opipad/gadget/hid_opg.c
2018-08-17 01:54:09 +09:00

470 lines
13 KiB
C

#include <linux/hid.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
enum {
IDX_NULL,
IDX_MANUFACTURER,
IDX_PRODUCT,
IDX_SERIAL,
IDX_USER,
};
#define USB_DT_HID 0x21
#define USB_DT_HID_REPORT 0x22
struct usb_short_endpoint_descriptor {
__u8 bLength;
__u8 bDescriptorType;
__u8 bEndpointAddress;
__u8 bmAttributes;
__le16 wMaxPacketSize;
__u8 bInterval;
} __attribute__ ((packed));
struct usb_hid_descriptor {
__u8 bLength;
__u8 bDescriptorType;
__le16 bcdHID;
__u8 bCountryCode;
__u8 bNumReports;
__u8 bReportType;
__le16 wReportLength;
} __attribute__ ((packed));
struct driver_data {
u8 last_request_type;
u8 last_request;
struct usb_request* ep0_request;
struct usb_ep* ep_in;
struct usb_request* ep_in_request;
struct usb_ep* ep_out;
struct usb_request* ep_out_request;
};
#include "hid_opg_gpio.h"
//#include "hid_opg_ps4.h"
//#include "hid_opg_xbo.h"
//#include "hid_opg_ngm.h"
#include "hid_opg_rbg.h"
MODULE_LICENSE("Dual BSD/GPL");
#if !defined(NO_IDX_PRODUCT)
# define NO_IDX_PRODUCT 0
#endif
#if !defined(NO_IDX_SERIAL)
# define NO_IDX_SERIAL 0
#endif
#define USB_BUFSIZ 1024
struct usb_device_descriptor device_desc = {
.bLength = USB_DT_DEVICE_SIZE,
.bDescriptorType = USB_DT_DEVICE,
.bcdUSB = OPG_USB_VERSION,
.bDeviceClass = OPG_DEVICE_CLASS,
.bDeviceSubClass = OPG_DEVICE_SUB_CLASS,
.bDeviceProtocol = OPG_DEVICE_PROTOCOL,
.bMaxPacketSize0 = 64,
.idVendor = cpu_to_le16(OPG_VENDOR_ID),
.idProduct = cpu_to_le16(OPG_PRODUCT_ID),
.bcdDevice = cpu_to_le16(0x0100),
.iManufacturer = IDX_MANUFACTURER,
.iProduct = NO_IDX_PRODUCT ? 0 : IDX_PRODUCT,
.iSerialNumber = NO_IDX_SERIAL ? 0 : IDX_SERIAL,
.bNumConfigurations = 1,
};
struct usb_string_descriptor string_desc_lang = {
.bLength = 4,
.bDescriptorType = USB_DT_STRING,
.wData = { cpu_to_le16(0x0409) },
};
struct ep_caps {
u8 address;
unsigned type_iso:1;
unsigned type_bulk:1;
unsigned type_int:1;
unsigned dir_in:1;
unsigned dir_out:1;
};
void estimate_ep_caps(const char* name, struct ep_caps* caps) {
int index = 2;
memset(caps, 0, sizeof(struct ep_caps));
// unknown convention.
if (name[0] != 'e' || name[1] != 'p')
return;
// ep[1-9]?.*: address restriction
if ('1' <= name[index] && name[index] <= '9') {
caps->address = name[index] - '0';
index++;
}
if (name[index] == 'i') {
// ep[1-9]?in.*
index += 2;
caps->dir_in = 1;
} else if (name[index] == 'o') {
// ep[1-9]?out.*
index += 3;
caps->dir_out = 1;
} else {
// ep[1-9]?.*
caps->dir_in = 1;
caps->dir_out = 1;
}
if (!name[index]) {
// ep[1-9]?{in|out}?
caps->type_iso = 1;
caps->type_bulk = 1;
caps->type_int = 1;
return;
}
// unknown convention.
if (name[index] != '-')
return;
index++;
if (name[index] == 'i') {
if (name[index + 1] == 's') {
// ep[1-9]?{in|out}?-iso
caps->type_iso = 1;
} else {
// ep[1-9]?{in|out}?-int
caps->type_int = 1;
}
} else if (name[index] == 'b') {
// ep[1-9]?{in|out}?-bulk
caps->type_bulk = 1;
caps->type_int = 1; // Usually bulk can handle int.
}
return;
}
static int get_descriptor(
struct usb_gadget* gadget, const struct usb_ctrlrequest* r) {
struct driver_data* data = get_gadget_data(gadget);
u16 w_value = le16_to_cpu(r->wValue);
u8 type = w_value >> 8;
u8 index = w_value & 0xff;
switch (type) {
case USB_DT_DEVICE:
if (device_desc.bMaxPacketSize0 > gadget->ep0->maxpacket) {
device_desc.bMaxPacketSize0 = gadget->ep0->maxpacket;
printk("%s: shrink ep0 packet size %d\n",
opg_driver_name, device_desc.bMaxPacketSize0);
}
memcpy(data->ep0_request->buf, &device_desc, sizeof(device_desc));
return sizeof(device_desc);
case USB_DT_CONFIG:
memcpy(data->ep0_request->buf, &opg_config_desc, sizeof(opg_config_desc));
return sizeof(opg_config_desc);
case USB_DT_STRING:
if (index) {
struct usb_string_descriptor* buf = data->ep0_request->buf;
const char* string = opg_get_string(index);
size_t length;
if (!string) {
printk("%s: unknown string index %d\n", opg_driver_name, index);
break;
}
buf->bDescriptorType = USB_DT_STRING;
for (length = 0; string[length]; ++length)
buf->wData[length] = cpu_to_le16(string[length]);
buf->bLength = length * 2 + 2;
return buf->bLength;
}
memcpy(data->ep0_request->buf, &string_desc_lang,
string_desc_lang.bLength);
return string_desc_lang.bLength;
#if OPG_DEVICE_CLASS != USB_CLASS_VENDOR_SPEC
case USB_DT_HID_REPORT:
memcpy(data->ep0_request->buf, opg_hid_report, sizeof(opg_hid_report));
return sizeof(opg_hid_report);
#endif
default:
printk("%s: unknown descriptor %02x, ignoring\n", opg_driver_name, type);
break;
}
return -EOPNOTSUPP;
}
static void setup_complete(struct usb_ep* ep, struct usb_request* r) {
struct driver_data* data = ep->driver_data;
if (r->status) {
printk("%s: failed on setup; status=%d, bRequestType=%02x, bRequest=%02x\n",
opg_driver_name, r->status, data->last_request_type,
data->last_request);
}
}
static void in_report_complete(struct usb_ep* ep, struct usb_request* r) {
int result;
if (r->status) {
printk("%s: failed to send an in-data report, suspending\n",
opg_driver_name);
usb_ep_fifo_flush(ep);
return;
}
opg_update_report();
memcpy(r->buf, opg_report, sizeof(opg_report));
r->length = sizeof(opg_report);
r->zero = 0;
result = usb_ep_queue(ep, r, GFP_ATOMIC);
if (result < 0)
printk("%s: failed to queue an in-data report\n", opg_driver_name);
}
#if defined(USE_EP_OUT)
static void out_report_complete(struct usb_ep* ep, struct usb_request* r) {
printk("%s: not impl, out_report_complete\n", opg_driver_name);
}
#endif
static int setup(struct usb_gadget* gadget, const struct usb_ctrlrequest* r) {
struct driver_data* data = get_gadget_data(gadget);
u16 w_length = le16_to_cpu(r->wLength);
int value = -EOPNOTSUPP;
data->ep0_request->zero = 0;
data->ep0_request->complete = setup_complete;
data->ep0_request->length = 0;
data->ep0_request->status = 0;
value = opg_setup(gadget, r);
if (value == -EOPNOTSUPP) {
int type = r->bRequestType & USB_TYPE_MASK;
if (type == USB_TYPE_STANDARD) switch (r->bRequest) {
case USB_REQ_GET_DESCRIPTOR:
value = get_descriptor(gadget, r);
break;
case USB_REQ_SET_CONFIGURATION:
if (data->ep_in && !data->ep_in_request) {
data->ep_in_request = usb_ep_alloc_request(data->ep_in, GFP_KERNEL);
if (data->ep_in_request) {
data->ep_in_request->buf =
kmalloc(data->ep_in->desc->wMaxPacketSize, GFP_KERNEL);
if (data->ep_in_request->buf)
usb_ep_enable(data->ep_in);
}
}
#if defined(USE_EP_OUT)
if (data->ep_out && !data->ep_out_request) {
data->ep_out_request = usb_ep_alloc_request(data->ep_out, GFP_KERNEL);
if (data->ep_out_request) {
data->ep_out_request->buf =
kmalloc(data->ep_out->desc->wMaxPacketSize, GFP_KERNEL);
if (data->ep_out_request->buf)
usb_ep_enable(data->ep_out);
}
}
#endif
if (data->ep_in_request && data->ep_in_request->buf) {
data->ep_in_request->status = 0;
data->ep_in_request->zero = 0;
data->ep_in_request->complete = in_report_complete;
data->ep_in_request->length = data->ep_in->desc->wMaxPacketSize;
in_report_complete(data->ep_in, data->ep_in_request);
} else {
printk("%s: failed to setup data-in endpoint\n", opg_driver_name);
value = -ENOMEM;
break;
}
#if defined(USE_EP_OUT)
if (data->ep_out_request && data->ep_out_request->buf) {
data->ep_out_request->status = 0;
data->ep_out_request->zero = 0;
data->ep_out_request->complete = out_report_complete;
data->ep_out_request->length = data->ep_out->desc->wMaxPacketSize;
} else {
printk("%s: failed to setup data-out endpoint\n", opg_driver_name);
value = -ENOMEM;
break;
}
#endif
value = w_length;
break;
default:
printk("%s: standard setup not impl: %02x-%02x\n",
opg_driver_name, r->bRequestType, r->bRequest);
break;
} else if (type == USB_TYPE_CLASS) switch (r->bRequest) {
case HID_REQ_GET_REPORT:
opg_update_report();
memcpy(data->ep0_request->buf, opg_report, sizeof(opg_report));
value = sizeof(opg_report);
break;
case HID_REQ_SET_REPORT:
value = w_length;
break;
case HID_REQ_SET_IDLE:
value = w_length;
break;
default:
printk("%s: hid class setup not impl: %02x-%02x\n",
opg_driver_name, r->bRequestType, r->bRequest);
break;
} else {
printk("%s: setup not impl: %02x-%02x\n",
opg_driver_name, r->bRequestType, r->bRequest);
}
}
if (value > 0) {
data->ep0_request->length = min((u16)value, w_length);
data->ep0_request->zero = value > w_length;
data->last_request_type = r->bRequestType;
data->last_request = r->bRequest;
value = usb_ep_queue(gadget->ep0, data->ep0_request, GFP_ATOMIC);
if (value < 0)
printk("%s: usb_ep_queue returns a negative value\n", opg_driver_name);
}
return value;
}
struct usb_ep* find_int_ep(struct usb_gadget* gadget, int maxpacket, int in) {
struct usb_ep* ep;
list_for_each_entry(ep, &gadget->ep_list, ep_list) {
struct ep_caps caps;
estimate_ep_caps(ep->name, &caps);
if (caps.type_int) {
if (caps.dir_in && in && ep->maxpacket >= maxpacket) {
ep->address = USB_DIR_IN | caps.address;
return ep;
} else if (caps.dir_out && !in && ep->maxpacket >= maxpacket) {
ep->address = USB_DIR_OUT | caps.address;
return ep;
}
}
}
return NULL;
}
static int bind(struct usb_gadget* gadget) {
struct driver_data* data = kzalloc(sizeof(struct driver_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
set_gadget_data(gadget, data);
// Initialize EP0 for setup.
data->ep0_request = usb_ep_alloc_request(gadget->ep0, GFP_KERNEL);
if (!data->ep0_request)
return -ENOMEM;
data->ep0_request->buf = kmalloc(USB_BUFSIZ, GFP_KERNEL);
if (!data->ep0_request->buf)
return -ENOMEM;
gadget->ep0->driver_data = data;
// Claim endpoints for interrupt transfer.
data->ep_in = find_int_ep(gadget, opg_config_desc.ep_in.wMaxPacketSize, 1);
if (data->ep_in) {
data->ep_in->driver_data = data;
data->ep_in->desc =
(struct usb_endpoint_descriptor*)&opg_config_desc.ep_in;
opg_config_desc.ep_in.bEndpointAddress = data->ep_in->address;
} else {
printk("%s: failed to allocate ep-in\n", opg_driver_name);
return -EOPNOTSUPP;
}
#if defined(USE_EP_OUT)
data->ep_out = find_int_ep(gadget, opg_config_desc.ep_out.wMaxPacketSize, 0);
if (data->ep_out) {
data->ep_out->driver_data = data;
data->ep_out->desc =
(struct usb_endpoint_descriptor*)&opg_config_desc.ep_out;
opg_config_desc.ep_out.bEndpointAddress = data->ep_out->address;
} else {
printk("%s: failed to allocate ep-out, ignoring\n", opg_driver_name);
}
#endif
return 0;
}
static void unbind(struct usb_gadget* gadget) {
struct driver_data* data = get_gadget_data(gadget);
if (!data)
return;
if (data->ep_in) {
usb_ep_disable(data->ep_in);
data->ep_in->driver_data = NULL;
data->ep_in->desc = NULL;
if (data->ep_in_request) {
if (data->ep_in_request->buf)
kfree(data->ep_in_request->buf);
usb_ep_free_request(data->ep_in, data->ep_in_request);
}
}
#if defined(USE_EP_OUT)
if (data->ep_out) {
usb_ep_disable(data->ep_out);
data->ep_out->driver_data = NULL;
data->ep_out->desc = NULL;
if (data->ep_out_request) {
if (data->ep_out_request->buf)
kfree(data->ep_out_request->buf);
usb_ep_free_request(data->ep_out, data->ep_out_request);
}
}
#endif
if (data->ep0_request) {
if (data->ep0_request->buf)
kfree(data->ep0_request->buf);
usb_ep_free_request(gadget->ep0, data->ep0_request);
}
kfree(data);
set_gadget_data(gadget, NULL);
}
static void disconnect(struct usb_gadget* gadget) {
printk("%s: disconnect\n", opg_driver_name);
// TODO: finalize endpoints for interrupt in/out.
}
static void not_impl(struct usb_gadget* gadget) {
printk("%s: not impl\n", opg_driver_name);
}
static struct usb_gadget_driver driver = {
.function = "USB Gadget Test Driver",
.max_speed = USB_SPEED_HIGH,
.unbind = unbind,
.setup = setup,
.disconnect = disconnect,
.suspend = not_impl,
.resume = not_impl,
.driver = { .owner = THIS_MODULE },
};
static int __init init(void) {
driver.function = opg_driver_name;
return usb_gadget_probe_driver(&driver, bind);
}
module_init(init);
static void __exit cleanup(void) {
usb_gadget_unregister_driver(&driver);
}
module_exit(cleanup);