polybar-dwm/include/adapters/net.hpp

434 lines
12 KiB
C++
Raw Normal View History

2016-06-15 03:32:35 +00:00
#pragma once
#include <bitset>
#include <iomanip>
#include <arpa/inet.h>
#include <ifaddrs.h>
#include <iwlib.h>
#include <limits.h>
#include <linux/ethtool.h>
#include <linux/if_link.h>
#include <linux/sockios.h>
#include <net/if.h>
#include <netinet/in.h>
#include <signal.h>
#include <sys/socket.h>
#include <cerrno>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <iostream>
#include <memory>
#include <memory>
#include <sstream>
#include <string>
#include <string>
#ifdef inline
#undef inline
#endif
#include "common.hpp"
#include "config.hpp"
#include "utils/command.hpp"
#include "utils/file.hpp"
#include "utils/string.hpp"
LEMONBUDDY_NS
namespace net {
DEFINE_ERROR(network_error);
DEFINE_ERROR(wired_network_error);
DEFINE_ERROR(wireless_network_error);
// types {{{
struct bytes_t {
uint32_t transmitted = 0;
uint32_t received = 0;
std::chrono::system_clock::time_point time;
};
struct linkdata_t {
string ip_address;
bytes_t previous;
bytes_t current;
};
// }}}
// class: network {{{
class network {
public:
explicit network(string interface) : m_interface(interface) {
if (if_nametoindex(m_interface.c_str()) == 0)
throw network_error("Invalid network interface \"" + m_interface + "\"");
if ((m_fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
throw network_error("Failed to open socket");
std::memset(&m_data, 0, sizeof(m_data));
std::strncpy(m_data.ifr_name, m_interface.data(), IFNAMSIZ - 1);
}
~network() {
if (m_fd != -1)
close(m_fd);
}
bool test_interface() {
if ((ioctl(m_fd, SIOCGIFFLAGS, &m_data)) == -1)
throw network_error("Failed to get flags");
if ((m_data.ifr_flags & IFF_UP) == 0)
return false;
if ((m_data.ifr_flags & IFF_RUNNING) == 0)
return false;
return true;
}
bool test_connection() {
int status = EXIT_FAILURE;
try {
m_ping = command_util::make_command(
"ping -c 2 -W 2 -I " + m_interface + " " + string(CONNECTION_TEST_IP));
status = m_ping->exec(true);
m_ping.reset();
} catch (std::exception& e) {
}
return (status == EXIT_SUCCESS);
}
bool test() {
try {
return test_interface() && test_connection();
} catch (network_error& e) {
return false;
}
}
bool connected() {
try {
if (!test_interface())
return false;
return file_util::get_contents("/sys/class/net/" + m_interface + "/carrier")[0] == '1';
} catch (network_error& e) {
return false;
}
}
bool query_interface() {
auto now = chrono::system_clock::now();
if ((now - m_last_query) < chrono::seconds(1))
return true;
m_last_query = now;
struct ifaddrs* ifaddr;
getifaddrs(&ifaddr);
bool match = false;
for (auto ifa = ifaddr; ifa != nullptr; ifa = ifa->ifa_next) {
if (m_interface.compare(0, m_interface.length(), ifa->ifa_name) != 0)
continue;
match = true;
switch (ifa->ifa_addr->sa_family) {
case AF_INET:
char ip_buffer[NI_MAXHOST];
getnameinfo(ifa->ifa_addr, sizeof(sockaddr_in), ip_buffer, NI_MAXHOST, nullptr, 0,
NI_NUMERICHOST);
m_linkdata.ip_address = string(ip_buffer);
break;
case AF_PACKET:
if (ifa->ifa_data == nullptr)
continue;
struct rtnl_link_stats* link_state =
reinterpret_cast<struct rtnl_link_stats*>(ifa->ifa_data);
m_linkdata.previous = m_linkdata.current;
m_linkdata.current.transmitted = link_state->tx_bytes;
m_linkdata.current.received = link_state->rx_bytes;
m_linkdata.current.time = chrono::system_clock::now();
break;
}
}
freeifaddrs(ifaddr);
return match;
}
string ip() {
if (!test_interface())
throw network_error("Interface is not up");
if (!query_interface())
throw network_error("Failed to query interface");
return m_linkdata.ip_address;
}
string downspeed() {
if (!query_interface())
throw network_error("Failed to query interface");
float bytes_diff = m_linkdata.current.received - m_linkdata.previous.received;
float time_diff =
chrono::duration_cast<chrono::seconds>(m_linkdata.current.time - m_linkdata.previous.time)
.count();
float speed = bytes_diff / time_diff;
speed /= 1000; // convert to KB
int suffix_n = 0;
vector<string> suffixes{"KB", "MB", "GB"};
while (speed >= 1000 && suffix_n < (int)suffixes.size() - 1) {
suffix_n++;
speed /= 1000;
}
return string_util::from_stream(stringstream() << std::setw(3) << std::setfill(' ')
<< std::setprecision(0) << std::fixed << speed
<< " " << suffixes[suffix_n] << "/s");
}
string upspeed() {
if (!query_interface())
throw network_error("Failed to query interface");
float bytes_diff = m_linkdata.current.transmitted - m_linkdata.previous.transmitted;
float time_diff =
chrono::duration_cast<chrono::seconds>(m_linkdata.current.time - m_linkdata.previous.time)
.count();
float speed = bytes_diff / time_diff;
speed /= 1000; // convert to KB
int suffix_n = 0;
vector<string> suffixes{"KB", "MB", "GB"};
while (speed >= 1000 && suffix_n < (int)suffixes.size() - 1) {
suffix_n++;
speed /= 1000;
}
return string_util::from_stream(stringstream() << std::setw(3) << std::setfill(' ')
<< std::setprecision(0) << std::fixed << speed
<< " " << suffixes[suffix_n] << "/s");
}
protected:
unique_ptr<command_util::command> m_ping;
string m_interface;
string m_ip;
struct ifreq m_data;
int m_fd = 0;
linkdata_t m_linkdata;
chrono::system_clock::time_point m_last_query;
};
// }}}
// class: wired_network {{{
class wired_network : public network {
public:
explicit wired_network(string interface) : network(interface) {
struct ethtool_cmd e;
e.cmd = ETHTOOL_GSET;
m_data.ifr_data = (caddr_t)&e;
if (ioctl(m_fd, SIOCETHTOOL, &m_data) == 0)
m_linkspeed = (e.speed == USHRT_MAX ? 0 : e.speed);
}
string link_speed() {
return string((m_linkspeed == 0 ? "???" : to_string(m_linkspeed)) + " Mbit/s");
}
private:
int m_linkspeed = 0;
};
// }}}
// class: wireless_network {{{
struct wireless_info {
std::bitset<5> flags;
string essid{IW_ESSID_MAX_SIZE + 1};
int quality = 0;
int quality_max = 0;
int quality_avg = 0;
int signal = 0;
int signal_max = 0;
int noise = 0;
int noise_max = 0;
int bitrate = 0;
double frequency = 0;
};
enum wireless_flags {
ESSID = 0,
QUALITY = 1,
SIGNAL = 2,
NOISE = 3,
FREQUENCY = 4,
};
class wireless_network : public network {
public:
wireless_network(string interface) : network(interface) {
std::strcpy((char*)&m_iw.ifr_ifrn.ifrn_name, m_interface.c_str());
if (!m_info)
m_info.reset(new wireless_info());
}
string essid() {
if (!query_interface())
return "";
if (!m_info->flags.test(wireless_flags::ESSID))
return "";
return m_info->essid;
}
float signal_quality() {
if (!query_interface())
return 0;
if (m_info->flags.test(wireless_flags::QUALITY))
return 2 * (signal_dbm() + 100);
return 0;
}
float signal_dbm() {
if (!query_interface())
return 0;
if (m_info->flags.test(wireless_flags::QUALITY))
return m_info->quality + m_info->noise - 256;
return 0;
}
protected:
bool query_interface() {
if ((chrono::system_clock::now() - m_last_query) < chrono::seconds(1))
return true;
network::query_interface();
auto ifname = m_interface.c_str();
auto socket_fd = iw_sockets_open();
if (socket_fd == -1)
return false;
auto on_exit = scope_util::make_exit_handler<>([&]() { iw_sockets_close(socket_fd); });
{
wireless_config wcfg;
if (iw_get_basic_config(socket_fd, ifname, &wcfg) == -1)
return false;
// reset flags
m_info->flags.none();
if (wcfg.has_essid && wcfg.essid_on) {
m_info->essid = {wcfg.essid, 0, IW_ESSID_MAX_SIZE};
m_info->flags |= wireless_flags::ESSID;
}
if (wcfg.has_freq) {
m_info->frequency = wcfg.freq;
m_info->flags |= wireless_flags::FREQUENCY;
}
if (wcfg.mode == IW_MODE_ADHOC)
return true;
iwrange range;
if (iw_get_range_info(socket_fd, ifname, &range) == -1)
return false;
iwstats stats;
if (iw_get_stats(socket_fd, ifname, &stats, &range, 1) == -1)
return false;
if (stats.qual.updated & IW_QUAL_RCPI) {
if (!(stats.qual.updated & IW_QUAL_QUAL_INVALID)) {
m_info->quality = stats.qual.qual;
m_info->quality_max = range.max_qual.qual;
m_info->quality_avg = range.avg_qual.qual;
m_info->flags |= wireless_flags::QUALITY;
}
if (stats.qual.updated & IW_QUAL_RCPI) {
if (!(stats.qual.updated & IW_QUAL_LEVEL_INVALID)) {
m_info->signal = stats.qual.level / 2.0 - 110 + 0.5;
m_info->flags |= wireless_flags::SIGNAL;
}
if (!(stats.qual.updated & IW_QUAL_NOISE_INVALID)) {
m_info->noise = stats.qual.noise / 2.0 - 110 + 0.5;
m_info->flags |= wireless_flags::NOISE;
}
} else {
if ((stats.qual.updated & IW_QUAL_DBM) || stats.qual.level > range.max_qual.level) {
if (!(stats.qual.updated & IW_QUAL_LEVEL_INVALID)) {
m_info->signal = stats.qual.level;
if (m_info->signal > 63)
m_info->signal -= 256;
m_info->flags |= wireless_flags::SIGNAL;
}
if (!(stats.qual.updated & IW_QUAL_NOISE_INVALID)) {
m_info->noise = stats.qual.noise;
if (m_info->noise > 63)
m_info->noise -= 256;
m_info->flags |= wireless_flags::NOISE;
}
} else {
if (!(stats.qual.updated & IW_QUAL_LEVEL_INVALID)) {
m_info->signal = stats.qual.level;
m_info->signal_max = range.max_qual.level;
m_info->flags |= wireless_flags::SIGNAL;
}
if (!(stats.qual.updated & IW_QUAL_NOISE_INVALID)) {
m_info->noise = stats.qual.noise;
m_info->noise_max = range.max_qual.noise;
m_info->flags |= wireless_flags::NOISE;
}
}
}
} else {
if (!(stats.qual.updated & IW_QUAL_QUAL_INVALID)) {
m_info->quality = stats.qual.qual;
m_info->flags |= wireless_flags::QUALITY;
}
if (!(stats.qual.updated & IW_QUAL_LEVEL_INVALID)) {
m_info->quality = stats.qual.level;
m_info->flags |= wireless_flags::SIGNAL;
}
if (!(stats.qual.updated & IW_QUAL_NOISE_INVALID)) {
m_info->quality = stats.qual.noise;
m_info->flags |= wireless_flags::NOISE;
}
}
// struct iwreq wrq;
// if (iw_get_ext(socket_fd, ifname, SIOCGIWRATE, &wrq) != -1)
// m_info->bitrate = wrq.u.bitrate.value;
return true;
}
}
private:
struct iwreq m_iw;
shared_ptr<wireless_info> m_info;
};
// }}}
inline bool is_wireless_interface(string ifname) {
return file_util::exists("/sys/class/net/" + ifname + "/wireless");
}
}
LEMONBUDDY_NS_END