar_index.query([qp, d](const PointIndexEl& e){
return distance(e.first, qp) < d;
});
// sort the result by distance (have to check if this is needed)
std::sort(qres.begin(), qres.end(),
[qp](const PointIndexEl& e1, const PointIndexEl& e2){
return distance(e1.first, qp) < distance(e2.first, qp);
});
for(auto& re : qres) { // process the queried neighbors
if(re.second == el.second) continue; // Skip self
auto a = el.second, b = re.second;
// Get unique hash for the given pair (order doesn't matter)
auto hashval = pairhash(a, b);
// Search for the pair amongst the remembered pairs
if(pairs.find(hashval) != pairs.end()) continue;
const Pillar& neighborpillar = m_builder.pillar(re.second);
// this neighbor is occupied, skip
if(neighborpillar.links >= neighbors) continue;
if(interconnect(pillar, neighborpillar)) {
pairs.insert(hashval);
// If the interconnection length between the two pillars is
// less than 50% of the longer pillar's height, don't count
if(pillar.height < H1 ||
neighborpillar.height / pillar.height > min_height_ratio)
m_builder.increment_links(pillar);
if(neighborpillar.height < H1 ||
pillar.height / neighborpillar.height > min_height_ratio)
m_builder.increment_links(neighborpillar);
}
// connections are enough for one pillar
if(pillar.links >= neighbors) break;
}
};
// Run the cascade for the pillars in the index
m_pillar_index.foreach(cascadefn);
// We would be done here if we could allow some pillars to not be
// connected with any neighbors. But this might leave the support tree
// unprintable.
//
// The current solution is to insert additional pillars next to these
// lonely pillars. One or even two additional pillar might get inserted
// depending on the length of the lonely pillar.
size_t pillarcount = m_builder.pillarcount();
// Again, go through all pillars, this time in the whole support tree
// not just the index.
for(size_t pid = 0; pid < pillarcount; pid++) {
auto pillar = [this, pid]() { return m_builder.pillar(pid); };
// Decide how many additional pillars will be needed:
unsigned needpillars = 0;
if (pillar().bridges > m_cfg.max_bridges_on_pillar)
needpillars = 3;
else if (pillar().links < 2 && pillar().height > H2) {
// Not enough neighbors to support this pillar
needpillars = 2;
} else if (pillar().links < 1 && pillar().height > H1) {
// No neighbors could be found and the pillar is too long.
needpillars = 1;
}
needpillars = std::max(pillar().links, needpillars) - pillar().links;
if (needpillars == 0) continue;
// Search for new pillar locations:
bool found = false;
double alpha = 0; // goes to 2Pi
double r = 2 * m_cfg.base_radius_mm;
Vec3d pillarsp = pillar().startpoint();
// temp value for starting point detection
Vec3d sp(pillarsp(X), pillarsp(Y), pillarsp(Z) - r);
// A vector of bool for placement feasbility
std::vector<bool> canplace(needpillars, false);
std::vector<Vec3d> spts(needpillars); // vector of starting points
double gnd = m_builder.ground_level;
double min_dist = m_cfg.pillar_base_safety_distance_mm +
m_cfg.base_radius_mm + EPSILON;
while(!found && alpha < 2*PI) {
for (unsigned n = 0;
n < needpillars && (!n || canplace[n - 1]);
n++)
{
double a = alpha + n * PI / 3;
Vec3d s = sp;
s(X) += std::cos(a) * r;
s(Y) += std::sin(a) * r;
spts[n] = s;
// Check the path vertically down
Vec3d check_from = s + Vec3d{0., 0., pillar().r};
auto hr = bridge_mesh_intersect(check_from, DOWN, pillar().r);
Vec3d gndsp{s(X), s(Y), gnd};
// If the path is clear, check for pillar base collisions
canplace[n] = std::isinf(hr.distance()) &&
std::sqrt(m_mesh.squared_distance(gndsp)) >
min_dist;
}
found = std::all_of(canplace.begin(), canplace.end(),
[](bool v) { return v; });
// 20 angles will be tried...
alpha += 0.1 * PI;
}
std::vector<long> newpills;
newpills.reserve(needpillars);
if (found)
for (unsigned n = 0; n < needpillars; n++) {
Vec3d s = spts[n];
Pillar p(s, Vec3d(s(X), s(Y), gnd), pillar().r);
p.add_base(m_cfg.base_height_mm, m_cfg.base_radius_mm);
if (interconnect(pillar(), p)) {
Pillar &pp = m_builder.pillar(m_builder.add_pillar(p));
m_pillar_index.insert(pp.endpoint(), unsigned(pp.id));
m_builder.add_junction(s, pillar().r);
double t = bridge_mesh_distance(pillarsp, dirv(pillarsp, s),
pillar().r);
if (distance(pillarsp, s) < t)
m_builder.add_bridge(pillarsp, s, pillar().r);
if (pillar().endpoint()(Z) > m_builder.ground_level)
m_builder.add_junction(pillar().endpoint(),
pillar().r);
newpills.emplace_back(pp.id);
m_builder.increment_links(pillar());
m_builder.increment_links(pp);
}
}
if(!newpills.empty()) {
for(auto it = newpills.begin(), nx = std::next(it);
nx != newpills.end(); ++it, ++nx) {
const Pillar& itpll = m_builder.pillar(*it);
const Pillar& nxpll = m_builder.pillar(*nx);
if(interconnect(itpll, nxpll)) {
m_builder.increment_links(itpll);
m_builder.increment_links(nxpll);
}
}
m_pillar_index.foreach(cascadefn);
}
}
}
void SupportTreeBuildsteps::routing_headless()
{
// For now we will just generate smaller headless sticks with a sharp
// ending point that connects to the mesh surface.
// We will sink the pins into the model surface for a distance of 1/3 of
// the pin radius
for(unsigned i : m_iheadless) {
m_thr();
const auto R = double(m_support_pts[i].head_front_radius);
const double HWIDTH_MM = m_cfg.head_penetration_mm;
// Exact support position
Vec3d sph = m_support_pts[i].pos.cast<double>();
Vec3d n = m_support_nmls.row(i); // mesh outward normal
Vec3d sp = sph - n * HWIDTH_MM; // stick head start point
Vec3d sj = sp + R * n; // stick start point
// This is only for checking
double idist = bridge_mesh_distance(sph, DOWN, R, true);
double realdist = ray_mesh_intersect(sj, DOWN).distance();
double dist = realdist;
if (std::isinf(dist)) dist = sph(Z) - m_builder.ground_level;
if(std::isnan(idist) || idist < 2*R || std::isnan(dist) || dist < 2*R) {
BOOST_LOG_TRIVIAL(warning) << "Can not find route for headless"
<< " support stick at: "
<< sj.transpose();
continue;
}
bool use_endball = !std::isinf(realdist);
Vec3d ej = sj + (dist + HWIDTH_MM) * DOWN ;
m_builder.add_compact_bridge(sp, ej, n, R, use_endball);
}
}
}
}