Acceleration settings need to be saved in UVLO, since these are often
changed/set during a print. This is especially important for travel and
retract acceleration, which is usually set once per-print.
Saving and restoring is not 100% correct.
We save the current front-end value, which might ahead of the backend
when UVLO is triggered. Print acceleration, likely the most significant,
should be saved in the block buffer to be accurate.
Acceleration needs to be restored after the UVLO Z repositioning is
performed, using an M204 command. This is correct, however we don't save
the _temporary_ max acceleration limits set via M201, which could be
higher than the saved limits (via M500). This could result in lower
clamped values compared to the original print.
Maximum acceleration/jerk/feedrate limits should _all_ be saved in UVLO
in the future.
Allow to separate extrusion and travel acceleration settings using M204,
as Marlin 1.1.x and 2.x does using M204 T.
This allows to reduce the number of instructions required during
printing, since resetting the acceleration for travel moves is no longer
required and can be done a single time during the print.
Provision for this parameter was pre-existing, but not implemented.
M204 has two forms: the lagacy format (Marlin <1.1):
M204 S[print-acc] T[retract-acc]
and the newer format:
M204 P[print-acc] R[retract-acc] T[travel-acc]
The distinction in the MK3 FW is done based on the presence of the P
parameter. If P is seen, the new format is adoped. In the new format
however, M204 T was ignored until this change.
To keep backward compatibility, M204 S[acc] will set both print and
travel acceleration, which is identical in behavior to recent versions
of Marlin.
This is an extension/optimization of PR #2956.
It uses the cached 512B block buffer to avoid heavy-weight read() in SdBaseFile.
Even though this principle allowed the AVR to skip ~600KB of data within ~5 seconds,
the impact on code base is huge, especially into well proven and long-term stable
parts like reading a file from the SD card.
The sole purpose of this PR is to show/verify the possibility of the AVR CPU
in relation to adding thumbnails into MK3 G-codes.
Moreover, this PR shall not be merged unless the missing/commented features
are restored - especially file seeking and M84 search.
PFW-1175
- code_seen("string") -> code_seen_P(PSTR("string")) saved >100B of RAM!
- serial print "." -> '.' saved some code
- extract commonly used string
- SERIAL_PROTOCOLLN("") -> SERIAL_PROTOCOLLN() as no argument is
necessary
Motivation:
- save some RAM joining the autoreport flags into 1 byte
- encapsulate the magic of setting bit masks/features into a class with
a stable public interface
- remove the UI and related stuff to setting a farm number (the
communication protocol must remain intact)
- remove confirmation after print finished ("Print OK")
Both requests are highly welcome, since they allow for lowering the code
size by >1KB
PFW-963, PFW-927
- Changed DETECT_SUPERPINDA to SUPERPINDA_SUPPORT as on miniRAMo the thermistor readings below 30°C
aren't accurate egnough to determine if SUPERPINDA is connected or not
- Add LCD toggle menu Settings -> HW Setup -> SuperPINDA [Yes/No] to overwrite SuperPINDA detection
- If EEPROM_PINDA_TEMP_COMPENSTATION is empty = 0xff then detect SuperPINDA by checking thermistor
- If EEPROM_PINDA_TEMP_COMPENSTAION is 0 then forec enable for temperature compensation menues and functions
- If EEPROM_PINDA_TEMP_COMPENSATION is 1 then force disable for temperature compensation menues and functions
Calling plan_set_*_position should never be done without a sync, since
the current_position can be (and usually is) several steps ahead.
In retract() and inside the autoretract support, call st_synchronize()
prior to calling any of these functions so that we don't corrupt the
position of the backend!
When unretracting, split the Z and E moves in two steps so that the E
unretraction is not slowed down by the Z axis.
Fix the indentation of the affected code.
This saves nearly all of additional FLASH usage of previous commit. It is only 70B worse than if no skipping is done in temperature compensation gcode G76.
* Update EEPROM_FSENSOR_PCB documentation
* Update IR sensor check
* Rename IR messags and add UNKNOWN state
* Update code to use new messages
* To be continued
* Move fsensor related things from ultralcd.h to fsensor.h
* Use defined Thresholds
* IR sensor auto detection "0.3 or older" and "0.4 or newer" when trigger status changes.
Typo fixes
Doxygen documentation
* Cleanup spaces
* Revert PF-build.sh changes
* re-add space in messages
* revert doxygen snytax
* Remove double _Undef
* Fix indentation and doxygen syntax
* Fix indentation
* Better message handling
* Fix indentation
* Fix indentation
* More indentation fixwa
* Extract common code into manage_inactivity_IR_ANALOG_Check
Saves ~60B of code
* Revert indentation changes on fsensor.cpp
* Keep the selftest IR sensor part disabled
Everything shall happen at runtime
* Fix indentation fsensor_update
* Fix another misleading indentation in fsensor_update
Co-authored-by: Alex Voinea <voinea.dragos.alexandru@gmail.com>
Co-authored-by: D.R.racer <drracer@drracer.eu>
* Combine repeated calls into functions with much less parameters -> 2KB
down.
* Save some bytes by removing unnecessary 1-character strings: "x" -> 'x'
used in SERIAL_xxx printing macros.
This is also saves some CPU cycles
* Fix compilation for MK25S and MK3
* Copy surrounding indentation
* Fix compilation for a rare HW setup
* rename mesh_planXX_buffer_line back to mesh_plan_buffer_line
* Remove active_extruder from remaining plan_buffer_line_destinationXYZE
calls and one more fix of indentation