PrusaSlicer-NonPlainar/src/libslic3r/Point.cpp
2020-11-20 15:19:49 +01:00

215 lines
7.0 KiB
C++

#include "Point.hpp"
#include "Line.hpp"
#include "MultiPoint.hpp"
#include "Int128.hpp"
#include "BoundingBox.hpp"
#include <algorithm>
namespace Slic3r {
std::vector<Vec3f> transform(const std::vector<Vec3f>& points, const Transform3f& t)
{
unsigned int vertices_count = (unsigned int)points.size();
if (vertices_count == 0)
return std::vector<Vec3f>();
unsigned int data_size = 3 * vertices_count * sizeof(float);
Eigen::MatrixXf src(3, vertices_count);
::memcpy((void*)src.data(), (const void*)points.data(), data_size);
Eigen::MatrixXf dst(3, vertices_count);
dst = t * src.colwise().homogeneous();
std::vector<Vec3f> ret_points(vertices_count, Vec3f::Zero());
::memcpy((void*)ret_points.data(), (const void*)dst.data(), data_size);
return ret_points;
}
Pointf3s transform(const Pointf3s& points, const Transform3d& t)
{
unsigned int vertices_count = (unsigned int)points.size();
if (vertices_count == 0)
return Pointf3s();
unsigned int data_size = 3 * vertices_count * sizeof(double);
Eigen::MatrixXd src(3, vertices_count);
::memcpy((void*)src.data(), (const void*)points.data(), data_size);
Eigen::MatrixXd dst(3, vertices_count);
dst = t * src.colwise().homogeneous();
Pointf3s ret_points(vertices_count, Vec3d::Zero());
::memcpy((void*)ret_points.data(), (const void*)dst.data(), data_size);
return ret_points;
}
void Point::rotate(double angle, const Point &center)
{
double cur_x = (double)(*this)(0);
double cur_y = (double)(*this)(1);
double s = ::sin(angle);
double c = ::cos(angle);
double dx = cur_x - (double)center(0);
double dy = cur_y - (double)center(1);
(*this)(0) = (coord_t)round( (double)center(0) + c * dx - s * dy );
(*this)(1) = (coord_t)round( (double)center(1) + c * dy + s * dx );
}
int Point::nearest_point_index(const Points &points) const
{
PointConstPtrs p;
p.reserve(points.size());
for (Points::const_iterator it = points.begin(); it != points.end(); ++it)
p.push_back(&*it);
return this->nearest_point_index(p);
}
int Point::nearest_point_index(const PointConstPtrs &points) const
{
int idx = -1;
double distance = -1; // double because long is limited to 2147483647 on some platforms and it's not enough
for (PointConstPtrs::const_iterator it = points.begin(); it != points.end(); ++it) {
/* If the X distance of the candidate is > than the total distance of the
best previous candidate, we know we don't want it */
double d = sqr<double>((*this)(0) - (*it)->x());
if (distance != -1 && d > distance) continue;
/* If the Y distance of the candidate is > than the total distance of the
best previous candidate, we know we don't want it */
d += sqr<double>((*this)(1) - (*it)->y());
if (distance != -1 && d > distance) continue;
idx = it - points.begin();
distance = d;
if (distance < EPSILON) break;
}
return idx;
}
int Point::nearest_point_index(const PointPtrs &points) const
{
PointConstPtrs p;
p.reserve(points.size());
for (PointPtrs::const_iterator it = points.begin(); it != points.end(); ++it)
p.push_back(*it);
return this->nearest_point_index(p);
}
bool Point::nearest_point(const Points &points, Point* point) const
{
int idx = this->nearest_point_index(points);
if (idx == -1) return false;
*point = points.at(idx);
return true;
}
/* Three points are a counter-clockwise turn if ccw > 0, clockwise if
* ccw < 0, and collinear if ccw = 0 because ccw is a determinant that
* gives the signed area of the triangle formed by p1, p2 and this point.
* In other words it is the 2D cross product of p1-p2 and p1-this, i.e.
* z-component of their 3D cross product.
* We return double because it must be big enough to hold 2*max(|coordinate|)^2
*/
double Point::ccw(const Point &p1, const Point &p2) const
{
return (double)(p2(0) - p1(0))*(double)((*this)(1) - p1(1)) - (double)(p2(1) - p1(1))*(double)((*this)(0) - p1(0));
}
double Point::ccw(const Line &line) const
{
return this->ccw(line.a, line.b);
}
// returns the CCW angle between this-p1 and this-p2
// i.e. this assumes a CCW rotation from p1 to p2 around this
double Point::ccw_angle(const Point &p1, const Point &p2) const
{
double angle = atan2(p1(0) - (*this)(0), p1(1) - (*this)(1))
- atan2(p2(0) - (*this)(0), p2(1) - (*this)(1));
// we only want to return only positive angles
return angle <= 0 ? angle + 2*PI : angle;
}
Point Point::projection_onto(const MultiPoint &poly) const
{
Point running_projection = poly.first_point();
double running_min = (running_projection - *this).cast<double>().norm();
Lines lines = poly.lines();
for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line) {
Point point_temp = this->projection_onto(*line);
if ((point_temp - *this).cast<double>().norm() < running_min) {
running_projection = point_temp;
running_min = (running_projection - *this).cast<double>().norm();
}
}
return running_projection;
}
Point Point::projection_onto(const Line &line) const
{
if (line.a == line.b) return line.a;
/*
(Ported from VisiLibity by Karl J. Obermeyer)
The projection of point_temp onto the line determined by
line_segment_temp can be represented as an affine combination
expressed in the form projection of
Point = theta*line_segment_temp.first + (1.0-theta)*line_segment_temp.second.
If theta is outside the interval [0,1], then one of the Line_Segment's endpoints
must be closest to calling Point.
*/
double lx = (double)(line.b(0) - line.a(0));
double ly = (double)(line.b(1) - line.a(1));
double theta = ( (double)(line.b(0) - (*this)(0))*lx + (double)(line.b(1)- (*this)(1))*ly )
/ ( sqr<double>(lx) + sqr<double>(ly) );
if (0.0 <= theta && theta <= 1.0)
return (theta * line.a.cast<coordf_t>() + (1.0-theta) * line.b.cast<coordf_t>()).cast<coord_t>();
// Else pick closest endpoint.
return ((line.a - *this).cast<double>().squaredNorm() < (line.b - *this).cast<double>().squaredNorm()) ? line.a : line.b;
}
BoundingBox get_extents(const Points &pts)
{
return BoundingBox(pts);
}
BoundingBox get_extents(const std::vector<Points> &pts)
{
BoundingBox bbox;
for (const Points &p : pts)
bbox.merge(get_extents(p));
return bbox;
}
std::ostream& operator<<(std::ostream &stm, const Vec2d &pointf)
{
return stm << pointf(0) << "," << pointf(1);
}
namespace int128 {
int orient(const Vec2crd &p1, const Vec2crd &p2, const Vec2crd &p3)
{
Slic3r::Vector v1(p2 - p1);
Slic3r::Vector v2(p3 - p1);
return Int128::sign_determinant_2x2_filtered(v1(0), v1(1), v2(0), v2(1));
}
int cross(const Vec2crd &v1, const Vec2crd &v2)
{
return Int128::sign_determinant_2x2_filtered(v1(0), v1(1), v2(0), v2(1));
}
}
}