/** * Derived from http://www.thingiverse.com/thing:5699 * * LEGO®, the LEGO® logo, the Brick, DUPLO®, and MINDSTORMS® are trademarks of the LEGO® Group. ©2012 The LEGO® Group. */ /* [General] */ // Width of the block, in studs block_width = 2; // Length of the block, in studs block_length = 6; // Height of the block. A ratio of "1" is a standard LEGO brick height; a ratio of "1/3" is a standard LEGO plate height; "1/2" is a standard DUPLO plate. block_height_ratio = 1; // [.33333333333:1/3, .5:1/2, 1:1, 2:2, 3:3, 4:4, 5:5, 6:6, 7:7, 8:8, 9:9, 10:10] // What type of block should this be? For type-specific options, see the "Wings," "Slopes," "Curves", and "Baseplates" tabs. block_type = "brick"; // [brick:Brick, tile:Tile, wing:Wing, slope:Slope, curve:Curve, baseplate:Baseplate] // What brand of block should this be? LEGO for regular LEGO bricks, Duplo for the toddler-focused larger bricks. block_brand = "lego"; // [lego:LEGO, duplo:DUPLO] // How much do you want to loosen the fit onto the studs? stud_tolerance = 0; // How much do you want to loosen the fit of the walls? wall_tolerance = 0; // How much do you want to loosen fit of the posts? post_tolerance = 0; // What stud type do you want? Hollow studs allow rods to be pushed into the stud. stud_type = "solid"; // [solid:Solid, hollow:Hollow] // Should the block include round horizontal holes like the Technics LEGO bricks have? technic_holes = "no"; // [no:No, yes:Yes] // Should the block include vertical cross-shaped axle holes? vertical_axle_holes = "no"; // [no:No, yes:Yes] /* [Wings] */ // What type of wing? Full is suitable for the front of a plane, left/right are for the left/right of a plane. wing_type = "full"; // [full:Full, left:Left, right:Right] // The number of studs across the end of the wing. If block_width is odd, this needs to be odd, and the same for even. wing_end_width = 2; // The length of the rectangular portion of the wing, in studs. wing_base_length = 3; // Should the wing edges be notched to accept studs below? wing_stud_notches = "yes"; // [yes:Yes, no:No] /* [Slopes] */ // How many rows of studs should be left before the slope? slope_stud_rows = 1; // How much vertical height should be left at the end of the slope? e.g, a value of zero means the slope reaches the bottom of the block. A value of 1 means that for a block with height 2, the slope reaches halfway down the block. slope_end_height = 0; /* [Curves] */ // How many rows of studs should be left before the curve? curve_stud_rows = 5; // Should the curve be convex or concave? curve_type = "concave"; // [concave:Concave, convex:Convex] // How much vertical height should be left at the end of the curve? e.g, a value of zero means the curve reaches the bottom of the block. A value of 1 means that for a block with height 2, the curve reaches halfway down the block. curve_end_height = 0; /* [Baseplates] */ // If you want a roadway, how wide should it be (in studs)? A roadway is a smooth (non-studded) section of a baseplate. roadway_width = 0; // How long should the roadway be? roadway_length = 0; // Where should the roadway start (x-value)? A value of zero puts the roadway at the far left side of the plate. roadway_x = 0; // Where should the roadway start (y-value)? A value of zero puts the roadway at the front of the plate. roadway_y = 0; /* [SNOT] */ // SNOT means Studs Not On Top -- bricks with alternative stud configurations. // Put studs on the top and buttom? dual_sided = "no"; // [no:No, yes:Yes] // Instead of both sides having studs, both sides can have no studs. dual_bottom = "no"; // [no:No, yes:Yes] /* [Printer-Specific] */ // Should extra reinforcement be included to make printing on an FDM printer easier? Ignored for tiles, since they're printed upside-down and don't need the reinforcement. Recommended for block heights less than 1 or for Duplo bricks. use_reinforcement = "no"; // [no:No, yes:Yes] // If your printer prints the blocks correctly except for the stud diameter, use this variable to resize just the studs for your printer. A value of 1.05 will print the studs 105% wider than standard. stud_rescale = 1; //stud_rescale = 1.0475 * 1; // Orion Delta, T-Glase //stud_rescale = 1.022 * 1; // Orion Delta, ABS // Print tiles upside down. translate([0, 0, (block_type == "tile" ? block_height_ratio * block_height : 0)]) rotate([0, (block_type == "tile" ? 180 : 0), 0]) { block( width=block_width, length=block_length, height=block_height_ratio, type=block_type, brand=block_brand, stud_type=stud_type, horizontal_holes=(technic_holes=="yes"), vertical_axle_holes=(vertical_axle_holes=="yes"), reinforcement=(use_reinforcement=="yes"), wing_type=wing_type, wing_end_width=wing_end_width, wing_base_length=wing_base_length, stud_notches=(wing_stud_notches=="yes"), slope_stud_rows=slope_stud_rows, slope_end_height=slope_end_height, curve_stud_rows=curve_stud_rows, curve_type=curve_type, curve_end_height=curve_end_height, roadway_width=roadway_width, roadway_length=roadway_length, roadway_x=roadway_x, roadway_y=roadway_y, stud_rescale=stud_rescale, dual_sided=(dual_sided=="yes"), dual_bottom=(dual_bottom=="yes") ); } module block( width=1, length=2, height=1, type="brick", brand="lego", stud_type="solid", horizontal_holes=false, vertical_axle_holes=false, reinforcement=false, wing_type="full", wing_end_width=2, wing_base_length=2, stud_notches=false, slope_stud_rows=1, slope_end_height=0, curve_stud_rows=1, curve_type="concave", curve_end_height=0, roadway_width=0, roadway_length=0, roadway_x=0, roadway_y=0, stud_rescale=1, dual_sided=false, dual_bottom=false ) { post_wall_thickness = (brand == "lego" ? 0.85 : 1); wall_thickness=(brand == "lego" ? 1.45 - wall_tolerance : 1.5 - wall_tolerance); stud_diameter=(brand == "lego" ? 4.85 - stud_tolerance: 9.35 - stud_tolerance); hollow_stud_inner_diameter = (brand == "lego" ? 3.1 : 6.7); stud_height=(brand == "lego" ? 1.8 : 4.4); stud_spacing=(brand == "lego" ? 8 : 8 * 2); block_height=(brand == "lego" ? (type == "baseplate" ? 1.3 : 9.6) : 9.6 * 2); pin_diameter=(brand == "lego" ? 3 : 3 * 2); post_diameter=(brand == "lego" ? 6.5 - post_tolerance: 13.2 - post_tolerance); cylinder_precision=(brand == "lego" ? 0.1 : 0.05); reinforcing_width = (brand == "lego" ? 0.7 : 1); spline_length = (brand == "lego" ? 0.25 : 1.7); spline_thickness = (brand == "lego" ? 0.7 : 1.3); horizontal_hole_diameter = (brand == "lego" ? 4.8 : 4.8 * 2); horizontal_hole_z_offset = (brand == "lego" ? 5.8 : 5.8 * 2); horizontal_hole_bevel_diameter = (brand == "lego" ? 6.2 : 6.2 * 2); horizontal_hole_bevel_depth = (brand == "lego" ? 0.9 : 0.9 * 1.5 / 1.2 ); roof_thickness = (type == "baseplate" || dual_sided ? block_height * height : 1 * 1); // Brand-independent measurements. axle_spline_width = 2.0; axle_diameter = 5 * 1; wall_play = 0.1 * 1; horizontal_hole_wall_thickness = 1 * 1; // Ensure that width is always less than or equal to length. real_width = (type == "wing" ? width : min(width, length) ); real_length = (type == "wing" ? length : max(width, length) ); real_height = max((type == "baseplate" ? 1 : 1/3), height); // Ensure that the wing end width is even if the width is even, odd if odd, and a reasonable value. real_wing_end_width = (wing_type == "full" ? min(real_width - 2, ((real_width % 2 == 0) ? (max(2, ( wing_end_width % 2 == 0 ? (wing_end_width) : (wing_end_width-1) ))) : (max(1, ( wing_end_width % 2 == 0 ? (wing_end_width-1) : (wing_end_width) ))) )) : (min(real_width-1, max(1, wing_end_width))) // Half-wing ); // Ensure that the base length is a reasonable value. real_wing_base_length = min(real_length-1, max(1, wing_base_length)) + 1; // +1 because the angle starts before the last stud. // Validate all the rest of the arguments. real_slope_end_height = max(0, min(real_height - 1/3, slope_end_height)); real_slope_stud_rows = min(real_length - 1, slope_stud_rows); real_curve_stud_rows = max(0, curve_stud_rows); real_curve_type = (curve_type == "convex" ? "convex" : "concave"); real_curve_end_height = max(0, min(real_height - 1/3, curve_end_height)); real_horizontal_holes = horizontal_holes && ((type == "baseplate" && real_height >= 8) || real_height >= 1) && !dual_sided; real_vertical_axle_holes = vertical_axle_holes && real_width > 1; real_reinforcement = reinforcement && type != "baseplate" && type != "tile" && !dual_sided; real_roadway_width = max(0, min(roadway_width, real_width)); real_roadway_length = max(0, min(roadway_length, real_length)); real_roadway_x = max(0, min(real_length - real_roadway_length, roadway_x)); real_roadway_y = max(0, min(real_width - real_roadway_width, roadway_y)); real_stud_notches = stud_notches && !dual_sided; real_dual_sided = dual_sided && type != "curve" && type != "slope" && type != "tile"; real_dual_bottom = dual_bottom && !real_dual_sided && type != "curve" && type != "slope"; total_studs_width = (stud_diameter * stud_rescale * real_width) + ((real_width - 1) * (stud_spacing - (stud_diameter * stud_rescale))); total_studs_length = (stud_diameter * stud_rescale * real_length) + ((real_length - 1) * (stud_spacing - (stud_diameter * stud_rescale))); total_posts_width = (post_diameter * (real_width - 1)) + ((real_width - 2) * (stud_spacing - post_diameter)); total_posts_length = (post_diameter * (real_length - 1)) + ((real_length - 2) * (stud_spacing - post_diameter)); total_axles_width = (axle_diameter * (real_width - 1)) + ((real_width - 2) * (stud_spacing - axle_diameter)); total_axles_length = (axle_diameter * (real_length - 1)) + ((real_length - 2) * (stud_spacing - axle_diameter)); total_pins_width = (pin_diameter * (real_width - 1)) + max(0, ((real_width - 2) * (stud_spacing - pin_diameter))); total_pins_length = (pin_diameter * (real_length - 1)) + max(0, ((real_length - 2) * (stud_spacing - pin_diameter))); overall_length = (real_length * stud_spacing) - (2 * wall_play); overall_width = (real_width * stud_spacing) - (2 * wall_play); wing_slope = (wing_type == "full" ? ((real_width - (real_wing_end_width + 1)) / 2) / (real_length - (real_wing_base_length - 1)) : (real_width - (real_wing_end_width)) / (real_length - (real_wing_base_length - 1)) ); translate([-overall_length/2, -overall_width/2, 0]) // Comment to position at 0,0,0 instead of centered on X and Y. union() { difference() { union() { /** * Include any union()s that should come before the final difference()s. */ // The mass of the block. difference() { cube([overall_length, overall_width, real_height * block_height]); translate([wall_thickness,wall_thickness,-roof_thickness]) cube([overall_length-wall_thickness*2,overall_width-wall_thickness*2,block_height*real_height]); } // The studs on top of the block (if it's not a tile). if ( type != "tile" && !real_dual_bottom ) { translate([stud_diameter * stud_rescale / 2, stud_diameter * stud_rescale / 2, 0]) translate([(overall_length - total_studs_length)/2, (overall_width - total_studs_width)/2, 0]) { for (ycount=[0:real_width-1]) { for (xcount=[0:real_length-1]) { if (!skip_this_stud(xcount, ycount)) { translate([xcount*stud_spacing,ycount*stud_spacing,block_height*real_height]) stud(); } } } } } // Interior splines to catch the studs. translate([stud_spacing / 2 - wall_play - (spline_thickness/2), 0, 0]) for (xcount = [0:real_length-1]) { translate([0,wall_thickness,0]) translate([xcount * stud_spacing, 0, 0]) cube([spline_thickness, spline_length, real_height * block_height]); translate([xcount * stud_spacing, overall_width - wall_thickness - spline_length, 0]) cube([spline_thickness, spline_length, real_height * block_height]); } translate([0, stud_spacing / 2 - wall_play - (spline_thickness/2), 0]) for (ycount = [0:real_width-1]) { translate([wall_thickness,0,0]) translate([0, ycount * stud_spacing, 0]) cube([spline_length, spline_thickness, real_height * block_height]); translate([overall_length - wall_thickness - spline_length, ycount * stud_spacing, 0]) cube([spline_length, spline_thickness, real_height * block_height]); } if (type != "baseplate" && real_width > 1 && real_length > 1 && !real_dual_sided && roof_thickness < block_height * height) { // Reinforcements and posts translate([post_diameter / 2, post_diameter / 2, 0]) { translate([(overall_length - total_posts_length)/2, (overall_width - total_posts_width)/2, 0]) { union() { // Posts for (ycount=[1:real_width-1]) { for (xcount=[1:real_length-1]) { translate([(xcount-1)*stud_spacing,(ycount-1)*stud_spacing,0]) post(real_vertical_axle_holes && !skip_this_vertical_axle_hole(xcount, ycount)); } } // Reinforcements if (real_reinforcement) { difference() { for (ycount=[1:real_width-1]) { for (xcount=[1:real_length-1]) { translate([(xcount-1)*stud_spacing,(ycount-1)*stud_spacing,0]) reinforcement(); } } for (ycount=[1:real_width-1]) { for (xcount=[1:real_length-1]) { translate([(xcount-1)*stud_spacing,(ycount-1)*stud_spacing,-0.5]) cylinder(r=post_diameter/2-0.1, h=real_height*block_height+0.5, $fs=cylinder_precision); } } } } } } } } if (type != "baseplate" && (real_width == 1 || real_length == 1) && real_width != real_length && !real_dual_sided && roof_thickness < block_height * height) { // Pins if (real_width == 1) { translate([(pin_diameter/2) + (overall_length - total_pins_length) / 2, overall_width/2, 0]) { for (xcount=[1:real_length-1]) { translate([(xcount-1)*stud_spacing,0,0]) cylinder(r=pin_diameter/2,h=block_height*real_height,$fs=cylinder_precision); } } } else { translate([overall_length/2, (pin_diameter/2) + (overall_width - total_pins_width) / 2, 0]) { for (ycount=[1:real_width-1]) { translate([0,(ycount-1)*stud_spacing,0]) cylinder(r=pin_diameter/2,h=block_height*real_height,$fs=cylinder_precision); } } } } if (real_horizontal_holes) { // The holes for the horizontal axles. // 1-length bricks have the hole underneath the stud. // >1-length bricks have the holes between the studs. for (height_index = [0 : height - 1]) { translate([horizontal_holes_x_offset(), overall_width, height_index * block_height]) translate([(overall_length - total_studs_length)/2, 0, 0]) { for (axle_hole_index=[horizontal_hole_start_index() : horizontal_hole_end_index()]) { if (!skip_this_horizontal_hole(axle_hole_index, height_index)) { translate([axle_hole_index*stud_spacing,0,horizontal_hole_z_offset]) rotate([90, 0, 0]) cylinder(r=horizontal_hole_diameter/2 + horizontal_hole_wall_thickness, h=overall_width,$fs=cylinder_precision); } } } } } } /** * Include any differences from the basic brick here. */ if (real_vertical_axle_holes) { if (real_width > 1 && real_length > 1) { translate([axle_diameter / 2, axle_diameter / 2, 0]) { translate([(overall_length - total_axles_length)/2, (overall_width - total_axles_width)/2, 0]) { for (ycount = [ 1 : real_width - 1 ]) { for (xcount = [ 1 : real_length - 1]) { if (!skip_this_vertical_axle_hole(xcount, ycount)) { translate([(xcount-1)*stud_spacing,(ycount-1)*stud_spacing,-block_height/2]) axle(); } } } } } } } if (type == "wing") { if (wing_type == "full" || wing_type == "right") { translate([0, 0, -0.5]) linear_extrude(block_height * real_height + stud_height + 1) polygon(points=[ [stud_spacing * (real_wing_base_length-1), -0.01], [overall_length + 0.01, -0.01], [overall_length + 0.01, (wing_type == "full" ? (overall_width / 2 - (real_wing_end_width * stud_spacing / 2)) : (overall_width - (real_wing_end_width * stud_spacing)) )] ] ); } if (wing_type == "full" || wing_type == "left") { translate([0, 0, -0.5]) linear_extrude(block_height * real_height + stud_height + 1) polygon(points=[ [stud_spacing * (real_wing_base_length-1), overall_width + 0.01], [overall_length + 0.01, overall_width + 0.01], [overall_length + 0.01, (wing_type == "full" ? overall_width / 2 : 0) + (real_wing_end_width * stud_spacing / (wing_type == "full" ? 2 : 1))] ] ); } } else if (type == "slope") { translate([0, overall_width+0.5, 0]) rotate([90, 0, 0]) linear_extrude(overall_width+1) polygon(points=[ [-0.1, (block_height * real_slope_end_height) + stud_height], [min(overall_length, overall_length - (stud_spacing * real_slope_stud_rows) + (wall_play/2)), real_height * block_height - roof_thickness], [min(overall_length, overall_length - (stud_spacing * real_slope_stud_rows) + (wall_play/2)), real_height * block_height + stud_height + 1], [-0.1, real_height * block_height + stud_height + 1] ]); } else if (type == "curve") { if (real_curve_type == "concave") { echo(curve_circle_height()); difference() { translate([ -curve_circle_length() / 2, // Align the center of the cube with the end of the block. -0.5, // Center the extra width on the block. (real_height * block_height) - (curve_circle_height() / 2) // Align the bottom of the cube with the center of the curve circle. ]) cube([curve_circle_length(), overall_width + 1, curve_circle_height()]); translate([ curve_circle_length() / 2, // Align the end of the curve with the end of the block. overall_width / 2, // Center it on the block. (real_height * block_height) - (curve_circle_height() / 2) // Align the top of the curve with the top of the block. ]) rotate([90, 0, 0]) // Rotate sideways translate([0, 0, -overall_width/2]) // Move so the cylinder is z-centered. resize([curve_circle_length(), curve_circle_height(), 0]) // Resize to the approprate scale. cylinder(r=real_height * block_height, h=overall_width, $fs=cylinder_precision); } } else if (real_curve_type == "convex") { union() { translate([0, 0, real_height * block_height]) cube([overall_length - (real_curve_stud_rows * stud_spacing), overall_width, stud_height + .1]); translate([0, 0, block_height * real_height]) translate([0, (overall_width+1)/2-.5, 0]) // Center across the end of the block. rotate([90, 0, 0]) translate([0, 0, -((overall_width+1)/2)]) // z-center resize([curve_circle_length(), curve_circle_height(), 0]) // Resize to the final dimensions. cylinder(r=block_height * real_height, h=overall_width+1, $fs=cylinder_precision); } } } else if (type == "baseplate") { // Rounded corners. union() { translate([overall_length, overall_width, 0]) translate([-((stud_spacing / 2) - wall_play), -((stud_spacing / 2) - wall_play), 0]) negative_rounded_corner(r=((stud_spacing / 2) - wall_play), h=real_height * block_height); translate([0, overall_width, 0]) translate([((stud_spacing / 2) - wall_play), -((stud_spacing / 2) - wall_play), 0]) rotate([0, 0, 90]) negative_rounded_corner(r=((stud_spacing / 2) - wall_play), h=real_height * block_height); translate([((stud_spacing / 2) - wall_play), ((stud_spacing / 2) - wall_play), 0]) rotate([0, 0, 180]) negative_rounded_corner(r=((stud_spacing / 2) - wall_play), h=real_height * block_height); translate([overall_length, 0, 0]) translate([-((stud_spacing / 2) - wall_play), ((stud_spacing / 2) - wall_play), 0]) rotate([0, 0, 270]) negative_rounded_corner(r=((stud_spacing / 2) - wall_play), h=real_height * block_height); } } if (real_horizontal_holes) { // The holes for the horizontal axles. // 1-length bricks have the hole underneath the stud. // >1-length bricks have the holes between the studs. for (height_index = [0 : height - 1]) { translate([horizontal_holes_x_offset(), 0, height_index * block_height]) translate([(overall_length - total_studs_length)/2, 0, 0]) { for (axle_hole_index=[horizontal_hole_start_index() : horizontal_hole_end_index()]) { if (!skip_this_horizontal_hole(axle_hole_index, height_index)) { union() { translate([axle_hole_index*stud_spacing,overall_width,horizontal_hole_z_offset]) rotate([90, 0, 0]) cylinder(r=horizontal_hole_diameter/2, h=overall_width,$fs=cylinder_precision); // Bevels. The +/- 0.1 measurements are here just for nicer previews in OpenSCAD, and could be removed. translate([axle_hole_index*stud_spacing,horizontal_hole_bevel_depth-0.1,horizontal_hole_z_offset]) rotate([90, 0, 0]) cylinder(r=horizontal_hole_bevel_diameter/2, h=horizontal_hole_bevel_depth+0.1,$fs=cylinder_precision); translate([axle_hole_index*stud_spacing,overall_width+0.1,horizontal_hole_z_offset]) rotate([90, 0, 0]) cylinder(r=horizontal_hole_bevel_diameter/2, h=horizontal_hole_bevel_depth+0.1,$fs=cylinder_precision); } } } } } } } /** * Any final union()s for the brick. */ if (type == "wing") { difference() { union() { if ( wing_type == "full" || wing_type == "right" ){ linear_extrude(block_height * real_height) polygon(points=[ [stud_spacing * (real_wing_base_length-1), 0], [overall_length, (wing_type == "full" ? ((overall_width / 2) - (real_wing_end_width * stud_spacing / 2)) : (overall_width - (real_wing_end_width * stud_spacing)) )], [overall_length, (wing_type == "full" ? ((overall_width / 2) - (real_wing_end_width * stud_spacing / 2)) : (overall_width - (real_wing_end_width * stud_spacing)) ) + wall_thickness], [stud_spacing * (real_wing_base_length-1), wall_thickness] ]); } if (wing_type == "full" || wing_type == "left") { linear_extrude(block_height * real_height) polygon(points=[ [stud_spacing * (real_wing_base_length-1), overall_width], [overall_length, (wing_type == "full" ? overall_width / 2 : 0) + (real_wing_end_width * stud_spacing / (wing_type == "full" ? 2 : 1))], [overall_length, (wing_type == "full" ? overall_width / 2 : 0) + (real_wing_end_width * stud_spacing / (wing_type == "full" ? 2 : 1)) - wall_thickness], [stud_spacing * (real_wing_base_length-1), overall_width - wall_thickness] ]); } } if (real_stud_notches) { translate([overall_length/2, overall_width/2, 0]) translate([0, 0, -(1/3 * block_height)]) block( width=real_width, length=real_length, height=1/3, brand=brand, stud_type="solid", type="brick", stud_rescale=1.5 ); } } } else if (type == "slope") { translate([0, overall_width, 0]) rotate([90, 0, 0]) linear_extrude(overall_width) polygon(points=[ [0, (block_height * real_slope_end_height) + stud_height], [0, (block_height * real_slope_end_height) + stud_height + roof_thickness], [min(overall_length, overall_length - (stud_spacing * real_slope_stud_rows) + (wall_play/2)), real_height * block_height], [min(overall_length, overall_length - (stud_spacing * real_slope_stud_rows) + (wall_play/2)), (real_height * block_height) - roof_thickness] ]); } else if (type == "curve") { if (real_curve_type == "concave") { intersection() { translate([ -curve_circle_length() / 2, // Align the center of the cube with the end of the block. -0.5, // Center the extra width on the block. (real_height * block_height) - (curve_circle_height() / 2) // Align the bottom of the cube with the center of the curve circle. ]) cube([curve_circle_length(), overall_width + 1, curve_circle_height()]); difference() { translate([ curve_circle_length() / 2, // Align the end of the curve with the end of the block. overall_width / 2, // Center it on the block. (real_height * block_height) - (curve_circle_height() / 2) // Align the top of the curve with the top of the block. ]) rotate([90, 0, 0]) // Rotate sideways translate([0, 0, -overall_width/2]) // Move so the cylinder is z-centered. resize([curve_circle_length(), curve_circle_height(), 0]) // Resize to the approprate scale. cylinder(r=real_height * block_height, h=overall_width, $fs=cylinder_precision); translate([ curve_circle_length() / 2, // Align the end of the curve with the end of the block. overall_width / 2, // Center it on the block. (real_height * block_height) - (curve_circle_height() / 2) // Align the top of the curve with the top of the block. ]) rotate([90, 0, 0]) // Rotate sideways translate([0, 0, -overall_width/2]) // Move so the cylinder is z-centered. resize([curve_circle_length() - (wall_thickness * 2), curve_circle_height() - (wall_thickness * 2), 0]) // Resize to the approprate scale. cylinder(r=real_height * block_height, h=overall_width, $fs=cylinder_precision); } } } else if (real_curve_type == "convex") { intersection() { translate([ 0, 0, (real_height * block_height) - (curve_circle_height() / 2) - wall_thickness // Align the top of the cube with the top of the block. ]) cube([curve_circle_length() / 2, overall_width, curve_circle_height() / 2 + wall_thickness]); translate([0, 0, block_height * real_height]) translate([0, overall_width/2, 0]) // Center across the end of the block. rotate([90, 0, 0]) translate([0, 0, -overall_width/2]) // z-center difference() { resize([curve_circle_length() + (wall_thickness * 2), curve_circle_height() + (wall_thickness * 2), 0]) // Resize to the final dimensions. cylinder(r=block_height * real_height, h=overall_width, $fs=cylinder_precision); translate([0, 0, -0.5]) // The inner cylinder is just a little taller, for nicer OpenSCAD previews. resize([curve_circle_length(), curve_circle_height(), 0]) // Resize to the final dimensions. cylinder(r=block_height * real_height, h=overall_width+1, $fs=cylinder_precision); } } } } if (real_dual_sided) { translate([overall_length/2, overall_width/2, block_height * height]) mirror([0,0,1]) block( width=real_width, length=real_length, height=real_height, type=type, brand=brand, stud_type=stud_type, horizontal_holes=real_horizontal_holes, vertical_axle_holes=real_vertical_axle_holes, reinforcement=real_reinforcement, wing_type=wing_type, wing_end_width=real_wing_end_width, wing_base_length=real_wing_base_length-1, stud_notches=real_stud_notches, slope_stud_rows=real_slope_stud_rows, slope_end_height=real_slope_end_height, curve_stud_rows=real_curve_stud_rows, curve_type=real_curve_type, curve_end_height=real_curve_end_height, roadway_width=real_roadway_width, roadway_length=real_roadway_length, roadway_x=real_roadway_x, roadway_y=real_roadway_y, stud_rescale=stud_rescale, dual_sided=false ); } if (real_dual_bottom) { translate([overall_length/2, overall_width/2, block_height * height * 2]) mirror([0,0,1]) block( width=real_width, length=real_length, height=real_height, type="tile", brand=brand, stud_type=stud_type, horizontal_holes=real_horizontal_holes, vertical_axle_holes=real_vertical_axle_holes, reinforcement=real_reinforcement, wing_type=wing_type, wing_end_width=real_wing_end_width, wing_base_length=real_wing_base_length-1, stud_notches=real_stud_notches, slope_stud_rows=real_slope_stud_rows, slope_end_height=real_slope_end_height, curve_stud_rows=real_curve_stud_rows, curve_type=real_curve_type, curve_end_height=real_curve_end_height, roadway_width=real_roadway_width, roadway_length=real_roadway_length, roadway_x=real_roadway_x, roadway_y=real_roadway_y, stud_rescale=stud_rescale, dual_sided=false, dual_bottom=false ); } } module post(vertical_axle_hole) { difference() { cylinder(r=post_diameter/2, h=real_height*block_height,$fs=cylinder_precision); if (vertical_axle_hole==true) { translate([0,0,-block_height/2]) axle(); } else { translate([0,0,-0.5]) cylinder(r=(post_diameter/2)-post_wall_thickness, h=real_height*block_height+1,$fs=cylinder_precision); } } } module reinforcement() { union() { translate([0,0,real_height*block_height/2]) union() { cube([reinforcing_width, 2 * (stud_spacing - (2 * wall_play)), real_height * block_height],center=true); rotate(v=[0,0,1],a=90) cube([reinforcing_width, 2 * (stud_spacing - (2 * wall_play)), real_height * block_height], center=true); } } } module axle() { translate([0,0,(real_height+1)*block_height/2]) union() { cube([axle_diameter,axle_spline_width,(real_height+1)*block_height],center=true); cube([axle_spline_width,axle_diameter,(real_height+1)*block_height],center=true); } } module stud() { difference() { cylinder(r=(stud_diameter*stud_rescale)/2,h=stud_height,$fs=cylinder_precision); if (stud_type == "hollow") { // 0.5 is for cleaner preview; doesn't affect functionality. cylinder(r=(hollow_stud_inner_diameter*stud_rescale)/2,h=stud_height+0.5,$fs=cylinder_precision); } } } function curve_circle_length() = (overall_length - (stud_spacing * min(real_length - 1, real_curve_stud_rows)) + (wall_play/2)) * 2; function curve_circle_height() = ( ( (block_height * real_height) - (real_curve_end_height * block_height)) * 2) - (real_curve_type == "convex" ? (stud_height * 2) + (wall_thickness * 2) : 0); function wing_width(x_pos) = (real_width - width_loss(x_pos)); function width_loss(x_pos) = (type != "wing" ? 0 : round((wing_type == "full" ? max(0, (2 * wing_slope * (x_pos - (real_wing_base_length - 1)))) + 0.3 // Full wing : max(0, (wing_slope * (x_pos - (real_wing_base_length - 1)))) + 0.2 // Half wing )) // +extra is because full studs can still fit on partially missing bases, but not by much ); function horizontal_hole_start_index() = ( ( (type == "slope" && real_slope_stud_rows == 1) || (type == "curve" && real_curve_stud_rows == 1) ) ? real_length - 1 : 0 ); function horizontal_hole_end_index() = ( ( real_length == 1 || (type == "slope" && real_slope_stud_rows == 1) || (type == "curve" && real_curve_stud_rows == 1) ) ? real_length - 1 : real_length - 2 ); function skip_this_horizontal_hole(xcount, zcount) = ( (type == "slope" && ((zcount >= slope_end_height) && (xcount <= real_length - real_slope_stud_rows - 1))) || (type == "curve" && ((zcount >= curve_end_height) && (xcount <= real_length - real_curve_stud_rows - 1))) ); function horizontal_holes_x_offset() = ( (horizontal_hole_diameter / 2) + ( ( real_length == 1 || (type == "slope" && real_slope_stud_rows == 1) || (type == "curve" && real_curve_stud_rows == 1) ) ? 0 : (stud_spacing / 2) ) ); function put_stud_here(xcount, ycount) = ( (type != "wing" && real_roadway_width > 0 && real_roadway_length > 0) || (type == "wing" && ( (wing_type == "full" && (ycount+1 > ceil(width_loss(xcount+1)/2)) && (ycount+1 <= floor(real_width - (width_loss(xcount+1)/2)))) || (wing_type == "left" && ycount+1 <= wing_width(xcount+1)) || (wing_type == "right" && ycount >= width_loss(xcount+1)) ) ) || (real_roadway_width == 0 && real_roadway_length == 0) || (!pos_in_roadway(xcount, ycount)) ); function put_vertical_axle_hole_here(xcount, ycount) = ( !skip_this_axle_hole(xcount, ycount) ); function skip_this_vertical_axle_hole(xcount, ycount) = ( (type == "slope" && xcount < (real_length - real_slope_stud_rows + 1)) || (type == "curve" && xcount < (real_length - real_curve_stud_rows + 1)) ); function skip_this_stud(xcount, ycount) = ( (type == "wing" && ( (wing_type == "full" && ((ycount+1 <= ceil(width_loss(xcount+1)/2)) || (ycount+1 > floor(real_width - (width_loss(xcount+1)/2))))) || (wing_type == "left" && ycount+1 > wing_width(xcount+1)) || (wing_type == "right" && ycount < width_loss(xcount+1)) ) ) || (real_roadway_width > 0 && real_roadway_length > 0 && pos_in_roadway(xcount, ycount)) ); function pos_in_roadway(x, y) = ( x >= real_roadway_x && y >= real_roadway_y && y < real_roadway_y + real_roadway_width && x < real_roadway_x + real_roadway_length ); module negative_rounded_corner(r,h) { difference() { translate([0, 0, -.5]) cube([r+1, r+1, h+1]); translate([0, 0, -1]) cylinder(r=r, h=h + 2, $fs=cylinder_precision); } } } module uncenter(width, length, height) { // stud_spacing = 8 // wall_play = 0.1 translate([((8 * length) / 2) - 0.1, ((8 * width) / 2) - 0.1, height ? ((8 * height) / 2) - 0.1 : 0]) children(); } module place(x, y, z=0) { translate([8 * y, 8 * x, z * 9.6]) children(); }