Prusa-Firmware/Firmware/tmc2130.cpp

780 lines
26 KiB
C++

#include "Marlin.h"
#ifdef TMC2130
#include "tmc2130.h"
#include <SPI.h>
#include "LiquidCrystal.h"
#include "ultralcd.h"
extern LiquidCrystal lcd;
#define TMC2130_GCONF_NORMAL 0x00000000 // spreadCycle
#define TMC2130_GCONF_SGSENS 0x00003180 // spreadCycle with stallguard (stall activates DIAG0 and DIAG1 [pushpull])
#define TMC2130_GCONF_SILENT 0x00000004 // stealthChop
//externals for debuging
extern float current_position[4];
extern void st_get_position_xy(long &x, long &y);
extern long st_get_position(uint8_t axis);
extern void crashdet_stop_and_save_print();
extern void crashdet_stop_and_save_print2();
//chipselect pins
uint8_t tmc2130_cs[4] = { X_TMC2130_CS, Y_TMC2130_CS, Z_TMC2130_CS, E0_TMC2130_CS };
//diag pins
uint8_t tmc2130_diag[4] = { X_TMC2130_DIAG, Y_TMC2130_DIAG, Z_TMC2130_DIAG, E0_TMC2130_DIAG };
//mode
uint8_t tmc2130_mode = TMC2130_MODE_NORMAL;
//holding currents
uint8_t tmc2130_current_h[4] = TMC2130_CURRENTS_H;
//running currents
uint8_t tmc2130_current_r[4] = TMC2130_CURRENTS_R;
//axis stalled flags
uint8_t tmc2130_axis_stalled[4] = {0, 0, 0, 0};
//running currents for homing
uint8_t tmc2130_current_r_home[4] = {10, 10, 20, 10};
//pwm_ampl
uint8_t tmc2130_pwm_ampl[2] = {TMC2130_PWM_AMPL_X, TMC2130_PWM_AMPL_Y};
//pwm_grad
uint8_t tmc2130_pwm_grad[2] = {TMC2130_PWM_GRAD_X, TMC2130_PWM_GRAD_Y};
//pwm_auto
uint8_t tmc2130_pwm_auto[2] = {TMC2130_PWM_AUTO_X, TMC2130_PWM_AUTO_Y};
//pwm_freq
uint8_t tmc2130_pwm_freq[2] = {TMC2130_PWM_FREQ_X, TMC2130_PWM_FREQ_Y};
uint8_t tmc2130_mres[4] = {0, 0, 0, 0}; //will be filed at begin of init
uint8_t tmc2130_sg_thr[4] = {TMC2130_SG_THRS_X, TMC2130_SG_THRS_Y, TMC2130_SG_THRS_Z, TMC2130_SG_THRS_E};
uint8_t tmc2130_sg_thr_home[4] = {3, 3, TMC2130_SG_THRS_Z, TMC2130_SG_THRS_E};
uint32_t tmc2130_sg_pos[4] = {0, 0, 0, 0};
uint8_t sg_homing_axes_mask = 0x00;
uint8_t tmc2130_sg_meassure = 0xff;
uint16_t tmc2130_sg_meassure_cnt = 0;
uint32_t tmc2130_sg_meassure_val = 0;
bool tmc2130_sg_stop_on_crash = true;
bool tmc2130_sg_crash = false;
uint8_t tmc2130_diag_mask = 0x00;
uint16_t tmc2130_sg_err[4] = {0, 0, 0, 0};
uint16_t tmc2130_sg_cnt[4] = {0, 0, 0, 0};
bool tmc2130_sg_change = false;
bool skip_debug_msg = false;
//TMC2130 registers
#define TMC2130_REG_GCONF 0x00 // 17 bits
#define TMC2130_REG_GSTAT 0x01 // 3 bits
#define TMC2130_REG_IOIN 0x04 // 8+8 bits
#define TMC2130_REG_IHOLD_IRUN 0x10 // 5+5+4 bits
#define TMC2130_REG_TPOWERDOWN 0x11 // 8 bits
#define TMC2130_REG_TSTEP 0x12 // 20 bits
#define TMC2130_REG_TPWMTHRS 0x13 // 20 bits
#define TMC2130_REG_TCOOLTHRS 0x14 // 20 bits
#define TMC2130_REG_THIGH 0x15 // 20 bits
#define TMC2130_REG_XDIRECT 0x2d // 32 bits
#define TMC2130_REG_VDCMIN 0x33 // 23 bits
#define TMC2130_REG_MSLUT0 0x60 // 32 bits
#define TMC2130_REG_MSLUT1 0x61 // 32 bits
#define TMC2130_REG_MSLUT2 0x62 // 32 bits
#define TMC2130_REG_MSLUT3 0x63 // 32 bits
#define TMC2130_REG_MSLUT4 0x64 // 32 bits
#define TMC2130_REG_MSLUT5 0x65 // 32 bits
#define TMC2130_REG_MSLUT6 0x66 // 32 bits
#define TMC2130_REG_MSLUT7 0x67 // 32 bits
#define TMC2130_REG_MSLUTSEL 0x68 // 32 bits
#define TMC2130_REG_MSLUTSTART 0x69 // 8+8 bits
#define TMC2130_REG_MSCNT 0x6a // 10 bits
#define TMC2130_REG_MSCURACT 0x6b // 9+9 bits
#define TMC2130_REG_CHOPCONF 0x6c // 32 bits
#define TMC2130_REG_COOLCONF 0x6d // 25 bits
#define TMC2130_REG_DCCTRL 0x6e // 24 bits
#define TMC2130_REG_DRV_STATUS 0x6f // 32 bits
#define TMC2130_REG_PWMCONF 0x70 // 22 bits
#define TMC2130_REG_PWM_SCALE 0x71 // 8 bits
#define TMC2130_REG_ENCM_CTRL 0x72 // 2 bits
#define TMC2130_REG_LOST_STEPS 0x73 // 20 bits
uint16_t tmc2130_rd_TSTEP(uint8_t cs);
uint16_t tmc2130_rd_MSCNT(uint8_t cs);
uint16_t tmc2130_rd_DRV_STATUS(uint8_t cs);
void tmc2130_wr_CHOPCONF(uint8_t cs, uint8_t toff = 3, uint8_t hstrt = 4, uint8_t hend = 1, uint8_t fd3 = 0, uint8_t disfdcc = 0, uint8_t rndtf = 0, uint8_t chm = 0, uint8_t tbl = 2, uint8_t vsense = 0, uint8_t vhighfs = 0, uint8_t vhighchm = 0, uint8_t sync = 0, uint8_t mres = 0b0100, uint8_t intpol = 1, uint8_t dedge = 0, uint8_t diss2g = 0);
void tmc2130_wr_PWMCONF(uint8_t cs, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel);
void tmc2130_wr_TPWMTHRS(uint8_t cs, uint32_t val32);
void tmc2130_wr_THIGH(uint8_t cs, uint32_t val32);
uint8_t tmc2130_axis_by_cs(uint8_t cs);
uint8_t tmc2130_calc_mres(uint16_t microstep_resolution);
uint8_t tmc2130_wr(uint8_t cs, uint8_t addr, uint32_t wval);
uint8_t tmc2130_rd(uint8_t cs, uint8_t addr, uint32_t* rval);
uint8_t tmc2130_txrx(uint8_t cs, uint8_t addr, uint32_t wval, uint32_t* rval);
void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r);
void tmc2130_init()
{
tmc2130_mres[0] = tmc2130_calc_mres(TMC2130_USTEPS_XY);
tmc2130_mres[1] = tmc2130_calc_mres(TMC2130_USTEPS_XY);
tmc2130_mres[2] = tmc2130_calc_mres(TMC2130_USTEPS_Z);
tmc2130_mres[3] = tmc2130_calc_mres(TMC2130_USTEPS_E);
MYSERIAL.print("tmc2130_init mode=");
MYSERIAL.println(tmc2130_mode, DEC);
WRITE(X_TMC2130_CS, HIGH);
WRITE(Y_TMC2130_CS, HIGH);
WRITE(Z_TMC2130_CS, HIGH);
WRITE(E0_TMC2130_CS, HIGH);
SET_OUTPUT(X_TMC2130_CS);
SET_OUTPUT(Y_TMC2130_CS);
SET_OUTPUT(Z_TMC2130_CS);
SET_OUTPUT(E0_TMC2130_CS);
SET_INPUT(X_TMC2130_DIAG);
SET_INPUT(Y_TMC2130_DIAG);
SET_INPUT(Z_TMC2130_DIAG);
SET_INPUT(E0_TMC2130_DIAG);
SPI.begin();
for (int axis = 0; axis < 2; axis++) // X Y axes
{
/* if (tmc2130_current_r[axis] <= 31)
{
tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_XY, 0, 0);
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[axis] & 0x1f) << 8) | (tmc2130_current_h[axis] & 0x1f));
}
else
{
tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, mres, TMC2130_INTPOL_XY, 0, 0);
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((tmc2130_current_r[axis] >> 1) & 0x1f) << 8) | ((tmc2130_current_h[axis] >> 1) & 0x1f));
}*/
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
// tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_XY, 0, 0);
// tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[axis] & 0x1f) << 8) | (tmc2130_current_h[axis] & 0x1f));
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TPOWERDOWN, 0x00000000);
// tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24));
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:((axis==X_AXIS)?TMC2130_TCOOLTHRS_X:TMC2130_TCOOLTHRS_Y));
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, (tmc2130_mode == TMC2130_MODE_SILENT)?TMC2130_GCONF_SILENT:TMC2130_GCONF_SGSENS);
tmc2130_wr_PWMCONF(tmc2130_cs[axis], tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
tmc2130_wr_TPWMTHRS(tmc2130_cs[axis], TMC2130_TPWMTHRS);
//tmc2130_wr_THIGH(tmc2130_cs[axis], TMC2130_THIGH);
}
for (int axis = 2; axis < 3; axis++) // Z axis
{
// uint8_t mres = tmc2130_mres(TMC2130_USTEPS_Z);
/* if (tmc2130_current_r[axis] <= 31)
{
tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_Z, 0, 0);
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[axis] & 0x1f) << 8) | (tmc2130_current_h[axis] & 0x1f));
}
else
{
tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, mres, TMC2130_INTPOL_Z, 0, 0);
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((tmc2130_current_r[axis] >> 1) & 0x1f) << 8) | ((tmc2130_current_h[axis] >> 1) & 0x1f));
}*/
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TPOWERDOWN, 0x00000000);
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
}
for (int axis = 3; axis < 4; axis++) // E axis
{
// uint8_t mres = tmc2130_mres(TMC2130_USTEPS_E);
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
// tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_E, 0, 0);
// tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[axis] & 0x1f) << 8) | (tmc2130_current_h[axis] & 0x1f));
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TPOWERDOWN, 0x00000000);
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
}
tmc2130_sg_err[0] = 0;
tmc2130_sg_err[1] = 0;
tmc2130_sg_err[2] = 0;
tmc2130_sg_err[3] = 0;
tmc2130_sg_cnt[0] = 0;
tmc2130_sg_cnt[1] = 0;
tmc2130_sg_cnt[2] = 0;
tmc2130_sg_cnt[3] = 0;
}
uint8_t tmc2130_sample_diag()
{
uint8_t mask = 0;
if (READ(X_TMC2130_DIAG)) mask |= X_AXIS_MASK;
if (READ(Y_TMC2130_DIAG)) mask |= Y_AXIS_MASK;
// if (READ(Z_TMC2130_DIAG)) mask |= Z_AXIS_MASK;
// if (READ(E0_TMC2130_DIAG)) mask |= E_AXIS_MASK;
return mask;
}
void tmc2130_st_isr(uint8_t last_step_mask)
{
if (tmc2130_mode == TMC2130_MODE_SILENT || tmc2130_sg_stop_on_crash == false) return;
bool crash = false;
uint8_t diag_mask = tmc2130_sample_diag();
// for (uint8_t axis = X_AXIS; axis <= E_AXIS; axis++)
for (uint8_t axis = X_AXIS; axis <= Y_AXIS; axis++)
{
uint8_t mask = (X_AXIS_MASK << axis);
if (diag_mask & mask) tmc2130_sg_err[axis]++;
else
if (tmc2130_sg_err[axis] > 0) tmc2130_sg_err[axis]--;
if (tmc2130_sg_cnt[axis] < tmc2130_sg_err[axis])
{
tmc2130_sg_cnt[axis] = tmc2130_sg_err[axis];
tmc2130_sg_change = true;
if (tmc2130_sg_err[axis] >= 64)
{
tmc2130_sg_err[axis] = 0;
crash = true;
}
}
// if ((diag_mask & mask)/* && !(tmc2130_diag_mask & mask)*/)
// crash = true;
}
tmc2130_diag_mask = diag_mask;
if (sg_homing_axes_mask == 0)
{
/* if (crash)
{
if (diag_mask & 0x01) tmc2130_sg_cnt[0]++;
if (diag_mask & 0x02) tmc2130_sg_cnt[1]++;
if (diag_mask & 0x04) tmc2130_sg_cnt[2]++;
if (diag_mask & 0x08) tmc2130_sg_cnt[3]++;
}*/
if (tmc2130_sg_stop_on_crash && crash)
{
tmc2130_sg_crash = true;
tmc2130_sg_stop_on_crash = false;
crashdet_stop_and_save_print();
}
}
}
void tmc2130_update_sg_axis(uint8_t axis)
{
if (!tmc2130_axis_stalled[axis])
{
uint8_t cs = tmc2130_cs[axis];
uint16_t tstep = tmc2130_rd_TSTEP(cs);
if (tstep < TMC2130_TCOOLTHRS_Z)
{
long pos = st_get_position(axis);
if (abs(pos - tmc2130_sg_pos[axis]) > TMC2130_SG_DELTA)
{
uint16_t sg = tmc2130_rd_DRV_STATUS(cs) & 0x3ff;
if (sg == 0)
tmc2130_axis_stalled[axis] = true;
}
}
}
}
bool tmc2130_update_sg()
{
// uint16_t tstep = tmc2130_rd_TSTEP(tmc2130_cs[0]);
// MYSERIAL.print("TSTEP_X=");
// MYSERIAL.println((int)tstep);
if (tmc2130_sg_meassure <= E_AXIS)
{
uint8_t cs = tmc2130_cs[tmc2130_sg_meassure];
uint16_t sg = tmc2130_rd_DRV_STATUS(cs) & 0x3ff;
tmc2130_sg_meassure_val += sg;
tmc2130_sg_meassure_cnt++;
// printf_P(PSTR("tmc2130_update_sg - meassure - sg=%d\n"), sg);
return true;
}
#ifdef TMC2130_SG_HOMING_SW_XY
if (sg_homing_axes_mask & X_AXIS_MASK) tmc2130_update_sg_axis(X_AXIS);
if (sg_homing_axes_mask & Y_AXIS_MASK) tmc2130_update_sg_axis(Y_AXIS);
#endif //TMC2130_SG_HOMING_SW_XY
#ifdef TMC2130_SG_HOMING_SW_Z
if (sg_homing_axes_mask & Z_AXIS_MASK) tmc2130_update_sg_axis(Z_AXIS);
#endif //TMC2130_SG_HOMING_SW_Z
#if (defined(TMC2130_SG_HOMING) && defined(TMC2130_SG_HOMING_SW_XY))
if (sg_homing_axes_mask == 0) return false;
#ifdef TMC2130_DEBUG
MYSERIAL.print("tmc2130_update_sg mask=0x");
MYSERIAL.print((int)sg_homing_axes_mask, 16);
MYSERIAL.print(" stalledX=");
MYSERIAL.print((int)tmc2130_axis_stalled[0]);
MYSERIAL.print(" stalledY=");
MYSERIAL.println((int)tmc2130_axis_stalled[1]);
#endif //TMC2130_DEBUG
for (uint8_t axis = X_AXIS; axis <= Y_AXIS; axis++) //only X and Y axes
{
uint8_t mask = (X_AXIS_MASK << axis);
if (sg_homing_axes_mask & mask)
{
if (!tmc2130_axis_stalled[axis])
{
uint8_t cs = tmc2130_cs[axis];
uint16_t tstep = tmc2130_rd_TSTEP(cs);
if (tstep < TMC2130_TCOOLTHRS)
{
long pos = st_get_position(axis);
if (abs(pos - tmc2130_sg_pos[axis]) > TMC2130_SG_DELTA)
{
uint16_t sg = tmc2130_rd_DRV_STATUS(cs) & 0x3ff;
if (sg == 0)
{
tmc2130_axis_stalled[axis] = true;
#ifdef TMC2130_DEBUG
MYSERIAL.print("tmc2130_update_sg AXIS STALLED ");
MYSERIAL.println((int)axis);
#endif //TMC2130_DEBUG
}
}
}
}
}
}
return true;
#endif
return false;
}
void tmc2130_home_enter(uint8_t axes_mask)
{
#ifdef TMC2130_DEBUG
MYSERIAL.print("tmc2130_home_enter mask=0x");
MYSERIAL.println((int)axes_mask, 16);
#endif //TMC2130_DEBUG
#ifdef TMC2130_SG_HOMING
for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) //X Y and Z axes
{
uint8_t mask = (X_AXIS_MASK << axis);
uint8_t cs = tmc2130_cs[axis];
if (axes_mask & mask)
{
sg_homing_axes_mask |= mask;
tmc2130_sg_pos[axis] = st_get_position(axis);
tmc2130_axis_stalled[axis] = false;
//Configuration to spreadCycle
tmc2130_wr(cs, TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL);
tmc2130_wr(cs, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr_home[axis]) << 16));
// tmc2130_wr(cs, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24));
tmc2130_wr(cs, TMC2130_REG_TCOOLTHRS, (axis==X_AXIS)?TMC2130_TCOOLTHRS_X:TMC2130_TCOOLTHRS_Y);
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r_home[axis]);
#ifndef TMC2130_SG_HOMING_SW_XY
if (mask & (X_AXIS_MASK | Y_AXIS_MASK))
tmc2130_wr(cs, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); //stallguard output DIAG1, DIAG1 = pushpull
#endif //TMC2130_SG_HOMING_SW_XY
}
}
#endif //TMC2130_SG_HOMING
}
void tmc2130_home_exit()
{
#ifdef TMC2130_DEBUG
MYSERIAL.print("tmc2130_home_exit mask=0x");
MYSERIAL.println((int)sg_homing_axes_mask, 16);
#endif //TMC2130_DEBUG
#ifdef TMC2130_SG_HOMING
if (sg_homing_axes_mask)
{
for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) //X Y and Z axes
{
uint8_t mask = (X_AXIS_MASK << axis);
if (sg_homing_axes_mask & mask & (X_AXIS_MASK | Y_AXIS_MASK))
{
if (tmc2130_mode == TMC2130_MODE_SILENT)
{
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_SILENT); // Configuration back to stealthChop
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TCOOLTHRS, 0);
// tmc2130_wr_PWMCONF(tmc2130_cs[i], tmc2130_pwm_ampl[i], tmc2130_pwm_grad[i], tmc2130_pwm_freq[i], tmc2130_pwm_auto[i], 0, 0);
}
else
{
#ifdef TMC2130_SG_HOMING_SW_XY
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL);
#else //TMC2130_SG_HOMING_SW_XY
// tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL);
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
// tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24));
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:((axis==X_AXIS)?TMC2130_TCOOLTHRS_X:TMC2130_TCOOLTHRS_Y));
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
#endif //TMC2130_SG_HOMING_SW_XY
}
}
tmc2130_axis_stalled[axis] = false;
}
sg_homing_axes_mask = 0x00;
}
#endif
}
void tmc2130_home_pause(uint8_t axis)
{
if (tmc2130_mode == TMC2130_MODE_NORMAL)
{
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL);
}
}
void tmc2130_home_resume(uint8_t axis)
{
if (tmc2130_mode == TMC2130_MODE_NORMAL)
{
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
}
}
void tmc2130_home_restart(uint8_t axis)
{
tmc2130_sg_pos[axis] = st_get_position(axis);
tmc2130_axis_stalled[axis] = false;
}
void tmc2130_sg_meassure_start(uint8_t axis)
{
tmc2130_sg_meassure = axis;
tmc2130_sg_meassure_cnt = 0;
tmc2130_sg_meassure_val = 0;
}
uint16_t tmc2130_sg_meassure_stop()
{
tmc2130_sg_meassure = 0xff;
return tmc2130_sg_meassure_val / tmc2130_sg_meassure_cnt;
}
bool tmc2130_wait_standstill_xy(int timeout)
{
// MYSERIAL.println("tmc2130_wait_standstill_xy");
bool standstill = false;
while (!standstill && (timeout > 0))
{
uint32_t drv_status_x = 0;
uint32_t drv_status_y = 0;
tmc2130_rd(tmc2130_cs[X_AXIS], TMC2130_REG_DRV_STATUS, &drv_status_x);
tmc2130_rd(tmc2130_cs[Y_AXIS], TMC2130_REG_DRV_STATUS, &drv_status_y);
/* MYSERIAL.print(timeout, 10);
MYSERIAL.println(' ');
MYSERIAL.print(drv_status_x, 16);
MYSERIAL.println(' ');
MYSERIAL.print(drv_status_y, 16);
MYSERIAL.println('#');*/
standstill = (drv_status_x & 0x80000000) && (drv_status_y & 0x80000000);
tmc2130_check_overtemp();
timeout--;
}
return standstill;
}
void tmc2130_check_overtemp()
{
const static char TMC_OVERTEMP_MSG[] PROGMEM = "TMC DRIVER OVERTEMP ";
static uint32_t checktime = 0;
if (millis() - checktime > 1000 )
{
// MYSERIAL.print("DRV_STATUS ");
for (int i = 0; i < 4; i++)
{
uint32_t drv_status = 0;
skip_debug_msg = true;
tmc2130_rd(tmc2130_cs[i], TMC2130_REG_DRV_STATUS, &drv_status);
/* MYSERIAL.print(i, DEC);
MYSERIAL.print(' ');
MYSERIAL.print(drv_status, 16);*/
if (drv_status & ((uint32_t)1 << 26))
{ // BIT 26 - over temp prewarning ~120C (+-20C)
SERIAL_ERRORRPGM(TMC_OVERTEMP_MSG);
SERIAL_ECHOLN(i);
for (int j = 0; j < 4; j++)
tmc2130_wr(tmc2130_cs[j], TMC2130_REG_CHOPCONF, 0x00010000);
kill(TMC_OVERTEMP_MSG);
}
}
// MYSERIAL.println('#');
checktime = millis();
tmc2130_sg_change = true;
}
#ifdef DEBUG_CRASHDET_COUNTERS
if (tmc2130_sg_change)
{
for (int i = 0; i < 4; i++)
{
tmc2130_sg_change = false;
lcd.setCursor(0 + i*4, 3);
lcd.print(itostr3(tmc2130_sg_cnt[i]));
lcd.print(' ');
}
}
#endif DEBUG_CRASHDET_COUNTERS
}
void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r)
{
uint8_t cs = tmc2130_cs[axis];
uint8_t intpol = 1;
if (current_r <= 31)
{
tmc2130_wr_CHOPCONF(cs, 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, intpol, 0, 0);
tmc2130_wr(cs, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((current_r & 0x1f) << 8) | (current_h & 0x1f));
}
else
{
tmc2130_wr_CHOPCONF(cs, 3, 5, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, mres, intpol, 0, 0);
tmc2130_wr(cs, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((current_r >> 1) & 0x1f) << 8) | ((current_h >> 1) & 0x1f));
}
}
void tmc2130_set_current_h(uint8_t axis, uint8_t current)
{
MYSERIAL.print("tmc2130_set_current_h ");
MYSERIAL.print((int)axis);
MYSERIAL.print(" ");
MYSERIAL.println((int)current);
tmc2130_current_h[axis] = current;
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
}
void tmc2130_set_current_r(uint8_t axis, uint8_t current)
{
MYSERIAL.print("tmc2130_set_current_r ");
MYSERIAL.print((int)axis);
MYSERIAL.print(" ");
MYSERIAL.println((int)current);
tmc2130_current_r[axis] = current;
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
}
void tmc2130_print_currents()
{
MYSERIAL.println("tmc2130_print_currents");
MYSERIAL.println("\tH\rR");
MYSERIAL.print("X\t");
MYSERIAL.print((int)tmc2130_current_h[0]);
MYSERIAL.print("\t");
MYSERIAL.println((int)tmc2130_current_r[0]);
MYSERIAL.print("Y\t");
MYSERIAL.print((int)tmc2130_current_h[1]);
MYSERIAL.print("\t");
MYSERIAL.println((int)tmc2130_current_r[1]);
MYSERIAL.print("Z\t");
MYSERIAL.print((int)tmc2130_current_h[2]);
MYSERIAL.print("\t");
MYSERIAL.println((int)tmc2130_current_r[2]);
MYSERIAL.print("E\t");
MYSERIAL.print((int)tmc2130_current_h[3]);
MYSERIAL.print("\t");
MYSERIAL.println((int)tmc2130_current_r[3]);
}
void tmc2130_set_pwm_ampl(uint8_t axis, uint8_t pwm_ampl)
{
MYSERIAL.print("tmc2130_set_pwm_ampl ");
MYSERIAL.print((int)axis);
MYSERIAL.print(" ");
MYSERIAL.println((int)pwm_ampl);
tmc2130_pwm_ampl[axis] = pwm_ampl;
if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT))
tmc2130_wr_PWMCONF(tmc2130_cs[axis], tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
}
void tmc2130_set_pwm_grad(uint8_t axis, uint8_t pwm_grad)
{
MYSERIAL.print("tmc2130_set_pwm_grad ");
MYSERIAL.print((int)axis);
MYSERIAL.print(" ");
MYSERIAL.println((int)pwm_grad);
tmc2130_pwm_grad[axis] = pwm_grad;
if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT))
tmc2130_wr_PWMCONF(tmc2130_cs[axis], tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
}
uint16_t tmc2130_rd_TSTEP(uint8_t cs)
{
uint32_t val32 = 0;
tmc2130_rd(cs, TMC2130_REG_TSTEP, &val32);
if (val32 & 0x000f0000) return 0xffff;
return val32 & 0xffff;
}
uint16_t tmc2130_rd_MSCNT(uint8_t cs)
{
uint32_t val32 = 0;
tmc2130_rd(cs, TMC2130_REG_MSCNT, &val32);
return val32 & 0x3ff;
}
uint16_t tmc2130_rd_DRV_STATUS(uint8_t cs)
{
uint32_t val32 = 0;
tmc2130_rd(cs, TMC2130_REG_DRV_STATUS, &val32);
return val32;
}
void tmc2130_wr_CHOPCONF(uint8_t cs, uint8_t toff, uint8_t hstrt, uint8_t hend, uint8_t fd3, uint8_t disfdcc, uint8_t rndtf, uint8_t chm, uint8_t tbl, uint8_t vsense, uint8_t vhighfs, uint8_t vhighchm, uint8_t sync, uint8_t mres, uint8_t intpol, uint8_t dedge, uint8_t diss2g)
{
uint32_t val = 0;
val |= (uint32_t)(toff & 15);
val |= (uint32_t)(hstrt & 7) << 4;
val |= (uint32_t)(hend & 15) << 7;
val |= (uint32_t)(fd3 & 1) << 11;
val |= (uint32_t)(disfdcc & 1) << 12;
val |= (uint32_t)(rndtf & 1) << 13;
val |= (uint32_t)(chm & 1) << 14;
val |= (uint32_t)(tbl & 3) << 15;
val |= (uint32_t)(vsense & 1) << 17;
val |= (uint32_t)(vhighfs & 1) << 18;
val |= (uint32_t)(vhighchm & 1) << 19;
val |= (uint32_t)(sync & 15) << 20;
val |= (uint32_t)(mres & 15) << 24;
val |= (uint32_t)(intpol & 1) << 28;
val |= (uint32_t)(dedge & 1) << 29;
val |= (uint32_t)(diss2g & 1) << 30;
tmc2130_wr(cs, TMC2130_REG_CHOPCONF, val);
}
//void tmc2130_wr_PWMCONF(uint8_t cs, uint8_t PWMautoScale, uint8_t PWMfreq, uint8_t PWMgrad, uint8_t PWMampl)
void tmc2130_wr_PWMCONF(uint8_t cs, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel)
{
uint32_t val = 0;
val |= (uint32_t)(pwm_ampl & 255);
val |= (uint32_t)(pwm_grad & 255) << 8;
val |= (uint32_t)(pwm_freq & 3) << 16;
val |= (uint32_t)(pwm_auto & 1) << 18;
val |= (uint32_t)(pwm_symm & 1) << 19;
val |= (uint32_t)(freewheel & 3) << 20;
tmc2130_wr(cs, TMC2130_REG_PWMCONF, val);
// tmc2130_wr(cs, TMC2130_REG_PWMCONF, ((uint32_t)(PWMautoScale+PWMfreq) << 16) | ((uint32_t)PWMgrad << 8) | PWMampl); // TMC LJ -> For better readability changed to 0x00 and added PWMautoScale and PWMfreq
}
void tmc2130_wr_TPWMTHRS(uint8_t cs, uint32_t val32)
{
tmc2130_wr(cs, TMC2130_REG_TPWMTHRS, val32);
}
void tmc2130_wr_THIGH(uint8_t cs, uint32_t val32)
{
tmc2130_wr(cs, TMC2130_REG_THIGH, val32);
}
#if defined(TMC2130_DEBUG_RD) || defined(TMC2130_DEBUG_WR)
uint8_t tmc2130_axis_by_cs(uint8_t cs)
{
switch (cs)
{
case X_TMC2130_CS: return 0;
case Y_TMC2130_CS: return 1;
case Z_TMC2130_CS: return 2;
case E0_TMC2130_CS: return 3;
}
return -1;
}
#endif //TMC2130_DEBUG
uint8_t tmc2130_calc_mres(uint16_t microstep_resolution)
{
if (microstep_resolution == 256) return 0b0000;
if (microstep_resolution == 128) return 0b0001;
if (microstep_resolution == 64) return 0b0010;
if (microstep_resolution == 32) return 0b0011;
if (microstep_resolution == 16) return 0b0100;
if (microstep_resolution == 8) return 0b0101;
if (microstep_resolution == 4) return 0b0110;
if (microstep_resolution == 2) return 0b0111;
if (microstep_resolution == 1) return 0b1000;
return 0;
}
uint8_t tmc2130_wr(uint8_t cs, uint8_t addr, uint32_t wval)
{
uint8_t stat = tmc2130_txrx(cs, addr | 0x80, wval, 0);
#ifdef TMC2130_DEBUG_WR
MYSERIAL.print("tmc2130_wr(");
MYSERIAL.print((unsigned char)tmc2130_axis_by_cs(cs), DEC);
MYSERIAL.print(", 0x");
MYSERIAL.print((unsigned char)addr, HEX);
MYSERIAL.print(", 0x");
MYSERIAL.print((unsigned long)wval, HEX);
MYSERIAL.print(")=0x");
MYSERIAL.println((unsigned char)stat, HEX);
#endif //TMC2130_DEBUG_WR
return stat;
}
uint8_t tmc2130_rd(uint8_t cs, uint8_t addr, uint32_t* rval)
{
uint32_t val32 = 0;
uint8_t stat = tmc2130_txrx(cs, addr, 0x00000000, &val32);
if (rval != 0) *rval = val32;
#ifdef TMC2130_DEBUG_RD
if (!skip_debug_msg)
{
MYSERIAL.print("tmc2130_rd(");
MYSERIAL.print((unsigned char)tmc2130_axis_by_cs(cs), DEC);
MYSERIAL.print(", 0x");
MYSERIAL.print((unsigned char)addr, HEX);
MYSERIAL.print(", 0x");
MYSERIAL.print((unsigned long)val32, HEX);
MYSERIAL.print(")=0x");
MYSERIAL.println((unsigned char)stat, HEX);
}
skip_debug_msg = false;
#endif //TMC2130_DEBUG_RD
return stat;
}
uint8_t tmc2130_txrx(uint8_t cs, uint8_t addr, uint32_t wval, uint32_t* rval)
{
//datagram1 - request
SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
digitalWrite(cs, LOW);
SPI.transfer(addr); // address
SPI.transfer((wval >> 24) & 0xff); // MSB
SPI.transfer((wval >> 16) & 0xff);
SPI.transfer((wval >> 8) & 0xff);
SPI.transfer(wval & 0xff); // LSB
digitalWrite(cs, HIGH);
SPI.endTransaction();
//datagram2 - response
SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
digitalWrite(cs, LOW);
uint8_t stat = SPI.transfer(0); // status
uint32_t val32 = 0;
val32 = SPI.transfer(0); // MSB
val32 = (val32 << 8) | SPI.transfer(0);
val32 = (val32 << 8) | SPI.transfer(0);
val32 = (val32 << 8) | SPI.transfer(0); // LSB
digitalWrite(cs, HIGH);
SPI.endTransaction();
if (rval != 0) *rval = val32;
return stat;
}
void tmc2130_eeprom_load_config()
{
}
void tmc2130_eeprom_save_config()
{
}
#endif //TMC2130