Prusa-Firmware/Firmware/xyzcal.cpp

933 lines
26 KiB
C++
Raw Normal View History

//xyzcal.cpp - xyz calibration with image processing
#include "Configuration_prusa.h"
#ifdef NEW_XYZCAL
#include "xyzcal.h"
#include <avr/wdt.h>
#include "stepper.h"
#include "temperature.h"
#include "sm4.h"
#define XYZCAL_PINDA_HYST_MIN 20 //50um
#define XYZCAL_PINDA_HYST_MAX 100 //250um
#define XYZCAL_PINDA_HYST_DIF 5 //12.5um
#define ENABLE_FANCHECK_INTERRUPT() EIMSK |= (1<<7)
#define DISABLE_FANCHECK_INTERRUPT() EIMSK &= ~(1<<7)
#define _PINDA ((READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)?1:0)
#define DBG(args...) printf_P(args)
//#define DBG(args...)
#ifndef _n
#define _n PSTR
#endif //_n
#define _X ((int16_t)count_position[X_AXIS])
#define _Y ((int16_t)count_position[Y_AXIS])
#define _Z ((int16_t)count_position[Z_AXIS])
#define _E ((int16_t)count_position[E_AXIS])
2020-12-17 17:19:36 +00:00
#define X_PLUS 0
#define X_MINUS 1
#define Y_PLUS 0
#define Y_MINUS 1
#define Z_PLUS 0
#define Z_MINUS 1
2020-12-21 12:05:26 +00:00
/// Max. jerk in PrusaSlicer, 10000 = 1 mm/s
2020-12-21 17:05:52 +00:00
#define MAX_DELAY 1000
2020-12-21 12:05:26 +00:00
#define MIN_SPEED (0.01f / (MAX_DELAY * 0.000001f))
/// 200 = 50 mm/s
#define Z_MIN_DELAY 200
2020-12-21 16:34:54 +00:00
#define Z_ACCEL 5000
2020-12-18 20:33:43 +00:00
#define XY_ACCEL 1000
#define _PI 3.14159265F
2020-12-17 17:19:36 +00:00
/// \returns positive value always
#define ABS(a) \
({ __typeof__ (a) _a = (a); \
_a >= 0 ? _a : (-_a); })
/// \returns maximum of the two
#define MAX(a, b) \
({ __typeof__ (a) _a = (a); \
__typeof__ (b) _b = (b); \
_a >= _b ? _a : _b; })
/// \returns minimum of the two
#define MIN(a, b) \
({ __typeof__ (a) _a = (a); \
__typeof__ (b) _b = (b); \
_a <= _b ? _a : _b; })
/// swap values
#define SWAP(a, b) \
({ __typeof__ (a) c = (a); \
a = (b); \
b = c; })
/// Saturates value
/// \returns min if value is less than min
/// \returns max if value is more than min
/// \returns value otherwise
#define CLAMP(value, min, max) \
({ __typeof__ (value) a_ = (value); \
__typeof__ (min) min_ = (min); \
__typeof__ (max) max_ = (max); \
( a_ < min_ ? min_ : (a_ <= max_ ? a_ : max_)); })
2020-12-21 12:05:26 +00:00
/// \returns square of the value
#define SQR(a) \
({ __typeof__ (a) a_ = (a); \
(a_ * a_); })
2020-12-17 17:19:36 +00:00
/// position types
typedef int16_t pos_i16_t;
typedef long pos_i32_t;
typedef float pos_mm_t;
typedef int16_t usteps_t;
uint8_t check_pinda_0();
uint8_t check_pinda_1();
void xyzcal_update_pos(uint16_t dx, uint16_t dy, uint16_t dz, uint16_t de);
uint16_t xyzcal_calc_delay(uint16_t nd, uint16_t dd);
2020-12-17 17:19:36 +00:00
uint8_t round_to_u8(float f){
return (uint8_t)(f + .5f);
}
uint16_t round_to_u16(float f){
return (uint16_t)(f + .5f);
}
int16_t round_to_i16(float f){
return (int16_t)(f + .5f);
}
/// converts millimeters to integer position
pos_i16_t mm_2_pos(pos_mm_t mm){
return (pos_i16_t)(0.5f + mm * 100);
}
/// converts integer position to millimeters
pos_mm_t pos_2_mm(pos_i16_t pos){
return pos * 0.01f;
}
pos_mm_t pos_2_mm(float pos){
return pos * 0.01f;
}
void xyzcal_meassure_enter(void)
{
DBG(_n("xyzcal_meassure_enter\n"));
disable_heater();
DISABLE_TEMPERATURE_INTERRUPT();
#if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
DISABLE_FANCHECK_INTERRUPT();
#endif //(defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
DISABLE_STEPPER_DRIVER_INTERRUPT();
#ifdef WATCHDOG
wdt_disable();
#endif //WATCHDOG
sm4_stop_cb = 0;
sm4_update_pos_cb = xyzcal_update_pos;
sm4_calc_delay_cb = xyzcal_calc_delay;
}
void xyzcal_meassure_leave(void)
{
DBG(_n("xyzcal_meassure_leave\n"));
planner_abort_hard();
ENABLE_TEMPERATURE_INTERRUPT();
#if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
ENABLE_FANCHECK_INTERRUPT();
#endif //(defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
ENABLE_STEPPER_DRIVER_INTERRUPT();
#ifdef WATCHDOG
wdt_enable(WDTO_4S);
#endif //WATCHDOG
sm4_stop_cb = 0;
sm4_update_pos_cb = 0;
sm4_calc_delay_cb = 0;
}
uint8_t check_pinda_0()
{
return _PINDA?0:1;
}
uint8_t check_pinda_1()
{
return _PINDA?1:0;
}
uint8_t xyzcal_dm = 0;
void xyzcal_update_pos(uint16_t dx, uint16_t dy, uint16_t dz, uint16_t)
{
// DBG(_n("xyzcal_update_pos dx=%d dy=%d dz=%d dir=%02x\n"), dx, dy, dz, xyzcal_dm);
if (xyzcal_dm&1) count_position[0] -= dx; else count_position[0] += dx;
if (xyzcal_dm&2) count_position[1] -= dy; else count_position[1] += dy;
if (xyzcal_dm&4) count_position[2] -= dz; else count_position[2] += dz;
// DBG(_n(" after xyzcal_update_pos x=%ld y=%ld z=%ld\n"), count_position[0], count_position[1], count_position[2]);
}
uint16_t xyzcal_sm4_delay = 0;
//#define SM4_ACCEL_TEST
#ifdef SM4_ACCEL_TEST
uint16_t xyzcal_sm4_v0 = 2000;
uint16_t xyzcal_sm4_vm = 45000;
uint16_t xyzcal_sm4_v = xyzcal_sm4_v0;
uint16_t xyzcal_sm4_ac = 2000;
uint16_t xyzcal_sm4_ac2 = (uint32_t)xyzcal_sm4_ac * 1024 / 10000;
//float xyzcal_sm4_vm = 10000;
#endif //SM4_ACCEL_TEST
#ifdef SM4_ACCEL_TEST
uint16_t xyzcal_calc_delay(uint16_t nd, uint16_t dd)
{
uint16_t del_us = 0;
if (xyzcal_sm4_v & 0xf000) //>=4096
{
del_us = (uint16_t)62500 / (uint16_t)(xyzcal_sm4_v >> 4);
xyzcal_sm4_v += (xyzcal_sm4_ac2 * del_us + 512) >> 10;
if (xyzcal_sm4_v > xyzcal_sm4_vm) xyzcal_sm4_v = xyzcal_sm4_vm;
if (del_us > 25) return del_us - 25;
}
else
{
del_us = (uint32_t)1000000 / xyzcal_sm4_v;
xyzcal_sm4_v += ((uint32_t)xyzcal_sm4_ac2 * del_us + 512) >> 10;
if (xyzcal_sm4_v > xyzcal_sm4_vm) xyzcal_sm4_v = xyzcal_sm4_vm;
if (del_us > 50) return del_us - 50;
}
// uint16_t del_us = (uint16_t)(((float)1000000 / xyzcal_sm4_v) + 0.5);
// uint16_t del_us = (uint32_t)1000000 / xyzcal_sm4_v;
// uint16_t del_us = 100;
// uint16_t del_us = (uint16_t)10000 / xyzcal_sm4_v;
// v += (ac * del_us + 500) / 1000;
// xyzcal_sm4_v += (xyzcal_sm4_ac * del_us) / 1000;
// return xyzcal_sm4_delay;
// DBG(_n("xyzcal_calc_delay nd=%d dd=%d v=%d del_us=%d\n"), nd, dd, xyzcal_sm4_v, del_us);
return 0;
}
#else //SM4_ACCEL_TEST
uint16_t xyzcal_calc_delay(uint16_t, uint16_t)
{
return xyzcal_sm4_delay;
}
#endif //SM4_ACCEL_TEST
2020-12-17 17:19:36 +00:00
/// Moves printer to absolute position [x,y,z] defined in integer position system
bool xyzcal_lineXYZ_to(int16_t x, int16_t y, int16_t z, uint16_t delay_us, int8_t check_pinda)
{
// DBG(_n("xyzcal_lineXYZ_to x=%d y=%d z=%d check=%d\n"), x, y, z, check_pinda);
x -= (int16_t)count_position[0];
y -= (int16_t)count_position[1];
z -= (int16_t)count_position[2];
xyzcal_dm = ((x<0)?1:0) | ((y<0)?2:0) | ((z<0)?4:0);
sm4_set_dir_bits(xyzcal_dm);
sm4_stop_cb = check_pinda?((check_pinda<0)?check_pinda_0:check_pinda_1):0;
xyzcal_sm4_delay = delay_us;
2020-12-17 17:19:36 +00:00
// uint32_t u = _micros();
bool ret = sm4_line_xyze_ui(abs(x), abs(y), abs(z), 0) ? true : false;
// u = _micros() - u;
return ret;
}
2020-12-17 17:19:36 +00:00
/// Moves printer to absolute position [x,y,z] defined in millimeters
bool xyzcal_lineXYZ_to_float(pos_mm_t x, pos_mm_t y, pos_mm_t z, uint16_t delay_us, int8_t check_pinda){
return xyzcal_lineXYZ_to(mm_2_pos(x), mm_2_pos(y), mm_2_pos(z), delay_us, check_pinda);
}
bool xyzcal_spiral2(int16_t cx, int16_t cy, int16_t z0, int16_t dz, int16_t radius, int16_t rotation, uint16_t delay_us, int8_t check_pinda, uint16_t* pad)
{
bool ret = false;
float r = 0; //radius
uint8_t n = 0; //point number
uint16_t ad = 0; //angle [deg]
float ar; //angle [rad]
uint8_t dad = 0; //delta angle [deg]
uint8_t dad_min = 4; //delta angle min [deg]
uint8_t dad_max = 16; //delta angle max [deg]
uint8_t k = 720 / (dad_max - dad_min); //delta calculation constant
ad = 0;
if (pad) ad = *pad % 720;
2020-12-17 17:19:36 +00:00
DBG(_n("xyzcal_spiral2 cx=%d cy=%d z0=%d dz=%d radius=%d ad=%d\n"), cx, cy, z0, dz, radius, ad);
2020-12-17 17:19:36 +00:00
// lcd_set_cursor(0, 4);
// char text[10];
// snprintf(text, 10, "%4d", z0);
// lcd_print(text);
for (; ad < 720; ad++)
{
if (radius > 0)
{
dad = dad_max - (ad / k);
r = (float)(((uint32_t)ad) * radius) / 720;
}
else
{
dad = dad_max - ((719 - ad) / k);
r = (float)(((uint32_t)(719 - ad)) * (-radius)) / 720;
}
ar = (ad + rotation)* (float)_PI / 180;
float _cos = cos(ar);
float _sin = sin(ar);
int x = (int)(cx + (_cos * r));
int y = (int)(cy + (_sin * r));
int z = (int)(z0 - ((float)((int32_t)dz * ad) / 720));
if (xyzcal_lineXYZ_to(x, y, z, delay_us, check_pinda))
{
ad += dad + 1;
ret = true;
break;
}
n++;
ad += dad;
}
if (pad) *pad = ad;
2020-12-17 17:19:36 +00:00
// if(ret){
// lcd_set_cursor(0, 4);
// lcd_print(" ");
// }
return ret;
}
bool xyzcal_spiral8(int16_t cx, int16_t cy, int16_t z0, int16_t dz, int16_t radius, uint16_t delay_us, int8_t check_pinda, uint16_t* pad)
{
bool ret = false;
uint16_t ad = 0;
if (pad) ad = *pad;
DBG(_n("xyzcal_spiral8 cx=%d cy=%d z0=%d dz=%d radius=%d ad=%d\n"), cx, cy, z0, dz, radius, ad);
if (!ret && (ad < 720))
2018-07-17 15:47:39 +00:00
if ((ret = xyzcal_spiral2(cx, cy, z0 - 0*dz, dz, radius, 0, delay_us, check_pinda, &ad)) != 0)
ad += 0;
if (!ret && (ad < 1440))
2018-07-17 15:47:39 +00:00
if ((ret = xyzcal_spiral2(cx, cy, z0 - 1*dz, dz, -radius, 0, delay_us, check_pinda, &ad)) != 0)
ad += 720;
if (!ret && (ad < 2160))
2018-07-17 15:47:39 +00:00
if ((ret = xyzcal_spiral2(cx, cy, z0 - 2*dz, dz, radius, 180, delay_us, check_pinda, &ad)) != 0)
ad += 1440;
if (!ret && (ad < 2880))
2018-07-17 15:47:39 +00:00
if ((ret = xyzcal_spiral2(cx, cy, z0 - 3*dz, dz, -radius, 180, delay_us, check_pinda, &ad)) != 0)
ad += 2160;
if (pad) *pad = ad;
return ret;
}
#ifdef XYZCAL_MEASSURE_PINDA_HYSTEREZIS
int8_t xyzcal_meassure_pinda_hysterezis(int16_t min_z, int16_t max_z, uint16_t delay_us, uint8_t samples)
{
DBG(_n("xyzcal_meassure_pinda_hysterezis\n"));
int8_t ret = -1; // PINDA signal error
int16_t z = _Z;
int16_t sum_up = 0;
int16_t sum_dn = 0;
int16_t up;
int16_t dn;
uint8_t sample;
xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 1);
xyzcal_lineXYZ_to(_X, _Y, max_z, delay_us, -1);
if (!_PINDA)
{
for (sample = 0; sample < samples; sample++)
{
dn = _Z;
if (!xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 1)) break;
dn = dn - _Z;
up = _Z;
if (!xyzcal_lineXYZ_to(_X, _Y, max_z, delay_us, -1)) break;
up = _Z - up;
DBG(_n("%d. up=%d dn=%d\n"), sample, up, dn);
sum_up += up;
sum_dn += dn;
if (abs(up - dn) > XYZCAL_PINDA_HYST_DIF)
{
ret = -2; // difference between up-dn to high
break;
}
}
if (sample == samples)
{
up = sum_up / samples;
dn = sum_dn / samples;
uint16_t hyst = (up + dn) / 2;
if (abs(up - dn) > XYZCAL_PINDA_HYST_DIF)
ret = -2; // difference between up-dn to high
else if ((hyst < XYZCAL_PINDA_HYST_MIN) || (hyst > XYZCAL_PINDA_HYST_MAX))
ret = -3; // hysterezis out of range
else
ret = hyst;
}
}
xyzcal_lineXYZ_to(_X, _Y, z, delay_us, 0);
return ret;
}
#endif //XYZCAL_MEASSURE_PINDA_HYSTEREZIS
2020-12-21 12:05:26 +00:00
/// Accelerate up to max.speed (defined by @min_delay_us)
2020-12-18 20:33:43 +00:00
void accelerate(uint8_t axis, int16_t acc, uint16_t &delay_us, uint16_t min_delay_us){
sm4_do_step(axis);
2020-12-21 12:05:26 +00:00
/// keep max speed (avoid extra computation)
2020-12-18 20:33:43 +00:00
if (acc > 0 && delay_us == min_delay_us){
delayMicroseconds(delay_us);
return;
}
// v1 = v0 + a * t
// 0.01 = length of a step
2020-12-21 12:05:26 +00:00
const float t0 = delay_us * 0.000001f;
const float v1 = (0.01f / t0 + acc * t0);
uint16_t t1;
if (v1 <= 0.16f){ ///< slowest speed convertible to uint16_t delay
t1 = MAX_DELAY; ///< already too slow so it wants to move back
2020-12-18 20:33:43 +00:00
} else {
2020-12-21 12:05:26 +00:00
/// don't exceed max.speed
t1 = MAX(min_delay_us, round_to_u16(0.01f / v1 * 1000000.f));
2020-12-18 20:33:43 +00:00
}
/// make sure delay has changed a bit at least
2020-12-21 12:05:26 +00:00
if (t1 == delay_us && acc != 0){
2020-12-18 20:33:43 +00:00
if (acc > 0)
2020-12-21 12:05:26 +00:00
t1--;
2020-12-18 20:33:43 +00:00
else
2020-12-21 12:05:26 +00:00
t1++;
2020-12-18 20:33:43 +00:00
}
2020-12-21 12:05:26 +00:00
//DBG(_n("%d "), t1);
delayMicroseconds(t1);
delay_us = t1;
2020-12-18 20:33:43 +00:00
}
2020-12-21 12:05:26 +00:00
void go_and_stop(uint8_t axis, int16_t dec, uint16_t &delay_us, uint16_t &steps){
if (steps <= 0 || dec <= 0)
return;
2020-12-18 20:33:43 +00:00
2020-12-21 12:05:26 +00:00
/// deceleration distance in steps, s = 1/2 v^2 / a
uint16_t s = round_to_u16(100 * 0.5f * SQR(0.01f) / (SQR((float)delay_us) * dec));
if (steps > s){
/// go steady
2020-12-21 12:11:48 +00:00
sm4_do_step(axis);
2020-12-21 12:05:26 +00:00
delayMicroseconds(delay_us);
} else {
/// decelerate
2020-12-21 12:11:48 +00:00
accelerate(axis, -dec, delay_us, delay_us);
2020-12-21 12:05:26 +00:00
}
--steps;
2020-12-18 19:04:00 +00:00
}
2020-12-22 13:16:20 +00:00
/// Count number of zeros in the 32 byte array
2020-12-22 11:51:22 +00:00
/// If the number is less than 16, it moves @min_z up
2020-12-22 13:16:20 +00:00
/// Zeros make measuring faster but there cannot be too much
2020-12-21 18:33:36 +00:00
bool more_zeros(uint8_t* pixels, int16_t &min_z){
uint8_t hist[256];
uint8_t i = 0;
/// clear
do {
hist[i] = 0;
} while (i++ < 255);
/// fill
for (i = 0; i < 32; ++i){
++hist[pixels[i]];
}
2020-12-22 11:51:22 +00:00
2020-12-22 12:59:50 +00:00
// /// print histogram
// i = 0;
// DBG(_n("hist: "));
// do {
// DBG(_n("%d "), hist[i]);
// } while (i++ < 255);
// DBG(_n("\n"));
2020-12-22 11:51:22 +00:00
2020-12-21 18:33:36 +00:00
/// already more zeros on the line
2020-12-22 11:51:22 +00:00
if (hist[0] >= 16){
DBG(_n("zeros: %d\n"), hist[0]);
2020-12-21 18:33:36 +00:00
return true;
2020-12-22 11:51:22 +00:00
}
2020-12-21 18:33:36 +00:00
/// find threshold
uint8_t sum = 0;
i = 0;
do {
sum += hist[i];
if (sum >= 16)
break;
} while (i++ < 255);
2020-12-22 11:51:22 +00:00
/// avoid too much zeros
if (sum >= 24)
--i;
DBG(_n("sum %d, index %d\n"), sum, i);
2020-12-22 12:59:50 +00:00
// DBG(_n("min_z %d\n"), min_z);
2020-12-21 18:33:36 +00:00
min_z += i;
2020-12-22 12:59:50 +00:00
// DBG(_n("min_z %d\n"), min_z);
2020-12-21 18:33:36 +00:00
return false;
}
2020-12-22 12:59:50 +00:00
enum {
RESTART_INIT,
DO_RESTART,
WAS_RESTARTED
};
2020-12-17 17:19:36 +00:00
void xyzcal_scan_pixels_32x32_Zhop(int16_t cx, int16_t cy, int16_t min_z, int16_t max_z, uint16_t delay_us, uint8_t* pixels){
2020-12-21 18:33:36 +00:00
if (!pixels)
2020-12-17 17:19:36 +00:00
return;
int16_t z = _Z;
2020-12-18 19:04:00 +00:00
int16_t z_trig;
2020-12-17 17:19:36 +00:00
uint16_t line_buffer[32];
2020-12-21 12:05:26 +00:00
uint16_t current_delay_us = MAX_DELAY; ///< defines current speed
2020-12-18 19:04:00 +00:00
xyzcal_lineXYZ_to(cx - 1024, cy - 1024, min_z, delay_us, 0);
2020-12-21 12:05:26 +00:00
int16_t start_z;
2020-12-21 14:32:09 +00:00
uint16_t steps_to_go;
2020-12-22 12:59:50 +00:00
/// restart if needed but just once
/// 0 = init, 1 = do restart, 2 = restart was done, don't restart any more
uint8_t restart = RESTART_INIT;
2020-12-21 18:33:36 +00:00
do {
2020-12-22 12:59:50 +00:00
if (restart == DO_RESTART)
restart = WAS_RESTARTED;
2020-12-21 18:33:36 +00:00
for (uint8_t r = 0; r < 32; r++){ ///< Y axis
xyzcal_lineXYZ_to(_X, cy - 1024 + r * 64, z, delay_us, 0);
for (int8_t d = 0; d < 2; ++d){ ///< direction
2020-12-22 12:59:50 +00:00
xyzcal_lineXYZ_to((d & 1) ? (cx + 1024) : (cx - 1024), _Y, min_z, delay_us, 0);
2020-12-21 18:33:36 +00:00
z = _Z;
sm4_set_dir(X_AXIS, d);
for (uint8_t c = 0; c < 32; c++){ ///< X axis
2020-12-22 12:59:50 +00:00
z_trig = min_z;
2020-12-21 18:33:36 +00:00
/// move up to un-trigger (surpress hysteresis)
sm4_set_dir(Z_AXIS, Z_PLUS);
/// speed up from stop, go half the way
current_delay_us = MAX_DELAY;
for (start_z = z; z < (max_z + start_z) / 2; ++z){
if (!_PINDA){
break;
}
accelerate(Z_AXIS_MASK, Z_ACCEL, current_delay_us, Z_MIN_DELAY);
2020-12-21 12:05:26 +00:00
}
2020-12-21 18:33:36 +00:00
if(_PINDA){
uint16_t steps_to_go = MAX(0, max_z - z);
while (_PINDA && z < max_z){
go_and_stop(Z_AXIS_MASK, Z_ACCEL, current_delay_us, steps_to_go);
++z;
}
}
/// slow down to stop
while (current_delay_us < MAX_DELAY){
accelerate(Z_AXIS_MASK, -Z_ACCEL, current_delay_us, Z_MIN_DELAY);
2020-12-21 12:05:26 +00:00
++z;
}
2020-12-17 17:19:36 +00:00
2020-12-21 18:33:36 +00:00
/// move down to trigger
sm4_set_dir(Z_AXIS, Z_MINUS);
/// speed up
current_delay_us = MAX_DELAY;
2020-12-22 12:59:50 +00:00
for (start_z = z; z > (min_z + start_z) / 2; --z){
2020-12-21 18:33:36 +00:00
if (_PINDA){
z_trig = z;
break;
}
accelerate(Z_AXIS_MASK, Z_ACCEL, current_delay_us, Z_MIN_DELAY);
}
/// slow down
if(!_PINDA){
2020-12-22 12:59:50 +00:00
steps_to_go = MAX(0, z - min_z);
while (!_PINDA && z > min_z){
2020-12-21 18:33:36 +00:00
go_and_stop(Z_AXIS_MASK, Z_ACCEL, current_delay_us, steps_to_go);
--z;
}
2020-12-21 12:05:26 +00:00
z_trig = z;
}
2020-12-21 18:33:36 +00:00
/// slow down to stop
2020-12-22 12:59:50 +00:00
while (z > min_z && current_delay_us < MAX_DELAY){
2020-12-21 18:33:36 +00:00
accelerate(Z_AXIS_MASK, -Z_ACCEL, current_delay_us, Z_MIN_DELAY);
2020-12-21 12:05:26 +00:00
--z;
}
2020-12-18 19:04:00 +00:00
2020-12-21 18:33:36 +00:00
count_position[2] = z;
if (d == 0){
2020-12-22 12:59:50 +00:00
line_buffer[c] = (uint16_t)(z_trig - min_z);
2020-12-21 18:33:36 +00:00
} else {
/// data reversed in X
2020-12-22 12:59:50 +00:00
// DBG(_n("%04x"), (line_buffer[31 - c] + (z - min_z)) / 2);
2020-12-21 18:33:36 +00:00
/// save average of both directions
2020-12-22 12:59:50 +00:00
pixels[(uint16_t)r * 32 + (31 - c)] = (uint8_t)MIN((uint32_t)255, ((uint32_t)line_buffer[31 - c] + (z_trig - min_z)) / 2);
2020-12-21 18:33:36 +00:00
}
2020-12-21 18:33:36 +00:00
/// move to the next point and move Z up diagonally (if needed)
current_delay_us = MAX_DELAY;
// const int8_t dir = (d & 1) ? -1 : 1;
const int16_t end_x = ((d & 1) ? 1 : -1) * (64 * (16 - c) - 32) + cx;
const int16_t length_x = ABS(end_x - _X);
const int16_t half_x = length_x / 2;
int16_t x = 0;
/// don't go up if PINDA not triggered
const bool up = _PINDA;
int8_t axis = up ? X_AXIS_MASK | Z_AXIS_MASK : X_AXIS_MASK;
sm4_set_dir(Z_AXIS, Z_PLUS);
/// speed up
for (x = 0; x <= half_x; ++x){
accelerate(axis, Z_ACCEL, current_delay_us, Z_MIN_DELAY);
if (up)
++z;
}
/// slow down
steps_to_go = length_x - x;
for (; x < length_x; ++x){
go_and_stop(axis, Z_ACCEL, current_delay_us, steps_to_go);
if (up)
++z;
}
count_position[0] = end_x;
count_position[2] = z;
2020-12-21 14:32:09 +00:00
}
}
2020-12-22 12:59:50 +00:00
/// do this in the first row only
if (r == 0 && restart == RESTART_INIT){
if (!more_zeros(pixels, min_z))
restart = DO_RESTART;
2020-12-21 18:33:36 +00:00
}
2020-12-22 12:59:50 +00:00
if (restart == DO_RESTART)
2020-12-21 18:33:36 +00:00
break;
// DBG(_n("\n\n"));
}
2020-12-22 12:59:50 +00:00
} while (restart == DO_RESTART);
}
2020-12-17 17:19:36 +00:00
/// Returns rate of match
/// max match = 132, min match = 0
uint8_t xyzcal_match_pattern_12x12_in_32x32(uint16_t* pattern, uint8_t* pixels, uint8_t c, uint8_t r){
uint8_t thr = 16;
2020-12-17 17:19:36 +00:00
uint8_t match = 0;
for (uint8_t i = 0; i < 12; ++i){
for (uint8_t j = 0; j < 12; ++j){
/// skip corners (3 pixels in each)
if (((i == 0) || (i == 11)) && ((j < 2) || (j >= 10))) continue;
if (((j == 0) || (j == 11)) && ((i < 2) || (i >= 10))) continue;
2020-12-17 17:19:36 +00:00
const uint16_t idx = (c + j) + 32 * ((uint16_t)r + i);
const bool high_pix = pixels[idx] > thr;
const bool high_pat = pattern[i] & (1 << j);
if (high_pix == high_pat)
match++;
}
2020-12-17 17:19:36 +00:00
}
return match;
}
2020-12-17 17:19:36 +00:00
/// Searches for best match of pattern by shifting it
/// Returns rate of match and the best location
/// max match = 132, min match = 0
uint8_t xyzcal_find_pattern_12x12_in_32x32(uint8_t* pixels, uint16_t* pattern, uint8_t* pc, uint8_t* pr){
if (!pixels || !pattern || !pc || !pr)
return -1;
uint8_t max_c = 0;
uint8_t max_r = 0;
2020-12-17 17:19:36 +00:00
uint8_t max_match = 0;
// DBG(_n("Matching:\n"));
/// pixel precision
for (uint8_t r = 0; r < (32 - 12); ++r){
for (uint8_t c = 0; c < (32 - 12); ++c){
const uint8_t match = xyzcal_match_pattern_12x12_in_32x32(pattern, pixels, c, r);
if (max_match < match){
max_c = c;
max_r = r;
max_match = match;
}
2020-12-17 17:19:36 +00:00
// DBG(_n("%d "), match);
}
2020-12-17 17:19:36 +00:00
// DBG(_n("\n"));
}
2020-12-21 16:34:54 +00:00
DBG(_n("max_c=%d max_r=%d max_match=%d pixel\n"), max_c, max_r, max_match);
2020-12-17 17:19:36 +00:00
*pc = max_c;
*pr = max_r;
return max_match;
}
uint8_t xyzcal_xycoords2point(int16_t x, int16_t y)
{
uint8_t ix = (x > 10000)?1:0;
uint8_t iy = (y > 10000)?1:0;
return iy?(3-ix):ix;
}
//MK3
2018-04-25 18:47:19 +00:00
#if ((MOTHERBOARD == BOARD_EINSY_1_0a))
const int16_t xyzcal_point_xcoords[4] PROGMEM = {1200, 22000, 22000, 1200};
const int16_t xyzcal_point_ycoords[4] PROGMEM = {600, 600, 19800, 19800};
2018-04-25 18:47:19 +00:00
#endif //((MOTHERBOARD == BOARD_EINSY_1_0a))
//MK2.5
2018-04-25 18:47:19 +00:00
#if ((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3))
const int16_t xyzcal_point_xcoords[4] PROGMEM = {1200, 22000, 22000, 1200};
const int16_t xyzcal_point_ycoords[4] PROGMEM = {700, 700, 19800, 19800};
2018-04-25 18:47:19 +00:00
#endif //((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3))
const uint16_t xyzcal_point_pattern[12] PROGMEM = {0x000, 0x0f0, 0x1f8, 0x3fc, 0x7fe, 0x7fe, 0x7fe, 0x7fe, 0x3fc, 0x1f8, 0x0f0, 0x000};
bool xyzcal_searchZ(void)
{
DBG(_n("xyzcal_searchZ x=%ld y=%ld z=%ld\n"), count_position[X_AXIS], count_position[Y_AXIS], count_position[Z_AXIS]);
int16_t x0 = _X;
int16_t y0 = _Y;
int16_t z0 = _Z;
// int16_t min_z = -6000;
// int16_t dz = 100;
int16_t z = z0;
while (z > -2300) //-6mm + 0.25mm
{
uint16_t ad = 0;
if (xyzcal_spiral8(x0, y0, z, 100, 900, 320, 1, &ad)) //dz=100 radius=900 delay=400
{
int16_t x_on = _X;
int16_t y_on = _Y;
int16_t z_on = _Z;
DBG(_n(" ON-SIGNAL at x=%d y=%d z=%d ad=%d\n"), x_on, y_on, z_on, ad);
return true;
}
z -= 400;
}
DBG(_n("xyzcal_searchZ no signal\n x=%ld y=%ld z=%ld\n"), count_position[X_AXIS], count_position[Y_AXIS], count_position[Z_AXIS]);
return false;
}
2020-12-17 17:19:36 +00:00
/// returns value of any location within data
/// uses bilinear interpolation
float get_value(uint8_t * matrix_32x32, float c, float r){
if (c <= 0 || r <= 0 || c >= 31 || r >= 31)
return 0;
/// calculate weights of nearby points
const float wc1 = c - floor(c);
const float wr1 = r - floor(r);
const float wc0 = 1 - wc1;
const float wr0 = 1 - wr1;
const float w00 = wc0 * wr0;
const float w01 = wc0 * wr1;
const float w10 = wc1 * wr0;
const float w11 = wc1 * wr1;
const uint16_t c0 = c;
const uint16_t c1 = c0 + 1;
const uint16_t r0 = r;
const uint16_t r1 = r0 + 1;
const uint16_t idx00 = c0 + 32 * r0;
const uint16_t idx01 = c0 + 32 * r1;
const uint16_t idx10 = c1 + 32 * r0;
const uint16_t idx11 = c1 + 32 * r1;
/// bilinear resampling
return w00 * matrix_32x32[idx00] + w01 * matrix_32x32[idx01] + w10 * matrix_32x32[idx10] + w11 * matrix_32x32[idx11];
}
const constexpr float m_infinity = -1000.f;
/// replaces the highest number by m_infinity
void remove_highest(float *points, const uint8_t num_points){
if (num_points <= 0)
return;
float max = points[0];
uint8_t max_i = 0;
for (uint8_t i = 0; i < num_points; ++i){
if (max < points[i]){
max = points[i];
max_i = i;
}
}
points[max_i] = m_infinity;
}
/// return the highest number in the list
float highest(float *points, const uint8_t num_points){
if (num_points <= 0)
return 0;
float max = points[0];
for (uint8_t i = 0; i < num_points; ++i){
if (max < points[i]){
max = points[i];
}
}
return max;
}
/// Searches for circle iteratively
/// Uses points on the perimeter. If point is high it pushes circle out of the center (shift or change of radius),
/// otherwise to the center.
/// Algorithm is stopped after fixed number of iterations. Move is limited to 0.5 px per iteration.
void dynamic_circle(uint8_t *matrix_32x32, float &x, float &y, float &r, uint8_t iterations){
/// circle of 10.5 diameter has 33 in circumference, don't go much above
const constexpr uint8_t num_points = 33;
float points[num_points];
float pi_2_div_num_points = 2 * M_PI / num_points;
const constexpr uint8_t target_z = 32; ///< target z height of the circle
float norm;
float angle;
float max_val = 0.5f;
const uint8_t blocks = 7;
float shifts_x[blocks];
float shifts_y[blocks];
float shifts_r[blocks];
for (int8_t i = iterations; i > 0; --i){
// DBG(_n(" [%f, %f][%f] circle\n"), x, y, r);
/// read points on the circle
for (uint8_t p = 0; p < num_points; ++p){
angle = p * pi_2_div_num_points;
points[p] = get_value(matrix_32x32, r * cos(angle) + x, r * sin(angle) + y) - target_z;
// DBG(_n("%f "), points[p]);
}
// DBG(_n(" points\n"));
/// sum blocks
for (uint8_t j = 0; j < blocks; ++j){
shifts_x[j] = shifts_y[j] = shifts_r[j] = 0;
/// first part
for (uint8_t p = 0; p < num_points * 3 / 4; ++p){
uint8_t idx = (p + j * num_points / blocks) % num_points;
angle = idx * pi_2_div_num_points;
shifts_x[j] += cos(angle) * points[idx];
shifts_y[j] += sin(angle) * points[idx];
shifts_r[j] += points[idx];
}
}
/// remove extreme values (slow but simple)
for (uint8_t j = 0; j < blocks / 2; ++j){
remove_highest(shifts_x, blocks);
remove_highest(shifts_y, blocks);
remove_highest(shifts_r, blocks);
}
/// median is the highest now
norm = 1.f / (32.f * (num_points * 3 / 4));
x += CLAMP(highest(shifts_x, blocks) * norm, -max_val, max_val);
y += CLAMP(highest(shifts_y, blocks) * norm, -max_val, max_val);
r += CLAMP(highest(shifts_r, blocks) * norm, -max_val, max_val);
r = MAX(2, r);
}
DBG(_n(" [%f, %f][%f] final circle\n"), x, y, r);
}
/// Prints matrix in hex to debug output (serial line)
void print_image(uint8_t *matrix_32x32){
for (uint8_t y = 0; y < 32; ++y){
const uint16_t idx_y = y * 32;
for (uint8_t x = 0; x < 32; ++x){
DBG(_n("%02x"), matrix_32x32[idx_y + x]);
}
DBG(_n("\n"));
}
DBG(_n("\n"));
}
/// scans area around the current head location and
/// searches for the center of the calibration pin
bool xyzcal_scan_and_process(void){
DBG(_n("sizeof(block_buffer)=%d\n"), sizeof(block_t)*BLOCK_BUFFER_SIZE);
bool ret = false;
int16_t x = _X;
int16_t y = _Y;
int16_t z = _Z;
2020-12-17 17:19:36 +00:00
uint8_t *matrix32 = (uint8_t *)block_buffer;
uint16_t *pattern = (uint16_t *)(matrix32 + 32 * 32);
2020-12-21 12:05:26 +00:00
xyzcal_scan_pixels_32x32_Zhop(x, y, z - 72, 2400, 600, matrix32);
2020-12-17 17:19:36 +00:00
print_image(matrix32);
2020-12-17 17:19:36 +00:00
for (uint8_t i = 0; i < 12; i++){
pattern[i] = pgm_read_word((uint16_t*)(xyzcal_point_pattern + i));
// DBG(_n(" pattern[%d]=%d\n"), i, pattern[i]);
}
2020-12-17 17:19:36 +00:00
/// SEARCH FOR BINARY CIRCLE
uint8_t uc = 0;
uint8_t ur = 0;
/// max match = 132, 1/2 good = 66, 2/3 good = 88
if (xyzcal_find_pattern_12x12_in_32x32(matrix32, pattern, &uc, &ur) >= 88){
/// find precise circle
/// move to the center of the pattern (+5.5)
float xf = uc + 5.5f;
float yf = ur + 5.5f;
float radius = 5; ///< default radius
const uint8_t iterations = 20;
dynamic_circle(matrix32, xf, yf, radius, iterations);
2020-12-21 17:05:52 +00:00
if (ABS(xf - (uc + 5.5f)) > 3 || ABS(yf - (ur + 5.5f)) > 3 || ABS(radius - 5) > 3){
DBG(_n(" [%f %f][%f] mm divergence\n"), xf - (uc + 5.5f), yf - (ur + 5.5f), radius - 5);
2020-12-17 17:19:36 +00:00
/// dynamic algorithm diverged, use original position instead
xf = uc + 5.5f;
yf = ur + 5.5f;
}
/// move to the center of area and convert to position
xf = (float)x + (xf - 15.5f) * 64;
yf = (float)y + (yf - 15.5f) * 64;
DBG(_n(" [%f %f] mm pattern center\n"), pos_2_mm(xf), pos_2_mm(yf));
x = round_to_i16(xf);
y = round_to_i16(yf);
xyzcal_lineXYZ_to(x, y, z, 200, 0);
ret = true;
}
2020-12-17 17:19:36 +00:00
/// wipe buffer
for (uint16_t i = 0; i < sizeof(block_t)*BLOCK_BUFFER_SIZE; i++)
2020-12-17 17:19:36 +00:00
matrix32[i] = 0;
return ret;
}
2020-12-17 17:19:36 +00:00
bool xyzcal_find_bed_induction_sensor_point_xy(void){
bool ret = false;
2020-12-17 17:19:36 +00:00
DBG(_n("xyzcal_find_bed_induction_sensor_point_xy x=%ld y=%ld z=%ld\n"), count_position[X_AXIS], count_position[Y_AXIS], count_position[Z_AXIS]);
st_synchronize();
2020-12-17 17:19:36 +00:00
pos_i16_t x = _X;
pos_i16_t y = _Y;
pos_i16_t z = _Z;
uint8_t point = xyzcal_xycoords2point(x, y);
2020-12-17 17:19:36 +00:00
x = pgm_read_word((uint16_t *)(xyzcal_point_xcoords + point));
y = pgm_read_word((uint16_t *)(xyzcal_point_ycoords + point));
DBG(_n("point=%d x=%d y=%d z=%d\n"), point, x, y, z);
xyzcal_meassure_enter();
xyzcal_lineXYZ_to(x, y, z, 200, 0);
2020-12-17 17:19:36 +00:00
if (xyzcal_searchZ()){
int16_t z = _Z;
xyzcal_lineXYZ_to(x, y, z, 200, 0);
2020-12-17 17:19:36 +00:00
ret = xyzcal_scan_and_process();
}
xyzcal_meassure_leave();
return ret;
}
#endif //NEW_XYZCAL