Rewrite uvlo handling for accurate Z re/positioning
- In both uvlo_ and uvlo_tiny, calculate Z usteps properly and adjust the Z position to a true fullstep before disabling the motor. This avoids shifs during recovery. - In uvlo_tiny, instead of moving up indefinitely, adjust Z just once using the smallest move possible (new def UVLO_TINY_Z_AXIS_SHIFT) - Perform all the uvlo/recovery processing in physical coordinates and MBL off: there should be no automatic Z movement! - Disable heaters in both handlers to conserve more power. - Add timing information to uvlo_tiny too. - During recovery, to switch between physical and logical positioning introduce a new "PRUSA MBL" gcode as most of the procedure is enqueued, and no existing gcode was available.
This commit is contained in:
parent
11a0e95f60
commit
eb2ca78167
@ -445,9 +445,8 @@ void setup_uvlo_interrupt();
|
||||
void setup_fan_interrupt();
|
||||
#endif
|
||||
|
||||
//extern void recover_machine_state_after_power_panic();
|
||||
extern void recover_machine_state_after_power_panic(bool bTiny);
|
||||
extern void restore_print_from_eeprom();
|
||||
extern bool recover_machine_state_after_power_panic();
|
||||
extern void restore_print_from_eeprom(bool mbl_was_active);
|
||||
extern void position_menu();
|
||||
|
||||
extern void print_world_coordinates();
|
||||
|
@ -3838,6 +3838,17 @@ void process_commands()
|
||||
} else if(code_seen("FR")) { // PRUSA FR
|
||||
// Factory full reset
|
||||
factory_reset(0);
|
||||
} else if(code_seen("MBL")) { // PRUSA MBL
|
||||
// Change the MBL status without changing the logical Z position.
|
||||
if(code_seen("V")) {
|
||||
bool value = code_value_short();
|
||||
st_synchronize();
|
||||
if(value != mbl.active) {
|
||||
mbl.active = value;
|
||||
// Use plan_set_z_position to reset the physical values
|
||||
plan_set_z_position(current_position[Z_AXIS]);
|
||||
}
|
||||
}
|
||||
|
||||
//-//
|
||||
/*
|
||||
@ -10492,15 +10503,11 @@ void uvlo_()
|
||||
tmc2130_set_current_r(E_AXIS, 20);
|
||||
#endif //TMC2130
|
||||
|
||||
// Indicate that the interrupt has been triggered.
|
||||
// SERIAL_ECHOLNPGM("UVLO");
|
||||
|
||||
// Read out the current Z motor microstep counter. This will be later used
|
||||
// for reaching the zero full step before powering off.
|
||||
uint16_t z_microsteps = 0;
|
||||
#ifdef TMC2130
|
||||
z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
|
||||
#endif //TMC2130
|
||||
// Stop all heaters
|
||||
uint8_t saved_target_temperature_bed = target_temperature_bed;
|
||||
uint8_t saved_target_temperature_ext = target_temperature[active_extruder];
|
||||
setAllTargetHotends(0);
|
||||
setTargetBed(0);
|
||||
|
||||
// Calculate the file position, from which to resume this print.
|
||||
long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
|
||||
@ -10525,40 +10532,52 @@ void uvlo_()
|
||||
feedrate_bckp = feedrate;
|
||||
}
|
||||
|
||||
// From this point on and up to the print recovery, Z should not move during X/Y travels and
|
||||
// should be controlled precisely. Reset the MBL status before planner_abort_hard in order to
|
||||
// get the physical Z for further manipulation.
|
||||
bool mbl_was_active = mbl.active;
|
||||
mbl.active = false;
|
||||
|
||||
// After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
|
||||
// The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
|
||||
// are in action.
|
||||
planner_abort_hard();
|
||||
|
||||
// Store the current extruder position.
|
||||
// Store the print logical Z position, which we need to recover (a slight error here would be
|
||||
// recovered on the next Gcode instruction, while a physical location error would not)
|
||||
float logical_z = current_position[Z_AXIS];
|
||||
if(mbl_was_active) logical_z -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
|
||||
eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z, logical_z);
|
||||
|
||||
// Store the print E position before we lose track
|
||||
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), current_position[E_AXIS]);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
|
||||
|
||||
// Clean the input command queue, inhibit serial processing using saved_printing
|
||||
cmdqueue_reset();
|
||||
card.sdprinting = false;
|
||||
// card.closefile();
|
||||
saved_printing = true;
|
||||
|
||||
// Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
|
||||
// command queues are empty, SD card printing is disabled, usb is inhibited.
|
||||
sei();
|
||||
|
||||
// retract
|
||||
plan_buffer_line(current_position[X_AXIS],
|
||||
current_position[Y_AXIS],
|
||||
current_position[Z_AXIS],
|
||||
current_position[E_AXIS] - default_retraction,
|
||||
95, active_extruder);
|
||||
// Retract
|
||||
current_position[E_AXIS] -= default_retraction;
|
||||
plan_buffer_line_curposXYZE(95, active_extruder);
|
||||
st_synchronize();
|
||||
disable_e0();
|
||||
|
||||
// Move Z up and to the next 0th full step.
|
||||
plan_buffer_line(current_position[X_AXIS],
|
||||
current_position[Y_AXIS],
|
||||
current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
|
||||
current_position[E_AXIS] - default_retraction,
|
||||
40, active_extruder);
|
||||
// Read out the current Z motor microstep counter to move the axis up towards
|
||||
// a full step before powering off. NOTE: we need to ensure to schedule more
|
||||
// than "dropsegments" steps in order to move (this is always the case here
|
||||
// due to UVLO_Z_AXIS_SHIFT being used)
|
||||
uint16_t z_res = tmc2130_get_res(Z_AXIS);
|
||||
uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
|
||||
current_position[Z_AXIS] += float(1024 - z_microsteps)
|
||||
/ (z_res * cs.axis_steps_per_unit[Z_AXIS])
|
||||
+ UVLO_Z_AXIS_SHIFT;
|
||||
plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60, active_extruder);
|
||||
st_synchronize();
|
||||
disable_z();
|
||||
|
||||
@ -10570,24 +10589,24 @@ void uvlo_()
|
||||
uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
|
||||
uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
|
||||
// Scale the z value to 1u resolution.
|
||||
int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
|
||||
int16_t v = mbl_was_active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
|
||||
eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
|
||||
}
|
||||
|
||||
// Write the current Z motor microstep counter. This will be later used
|
||||
// for reaching the zero full step before powering off.
|
||||
// Write the _final_ Z position and motor microstep counter (unused).
|
||||
eeprom_update_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z, current_position[Z_AXIS]);
|
||||
z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
|
||||
eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
|
||||
|
||||
// Store the current position.
|
||||
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
|
||||
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
|
||||
eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
|
||||
|
||||
// Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
|
||||
eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDRATE, feedrate_bckp);
|
||||
eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY, feedmultiply);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, saved_target_temperature_ext);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, saved_target_temperature_bed);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
|
||||
eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
|
||||
#if EXTRUDERS > 1
|
||||
@ -10611,9 +10630,6 @@ void uvlo_()
|
||||
// Finaly store the "power outage" flag.
|
||||
if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
|
||||
|
||||
st_synchronize();
|
||||
printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
|
||||
|
||||
// Increment power failure counter
|
||||
eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
|
||||
eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
|
||||
@ -10634,44 +10650,68 @@ void uvlo_()
|
||||
|
||||
void uvlo_tiny()
|
||||
{
|
||||
uint16_t z_microsteps=0;
|
||||
unsigned long time_start = _millis();
|
||||
|
||||
// Conserve power as soon as possible.
|
||||
disable_x();
|
||||
disable_y();
|
||||
disable_e0();
|
||||
// Conserve power as soon as possible.
|
||||
disable_x();
|
||||
disable_y();
|
||||
disable_e0();
|
||||
|
||||
#ifdef TMC2130
|
||||
tmc2130_set_current_h(Z_AXIS, 20);
|
||||
tmc2130_set_current_r(Z_AXIS, 20);
|
||||
tmc2130_set_current_h(Z_AXIS, 20);
|
||||
tmc2130_set_current_r(Z_AXIS, 20);
|
||||
#endif //TMC2130
|
||||
|
||||
// Read out the current Z motor microstep counter
|
||||
#ifdef TMC2130
|
||||
z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
|
||||
#endif //TMC2130
|
||||
planner_abort_hard();
|
||||
// Stop all heaters
|
||||
setAllTargetHotends(0);
|
||||
setTargetBed(0);
|
||||
|
||||
//save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
|
||||
//EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
|
||||
if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
|
||||
// When power is interrupted on the _first_ recovery an attempt can be made to raise the
|
||||
// extruder, causing the Z position to change. Similarly, when recovering, the Z position is
|
||||
// lowered. In such cases we cannot just save Z, we need to re-align the steppers to a fullstep.
|
||||
// Disable MBL (if not already) to work with physical coordinates.
|
||||
mbl.active = false;
|
||||
planner_abort_hard();
|
||||
|
||||
// Allow for small roundoffs to be ignored
|
||||
if(abs(current_position[Z_AXIS] - eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))) >= 1.f/cs.axis_steps_per_unit[Z_AXIS])
|
||||
{
|
||||
// Clean the input command queue, inhibit serial processing using saved_printing
|
||||
cmdqueue_reset();
|
||||
card.sdprinting = false;
|
||||
saved_printing = true;
|
||||
|
||||
// Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
|
||||
// command queues are empty, SD card printing is disabled, usb is inhibited.
|
||||
sei();
|
||||
|
||||
// The axis was moved: adjust Z as done on a regular UVLO.
|
||||
uint16_t z_res = tmc2130_get_res(Z_AXIS);
|
||||
uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
|
||||
current_position[Z_AXIS] += float(1024 - z_microsteps)
|
||||
/ (z_res * cs.axis_steps_per_unit[Z_AXIS])
|
||||
+ UVLO_TINY_Z_AXIS_SHIFT;
|
||||
plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60, active_extruder);
|
||||
st_synchronize();
|
||||
disable_z();
|
||||
|
||||
// Update Z position
|
||||
eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
|
||||
eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
|
||||
}
|
||||
|
||||
//after multiple power panics current Z axis is unknow
|
||||
//in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
|
||||
if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
|
||||
eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
|
||||
eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
|
||||
}
|
||||
// Update the _final_ Z motor microstep counter (unused).
|
||||
z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
|
||||
eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
|
||||
}
|
||||
|
||||
// Finaly store the "power outage" flag.
|
||||
eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
|
||||
// Update the the "power outage" flag.
|
||||
eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
|
||||
|
||||
// Increment power failure counter
|
||||
eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
|
||||
eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
|
||||
|
||||
printf_P(_N("UVLO_TINY - end %d\n"), _millis() - time_start);
|
||||
|
||||
// Increment power failure counter
|
||||
eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
|
||||
eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
|
||||
// burn all that residual power
|
||||
wdt_enable(WDTO_1S);
|
||||
WRITE(BEEPER,HIGH);
|
||||
@ -10744,13 +10784,16 @@ void recover_print(uint8_t automatic) {
|
||||
lcd_update(2);
|
||||
lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
|
||||
|
||||
bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
|
||||
recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
|
||||
// Lift the print head, so one may remove the excess priming material.
|
||||
if(!bTiny&&(current_position[Z_AXIS]<25))
|
||||
// Recover position, temperatures and extrude_multipliers
|
||||
bool mbl_was_active = recover_machine_state_after_power_panic();
|
||||
|
||||
// Attempt to lift the print head on the first recovery, so one may remove the excess priming material.
|
||||
bool raise_z = (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1);
|
||||
if(raise_z && (current_position[Z_AXIS]<25))
|
||||
enquecommand_P(PSTR("G1 Z25 F800"));
|
||||
|
||||
// Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
|
||||
// Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine
|
||||
// transformation status. G28 will not touch Z when MBL is off.
|
||||
enquecommand_P(PSTR("G28 X Y"));
|
||||
// Set the target bed and nozzle temperatures and wait.
|
||||
sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
|
||||
@ -10774,19 +10817,19 @@ void recover_print(uint8_t automatic) {
|
||||
printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
|
||||
|
||||
// Restart the print.
|
||||
restore_print_from_eeprom();
|
||||
restore_print_from_eeprom(mbl_was_active);
|
||||
printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
}
|
||||
|
||||
void recover_machine_state_after_power_panic(bool bTiny)
|
||||
bool recover_machine_state_after_power_panic()
|
||||
{
|
||||
// 1) Recover the logical cordinates at the time of the power panic.
|
||||
// The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
|
||||
current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
|
||||
current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
|
||||
// 1) Preset some dummy values for the XY axes
|
||||
current_position[X_AXIS] = 0;
|
||||
current_position[Y_AXIS] = 0;
|
||||
|
||||
// 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
|
||||
mbl.active = false;
|
||||
// 2) Restore the mesh bed leveling offsets, but not the MBL status.
|
||||
// This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
|
||||
bool mbl_was_active = false;
|
||||
for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
|
||||
uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
|
||||
uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
|
||||
@ -10794,26 +10837,13 @@ void recover_machine_state_after_power_panic(bool bTiny)
|
||||
int16_t v;
|
||||
eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
|
||||
if (v != 0)
|
||||
mbl.active = true;
|
||||
mbl_was_active = true;
|
||||
mbl.z_values[iy][ix] = float(v) * 0.001f;
|
||||
}
|
||||
|
||||
// Recover the logical coordinate of the Z axis at the time of the power panic.
|
||||
// Recover the physical coordinate of the Z axis at the time of the power panic.
|
||||
// The current position after power panic is moved to the next closest 0th full step.
|
||||
if(bTiny){
|
||||
current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
|
||||
+ float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
|
||||
+ 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
|
||||
|
||||
//after multiple power panics the print is slightly in the air so get it little bit down.
|
||||
//Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
|
||||
current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
|
||||
}
|
||||
else{
|
||||
current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
|
||||
UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
|
||||
+ 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
|
||||
}
|
||||
current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z));
|
||||
|
||||
// Recover last E axis position
|
||||
current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
|
||||
@ -10832,17 +10862,13 @@ void recover_machine_state_after_power_panic(bool bTiny)
|
||||
// The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
|
||||
babystep_load();
|
||||
|
||||
// 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
|
||||
// 5) Set the physical positions from the logical positions using the world2machine transformation
|
||||
// This is only done to inizialize Z/E axes with physical locations, since X/Y are unknown.
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
|
||||
// 6) Power up the motors, mark their positions as known.
|
||||
//FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
|
||||
axis_known_position[X_AXIS] = true; enable_x();
|
||||
axis_known_position[Y_AXIS] = true; enable_y();
|
||||
axis_known_position[Z_AXIS] = true; enable_z();
|
||||
|
||||
SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
|
||||
print_physical_coordinates();
|
||||
// 6) Power up the Z motors, mark their positions as known.
|
||||
axis_known_position[Z_AXIS] = true;
|
||||
enable_z();
|
||||
|
||||
// 7) Recover the target temperatures.
|
||||
target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
|
||||
@ -10867,9 +10893,11 @@ void recover_machine_state_after_power_panic(bool bTiny)
|
||||
#ifdef LIN_ADVANCE
|
||||
extruder_advance_K = eeprom_read_float((float*)EEPROM_UVLO_LA_K);
|
||||
#endif
|
||||
|
||||
return mbl_was_active;
|
||||
}
|
||||
|
||||
void restore_print_from_eeprom() {
|
||||
void restore_print_from_eeprom(bool mbl_was_active) {
|
||||
int feedrate_rec;
|
||||
int feedmultiply_rec;
|
||||
uint8_t fan_speed_rec;
|
||||
@ -10911,16 +10939,22 @@ void restore_print_from_eeprom() {
|
||||
uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
|
||||
SERIAL_ECHOPGM("Position read from eeprom:");
|
||||
MYSERIAL.println(position);
|
||||
// Move to the XY print position in logical coordinates, where the print has been killed.
|
||||
strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
|
||||
strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
|
||||
strcat_P(cmd, PSTR(" F2000"));
|
||||
|
||||
// Move to the XY print position in logical coordinates, where the print has been killed, but
|
||||
// without shifting Z along the way. This requires performing the move without mbl.
|
||||
sprintf_P(cmd, PSTR("G1 X%f Y%f F2000"),
|
||||
eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0)),
|
||||
eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4)));
|
||||
enquecommand(cmd);
|
||||
//moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
|
||||
eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
|
||||
|
||||
// Enable MBL and switch to logical positioning
|
||||
if (mbl_was_active)
|
||||
enquecommand_P(PSTR("PRUSA MBL V1"));
|
||||
|
||||
// Move the Z axis down to the print, in logical coordinates.
|
||||
strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
|
||||
sprintf_P(cmd, PSTR("G1 Z%f"), eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)));
|
||||
enquecommand(cmd);
|
||||
|
||||
// Unretract.
|
||||
sprintf_P(cmd, PSTR("G1 E%0.3f F2700"), default_retraction);
|
||||
enquecommand(cmd);
|
||||
|
@ -79,7 +79,7 @@ static_assert(sizeof(Sheets) == EEPROM_SHEETS_SIZEOF, "Sizeof(Sheets) is not EEP
|
||||
#define EEPROM_FAN_CHECK_ENABLED (EEPROM_UVLO_FAN_SPEED - 1)
|
||||
#define EEPROM_UVLO_MESH_BED_LEVELING (EEPROM_FAN_CHECK_ENABLED - 9*2)
|
||||
|
||||
#define EEPROM_UVLO_Z_MICROSTEPS (EEPROM_UVLO_MESH_BED_LEVELING - 2)
|
||||
#define EEPROM_UVLO_Z_MICROSTEPS (EEPROM_UVLO_MESH_BED_LEVELING - 2) // uint16_t (could be removed)
|
||||
#define EEPROM_UVLO_E_ABS (EEPROM_UVLO_Z_MICROSTEPS - 1)
|
||||
#define EEPROM_UVLO_CURRENT_POSITION_E (EEPROM_UVLO_E_ABS - 4) //float for current position in E
|
||||
|
||||
@ -167,7 +167,7 @@ static_assert(sizeof(Sheets) == EEPROM_SHEETS_SIZEOF, "Sizeof(Sheets) is not EEP
|
||||
|
||||
//
|
||||
#define EEPROM_UVLO_TINY_CURRENT_POSITION_Z (EEPROM_EXTRUDEMULTIPLY-4) // float
|
||||
#define EEPROM_UVLO_TINY_Z_MICROSTEPS (EEPROM_UVLO_TINY_CURRENT_POSITION_Z-2) // uint16
|
||||
#define EEPROM_UVLO_TINY_Z_MICROSTEPS (EEPROM_UVLO_TINY_CURRENT_POSITION_Z-2) // uint16 (unused)
|
||||
|
||||
// Sound Mode
|
||||
//#define EEPROM_SOUND_MODE (EEPROM_EXTRUDEMULTIPLY-1) // uint8
|
||||
|
@ -618,6 +618,10 @@
|
||||
// The following example, 12 * (4 * 16 / 400) = 12 * 0.16mm = 1.92mm.
|
||||
//#define UVLO_Z_AXIS_SHIFT 1.92
|
||||
#define UVLO_Z_AXIS_SHIFT 0.64
|
||||
// When powered off during PP recovery, the Z axis position can still be re-adjusted. In this case
|
||||
// we just need to shift to the nearest fullstep, but we need a move which is at least
|
||||
// "dropsegments" steps long. All the above rules still need to apply.
|
||||
#define UVLO_TINY_Z_AXIS_SHIFT 0.16
|
||||
// If power panic occured, and the current temperature is higher then target temperature before interrupt minus this offset, print will be recovered automatically.
|
||||
#define AUTOMATIC_UVLO_BED_TEMP_OFFSET 5
|
||||
|
||||
|
@ -620,6 +620,10 @@
|
||||
// The following example, 12 * (4 * 16 / 400) = 12 * 0.16mm = 1.92mm.
|
||||
//#define UVLO_Z_AXIS_SHIFT 1.92
|
||||
#define UVLO_Z_AXIS_SHIFT 0.64
|
||||
// When powered off during PP recovery, the Z axis position can still be re-adjusted. In this case
|
||||
// we just need to shift to the nearest fullstep, but we need a move which is at least
|
||||
// "dropsegments" steps long. All the above rules still need to apply.
|
||||
#define UVLO_TINY_Z_AXIS_SHIFT 0.16
|
||||
// If power panic occured, and the current temperature is higher then target temperature before interrupt minus this offset, print will be recovered automatically.
|
||||
#define AUTOMATIC_UVLO_BED_TEMP_OFFSET 5
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user