Prusa-Firmware/Firmware/Marlin.h

347 lines
11 KiB
C
Raw Normal View History

2016-05-31 12:08:04 +00:00
// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
// License: GPL
#ifndef MARLIN_H
#define MARLIN_H
#define FORCE_INLINE __attribute__((always_inline)) inline
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include <util/delay.h>
#include <avr/pgmspace.h>
#include <avr/eeprom.h>
#include <avr/interrupt.h>
#include "fastio.h"
#include "Configuration.h"
#include "pins.h"
#ifndef AT90USB
#define HardwareSerial_h // trick to disable the standard HWserial
#endif
#if (ARDUINO >= 100)
# include "Arduino.h"
#else
# include "WProgram.h"
#endif
// Arduino < 1.0.0 does not define this, so we need to do it ourselves
#ifndef analogInputToDigitalPin
# define analogInputToDigitalPin(p) ((p) + A0)
#endif
#ifdef AT90USB
#include "HardwareSerial.h"
#endif
#include "MarlinSerial.h"
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
#include "WString.h"
#ifdef AT90USB
#ifdef BTENABLED
#define MYSERIAL bt
#else
#define MYSERIAL Serial
#endif // BTENABLED
#else
#define MYSERIAL MSerial
#endif
#define SERIAL_PROTOCOL(x) (MYSERIAL.print(x))
#define SERIAL_PROTOCOL_F(x,y) (MYSERIAL.print(x,y))
#define SERIAL_PROTOCOLPGM(x) (serialprintPGM(PSTR(x)))
#define SERIAL_PROTOCOLRPGM(x) (serialprintPGM((x)))
#define SERIAL_PROTOCOLLN(x) (MYSERIAL.print(x),MYSERIAL.write('\n'))
#define SERIAL_PROTOCOLLNPGM(x) (serialprintPGM(PSTR(x)),MYSERIAL.write('\n'))
#define SERIAL_PROTOCOLLNRPGM(x) (serialprintPGM((x)),MYSERIAL.write('\n'))
extern const char errormagic[] PROGMEM;
extern const char echomagic[] PROGMEM;
#define SERIAL_ERROR_START (serialprintPGM(errormagic))
#define SERIAL_ERROR(x) SERIAL_PROTOCOL(x)
#define SERIAL_ERRORPGM(x) SERIAL_PROTOCOLPGM(x)
#define SERIAL_ERRORRPGM(x) SERIAL_PROTOCOLRPGM(x)
#define SERIAL_ERRORLN(x) SERIAL_PROTOCOLLN(x)
#define SERIAL_ERRORLNPGM(x) SERIAL_PROTOCOLLNPGM(x)
#define SERIAL_ERRORLNRPGM(x) SERIAL_PROTOCOLLNRPGM(x)
#define SERIAL_ECHO_START (serialprintPGM(echomagic))
#define SERIAL_ECHO(x) SERIAL_PROTOCOL(x)
#define SERIAL_ECHOPGM(x) SERIAL_PROTOCOLPGM(x)
#define SERIAL_ECHORPGM(x) SERIAL_PROTOCOLRPGM(x)
#define SERIAL_ECHOLN(x) SERIAL_PROTOCOLLN(x)
#define SERIAL_ECHOLNPGM(x) SERIAL_PROTOCOLLNPGM(x)
#define SERIAL_ECHOLNRPGM(x) SERIAL_PROTOCOLLNRPGM(x)
#define SERIAL_ECHOPAIR(name,value) (serial_echopair_P(PSTR(name),(value)))
void serial_echopair_P(const char *s_P, float v);
void serial_echopair_P(const char *s_P, double v);
void serial_echopair_P(const char *s_P, unsigned long v);
//Things to write to serial from Program memory. Saves 400 to 2k of RAM.
FORCE_INLINE void serialprintPGM(const char *str)
{
char ch=pgm_read_byte(str);
while(ch)
{
MYSERIAL.write(ch);
ch=pgm_read_byte(++str);
}
}
bool is_buffer_empty();
2016-05-31 12:08:04 +00:00
void get_command();
void process_commands();
void ramming();
2016-05-31 12:08:04 +00:00
void manage_inactivity(bool ignore_stepper_queue=false);
#if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
2016-05-31 12:08:04 +00:00
#define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON)
#define disable_x() { WRITE(X_ENABLE_PIN,!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }
#else
#define enable_x() ;
#define disable_x() ;
#endif
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
#ifdef Y_DUAL_STEPPER_DRIVERS
#define enable_y() { WRITE(Y_ENABLE_PIN, Y_ENABLE_ON); WRITE(Y2_ENABLE_PIN, Y_ENABLE_ON); }
#define disable_y() { WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON); WRITE(Y2_ENABLE_PIN, !Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }
#else
#define enable_y() WRITE(Y_ENABLE_PIN, Y_ENABLE_ON)
#define disable_y() { WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }
#endif
#else
#define enable_y() ;
#define disable_y() ;
#endif
#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
#if defined(Z_AXIS_ALWAYS_ON)
#ifdef Z_DUAL_STEPPER_DRIVERS
#define enable_z() { WRITE(Z_ENABLE_PIN, Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN, Z_ENABLE_ON); }
#define disable_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN,!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
#else
#define enable_z() WRITE(Z_ENABLE_PIN, Z_ENABLE_ON)
#define disable_z() ;
#endif
#else
#ifdef Z_DUAL_STEPPER_DRIVERS
#define enable_z() { WRITE(Z_ENABLE_PIN, Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN, Z_ENABLE_ON); }
#define disable_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN,!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
#else
#define enable_z() WRITE(Z_ENABLE_PIN, Z_ENABLE_ON)
#define disable_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
#endif
#endif
#else
#define enable_z() ;
#define disable_z() ;
#endif
//#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
//#ifdef Z_DUAL_STEPPER_DRIVERS
//#define enable_z() { WRITE(Z_ENABLE_PIN, Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN, Z_ENABLE_ON); }
//#define disable_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN,!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
//#else
//#define enable_z() WRITE(Z_ENABLE_PIN, Z_ENABLE_ON)
//#define disable_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
//#endif
//#else
//#define enable_z() ;
//#define disable_z() ;
//#endif
#if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
#define enable_e0() WRITE(E0_ENABLE_PIN, E_ENABLE_ON)
#define disable_e0() WRITE(E0_ENABLE_PIN,!E_ENABLE_ON)
#else
#define enable_e0() /* nothing */
#define disable_e0() /* nothing */
#endif
#if (EXTRUDERS > 1) && defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
#define enable_e1() WRITE(E1_ENABLE_PIN, E_ENABLE_ON)
#define disable_e1() WRITE(E1_ENABLE_PIN,!E_ENABLE_ON)
#else
#define enable_e1() /* nothing */
#define disable_e1() /* nothing */
#endif
#if (EXTRUDERS > 2) && defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
#define enable_e2() WRITE(E2_ENABLE_PIN, E_ENABLE_ON)
#define disable_e2() WRITE(E2_ENABLE_PIN,!E_ENABLE_ON)
#else
#define enable_e2() /* nothing */
#define disable_e2() /* nothing */
#endif
enum AxisEnum {X_AXIS=0, Y_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5};
void FlushSerialRequestResend();
void ClearToSend();
void get_coordinates();
void prepare_move();
void kill(const char *full_screen_message = NULL);
2016-05-31 12:08:04 +00:00
void Stop();
bool IsStopped();
//put an ASCII command at the end of the current buffer.
void enquecommand(const char *cmd, bool from_progmem = false);
//put an ASCII command at the end of the current buffer, read from flash
#define enquecommand_P(cmd) enquecommand(cmd, true)
void enquecommand_front(const char *cmd, bool from_progmem = false);
//put an ASCII command at the end of the current buffer, read from flash
#define enquecommand_P(cmd) enquecommand(cmd, true)
#define enquecommand_front_P(cmd) enquecommand_front(cmd, true)
void repeatcommand_front();
// Remove all lines from the command queue.
void cmdqueue_reset();
2016-05-31 12:08:04 +00:00
void prepare_arc_move(char isclockwise);
void clamp_to_software_endstops(float target[3]);
void refresh_cmd_timeout(void);
#ifdef FAST_PWM_FAN
void setPwmFrequency(uint8_t pin, int val);
#endif
#ifndef CRITICAL_SECTION_START
#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli();
#define CRITICAL_SECTION_END SREG = _sreg;
#endif //CRITICAL_SECTION_START
extern float homing_feedrate[];
extern bool axis_relative_modes[];
extern int feedmultiply;
extern int extrudemultiply; // Sets extrude multiply factor (in percent) for all extruders
extern bool volumetric_enabled;
extern int extruder_multiply[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually
extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
extern float current_position[NUM_AXIS] ;
extern float destination[NUM_AXIS] ;
2016-05-31 12:08:04 +00:00
extern float add_homing[3];
extern float min_pos[3];
extern float max_pos[3];
extern bool axis_known_position[3];
extern float zprobe_zoffset;
extern int fanSpeed;
extern void homeaxis(int axis);
2016-05-31 12:08:04 +00:00
#ifdef FAN_SOFT_PWM
extern unsigned char fanSpeedSoftPwm;
#endif
#ifdef FILAMENT_SENSOR
extern float filament_width_nominal; //holds the theoretical filament diameter ie., 3.00 or 1.75
extern bool filament_sensor; //indicates that filament sensor readings should control extrusion
extern float filament_width_meas; //holds the filament diameter as accurately measured
extern signed char measurement_delay[]; //ring buffer to delay measurement
extern int delay_index1, delay_index2; //index into ring buffer
extern float delay_dist; //delay distance counter
extern int meas_delay_cm; //delay distance
#endif
#ifdef FWRETRACT
extern bool autoretract_enabled;
extern bool retracted[EXTRUDERS];
extern float retract_length, retract_length_swap, retract_feedrate, retract_zlift;
extern float retract_recover_length, retract_recover_length_swap, retract_recover_feedrate;
#endif
extern unsigned long starttime;
extern unsigned long stoptime;
extern int bowden_length[4];
2016-05-31 12:08:04 +00:00
extern bool is_usb_printing;
extern bool homing_flag;
extern bool temp_cal_active;
2017-01-20 14:43:02 +00:00
extern bool loading_flag;
2016-05-31 12:08:04 +00:00
extern unsigned int usb_printing_counter;
2016-12-14 13:59:01 +00:00
extern unsigned long kicktime;
2016-05-31 12:08:04 +00:00
extern unsigned long total_filament_used;
void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time);
extern unsigned int heating_status;
extern unsigned int status_number;
2016-05-31 12:08:04 +00:00
extern unsigned int heating_status_counter;
extern bool custom_message;
extern unsigned int custom_message_type;
extern unsigned int custom_message_state;
extern unsigned long PingTime;
2016-05-31 12:08:04 +00:00
// Handling multiple extruders pins
extern uint8_t active_extruder;
#ifdef DIGIPOT_I2C
extern void digipot_i2c_set_current( int channel, float current );
extern void digipot_i2c_init();
#endif
#endif
//Long pause
extern int saved_feedmultiply;
extern float HotendTempBckp;
extern int fanSpeedBckp;
extern float pause_lastpos[4];
extern unsigned long pause_time;
extern unsigned long start_pause_print;
extern bool mesh_bed_leveling_flag;
extern bool mesh_bed_run_from_menu;
2016-05-31 12:08:04 +00:00
extern void calculate_volumetric_multipliers();
// Similar to the default Arduino delay function,
// but it keeps the background tasks running.
extern void delay_keep_alive(unsigned int ms);
extern void check_babystep();
2017-03-28 15:29:10 +00:00
extern void long_pause();
#ifdef DIS
void d_setup();
float d_ReadData();
void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y);
2017-03-28 15:29:10 +00:00
#endif
2017-02-27 16:24:26 +00:00
float temp_comp_interpolation(float temperature);
void temp_compensation_apply();
void temp_compensation_start();
void wait_for_heater(long codenum);
void serialecho_temperatures();