1416 lines
40 KiB
C++
1416 lines
40 KiB
C++
//! @file
|
|
|
|
#include "mmu.h"
|
|
#include "planner.h"
|
|
#include "language.h"
|
|
#include "lcd.h"
|
|
#include "uart2.h"
|
|
#include "temperature.h"
|
|
#include "Configuration_prusa.h"
|
|
#include "fsensor.h"
|
|
#include "cardreader.h"
|
|
#include "ultralcd.h"
|
|
#include "sound.h"
|
|
#include "printers.h"
|
|
#include <avr/pgmspace.h>
|
|
#include "io_atmega2560.h"
|
|
#include "AutoDeplete.h"
|
|
|
|
#ifdef TMC2130
|
|
#include "tmc2130.h"
|
|
#endif //TMC2130
|
|
|
|
#define MMU_TODELAY 100
|
|
#define MMU_TIMEOUT 10
|
|
#define MMU_CMD_TIMEOUT 45000ul //5min timeout for mmu commands (except P0)
|
|
#define MMU_P0_TIMEOUT 3000ul //timeout for P0 command: 3seconds
|
|
#define MMU_MAX_RESEND_ATTEMPTS 2
|
|
|
|
#ifdef MMU_HWRESET
|
|
#define MMU_RST_PIN 76
|
|
#endif //MMU_HWRESET
|
|
|
|
namespace
|
|
{
|
|
enum class S : uint_least8_t
|
|
{
|
|
WaitStealthMode,
|
|
GetFindaInit,
|
|
GetBuildNr,
|
|
GetVersion,
|
|
Init,
|
|
Disabled,
|
|
Idle,
|
|
GetFinda,
|
|
WaitCmd, //!< wait for command response
|
|
GetDrvError, //!< get power failures count
|
|
};
|
|
}
|
|
|
|
bool mmu_enabled = false;
|
|
bool mmu_ready = false;
|
|
bool mmu_fil_loaded = false; //if true: blocks execution of duplicit T-codes
|
|
|
|
static S mmu_state = S::Disabled;
|
|
|
|
MmuCmd mmu_cmd = MmuCmd::None;
|
|
|
|
//idler ir sensor
|
|
uint8_t mmu_idl_sens = 0;
|
|
bool ir_sensor_detected = false;
|
|
bool mmu_loading_flag = false;
|
|
|
|
uint8_t mmu_extruder = MMU_FILAMENT_UNKNOWN;
|
|
|
|
//! This variable probably has no meaning and is planed to be removed
|
|
uint8_t tmp_extruder = MMU_FILAMENT_UNKNOWN;
|
|
|
|
int8_t mmu_finda = -1;
|
|
|
|
int16_t mmu_version = -1;
|
|
|
|
int16_t mmu_buildnr = -1;
|
|
|
|
uint32_t mmu_last_request = 0;
|
|
uint32_t mmu_last_response = 0;
|
|
|
|
MmuCmd mmu_last_cmd = MmuCmd::None;
|
|
uint16_t mmu_power_failures = 0;
|
|
|
|
|
|
#ifdef MMU_DEBUG
|
|
static const auto DEBUG_PUTS_P = puts_P;
|
|
static const auto DEBUG_PRINTF_P = printf_P;
|
|
#else //MMU_DEBUG
|
|
#define DEBUG_PUTS_P(str)
|
|
#define DEBUG_PRINTF_P( __fmt, ... )
|
|
#endif //MMU_DEBUG
|
|
|
|
#if defined(MMU_FINDA_DEBUG) && defined(MMU_DEBUG)
|
|
static const auto FDEBUG_PUTS_P = puts_P;
|
|
static const auto FDEBUG_PRINTF_P = printf_P;
|
|
#else
|
|
#define FDEBUG_PUTS_P(str)
|
|
#define FDEBUG_PRINTF_P( __fmt, ... )
|
|
#endif //defined(MMU_FINDA_DEBUG) && defined(MMU_DEBUG)
|
|
|
|
|
|
//clear rx buffer
|
|
void mmu_clr_rx_buf(void)
|
|
{
|
|
while (fgetc(uart2io) >= 0);
|
|
}
|
|
|
|
//send command - puts
|
|
int mmu_puts_P(const char* str)
|
|
{
|
|
mmu_clr_rx_buf(); //clear rx buffer
|
|
int r = fputs_P(str, uart2io); //send command
|
|
mmu_last_request = _millis();
|
|
return r;
|
|
}
|
|
|
|
//send command - printf
|
|
int mmu_printf_P(const char* format, ...)
|
|
{
|
|
va_list args;
|
|
va_start(args, format);
|
|
mmu_clr_rx_buf(); //clear rx buffer
|
|
int r = vfprintf_P(uart2io, format, args); //send command
|
|
va_end(args);
|
|
mmu_last_request = _millis();
|
|
return r;
|
|
}
|
|
|
|
//check 'ok' response
|
|
int8_t mmu_rx_ok(void)
|
|
{
|
|
int8_t res = uart2_rx_str_P(PSTR("ok\n"));
|
|
if (res == 1) mmu_last_response = _millis();
|
|
return res;
|
|
}
|
|
|
|
//check 'start' response
|
|
int8_t mmu_rx_start(void)
|
|
{
|
|
int8_t res = uart2_rx_str_P(PSTR("start\n"));
|
|
if (res == 1) mmu_last_response = _millis();
|
|
return res;
|
|
}
|
|
|
|
//initialize mmu2 unit - first part - should be done at begining of startup process
|
|
void mmu_init(void)
|
|
{
|
|
#ifdef MMU_HWRESET
|
|
digitalWrite(MMU_RST_PIN, HIGH);
|
|
pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin
|
|
#endif //MMU_HWRESET
|
|
uart2_init(); //init uart2
|
|
_delay_ms(10); //wait 10ms for sure
|
|
mmu_reset(); //reset mmu (HW or SW), do not wait for response
|
|
mmu_state = S::Init;
|
|
PIN_INP(IR_SENSOR_PIN); //input mode
|
|
PIN_SET(IR_SENSOR_PIN); //pullup
|
|
}
|
|
|
|
//if IR_SENSOR defined, always returns true
|
|
//otherwise check for ir sensor and returns true if idler IR sensor was detected, otherwise returns false
|
|
bool check_for_ir_sensor()
|
|
{
|
|
#ifdef IR_SENSOR
|
|
return true;
|
|
#else //IR_SENSOR
|
|
|
|
bool detected = false;
|
|
//if IR_SENSOR_PIN input is low and pat9125sensor is not present we detected idler sensor
|
|
if ((PIN_GET(IR_SENSOR_PIN) == 0)
|
|
#ifdef PAT9125
|
|
&& fsensor_not_responding
|
|
#endif //PAT9125
|
|
)
|
|
{
|
|
detected = true;
|
|
//printf_P(PSTR("Idler IR sensor detected\n"));
|
|
}
|
|
else
|
|
{
|
|
//printf_P(PSTR("Idler IR sensor not detected\n"));
|
|
}
|
|
return detected;
|
|
#endif //IR_SENSOR
|
|
}
|
|
|
|
//mmu main loop - state machine processing
|
|
void mmu_loop(void)
|
|
{
|
|
static uint8_t mmu_attempt_nr = 0;
|
|
int filament = 0;
|
|
// printf_P(PSTR("MMU loop, state=%d\n"), mmu_state);
|
|
switch (mmu_state)
|
|
{
|
|
case S::Disabled:
|
|
return;
|
|
case S::Init:
|
|
if (mmu_rx_start() > 0)
|
|
{
|
|
DEBUG_PUTS_P(PSTR("MMU => 'start'"));
|
|
DEBUG_PUTS_P(PSTR("MMU <= 'S1'"));
|
|
mmu_puts_P(PSTR("S1\n")); //send 'read version' request
|
|
mmu_state = S::GetVersion;
|
|
}
|
|
else if (_millis() > 30000) //30sec after reset disable mmu
|
|
{
|
|
puts_P(PSTR("MMU not responding - DISABLED"));
|
|
mmu_state = S::Disabled;
|
|
}
|
|
return;
|
|
case S::GetVersion:
|
|
if (mmu_rx_ok() > 0)
|
|
{
|
|
fscanf_P(uart2io, PSTR("%u"), &mmu_version); //scan version from buffer
|
|
DEBUG_PRINTF_P(PSTR("MMU => '%dok'\n"), mmu_version);
|
|
DEBUG_PUTS_P(PSTR("MMU <= 'S2'"));
|
|
mmu_puts_P(PSTR("S2\n")); //send 'read buildnr' request
|
|
mmu_state = S::GetBuildNr;
|
|
}
|
|
return;
|
|
case S::GetBuildNr:
|
|
if (mmu_rx_ok() > 0)
|
|
{
|
|
fscanf_P(uart2io, PSTR("%u"), &mmu_buildnr); //scan buildnr from buffer
|
|
DEBUG_PRINTF_P(PSTR("MMU => '%dok'\n"), mmu_buildnr);
|
|
bool version_valid = mmu_check_version();
|
|
if (!version_valid) mmu_show_warning();
|
|
else puts_P(PSTR("MMU version valid"));
|
|
|
|
if ((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3_SNMM))
|
|
{
|
|
FDEBUG_PUTS_P(PSTR("MMU <= 'P0'"));
|
|
mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
|
|
mmu_state = S::GetFindaInit;
|
|
}
|
|
else
|
|
{
|
|
DEBUG_PUTS_P(PSTR("MMU <= 'M1'"));
|
|
mmu_puts_P(PSTR("M1\n")); //set mmu mode to stealth
|
|
mmu_state = S::WaitStealthMode;
|
|
}
|
|
|
|
}
|
|
return;
|
|
case S::WaitStealthMode:
|
|
if (mmu_rx_ok() > 0)
|
|
{
|
|
FDEBUG_PUTS_P(PSTR("MMU <= 'P0'"));
|
|
mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
|
|
mmu_state = S::GetFindaInit;
|
|
}
|
|
return;
|
|
case S::GetFindaInit:
|
|
if (mmu_rx_ok() > 0)
|
|
{
|
|
fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
|
|
FDEBUG_PRINTF_P(PSTR("MMU => '%dok'\n"), mmu_finda);
|
|
puts_P(PSTR("MMU - ENABLED"));
|
|
mmu_enabled = true;
|
|
mmu_state = S::Idle;
|
|
}
|
|
return;
|
|
case S::Idle:
|
|
if (mmu_cmd) //command request ?
|
|
{
|
|
if ((mmu_cmd >= MmuCmd::T0) && (mmu_cmd <= MmuCmd::T4))
|
|
{
|
|
filament = mmu_cmd - MmuCmd::T0;
|
|
DEBUG_PRINTF_P(PSTR("MMU <= 'T%d'\n"), filament);
|
|
mmu_printf_P(PSTR("T%d\n"), filament);
|
|
mmu_state = S::WaitCmd; // wait for response
|
|
mmu_fil_loaded = true;
|
|
mmu_idl_sens = 1;
|
|
}
|
|
else if ((mmu_cmd >= MmuCmd::L0) && (mmu_cmd <= MmuCmd::L4))
|
|
{
|
|
filament = mmu_cmd - MmuCmd::L0;
|
|
DEBUG_PRINTF_P(PSTR("MMU <= 'L%d'\n"), filament);
|
|
mmu_printf_P(PSTR("L%d\n"), filament);
|
|
mmu_state = S::WaitCmd; // wait for response
|
|
}
|
|
else if (mmu_cmd == MmuCmd::C0)
|
|
{
|
|
DEBUG_PRINTF_P(PSTR("MMU <= 'C0'\n"));
|
|
mmu_puts_P(PSTR("C0\n")); //send 'continue loading'
|
|
mmu_state = S::WaitCmd;
|
|
mmu_idl_sens = 1;
|
|
}
|
|
else if (mmu_cmd == MmuCmd::U0)
|
|
{
|
|
DEBUG_PRINTF_P(PSTR("MMU <= 'U0'\n"));
|
|
mmu_puts_P(PSTR("U0\n")); //send 'unload current filament'
|
|
mmu_fil_loaded = false;
|
|
mmu_state = S::WaitCmd;
|
|
}
|
|
else if ((mmu_cmd >= MmuCmd::E0) && (mmu_cmd <= MmuCmd::E4))
|
|
{
|
|
int filament = mmu_cmd - MmuCmd::E0;
|
|
DEBUG_PRINTF_P(PSTR("MMU <= 'E%d'\n"), filament);
|
|
mmu_printf_P(PSTR("E%d\n"), filament); //send eject filament
|
|
mmu_fil_loaded = false;
|
|
mmu_state = S::WaitCmd;
|
|
}
|
|
else if (mmu_cmd == MmuCmd::R0)
|
|
{
|
|
DEBUG_PRINTF_P(PSTR("MMU <= 'R0'\n"));
|
|
mmu_puts_P(PSTR("R0\n")); //send recover after eject
|
|
mmu_state = S::WaitCmd;
|
|
}
|
|
else if (mmu_cmd == MmuCmd::S3)
|
|
{
|
|
DEBUG_PRINTF_P(PSTR("MMU <= 'S3'\n"));
|
|
mmu_puts_P(PSTR("S3\n")); //send power failures request
|
|
mmu_state = S::GetDrvError;
|
|
}
|
|
mmu_last_cmd = mmu_cmd;
|
|
mmu_cmd = MmuCmd::None;
|
|
}
|
|
else if ((mmu_last_response + 300) < _millis()) //request every 300ms
|
|
{
|
|
#ifndef IR_SENSOR
|
|
if(check_for_ir_sensor()) ir_sensor_detected = true;
|
|
#endif //IR_SENSOR not defined
|
|
FDEBUG_PUTS_P(PSTR("MMU <= 'P0'"));
|
|
mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
|
|
mmu_state = S::GetFinda;
|
|
}
|
|
return;
|
|
case S::GetFinda: //response to command P0
|
|
if (mmu_rx_ok() > 0)
|
|
{
|
|
fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
|
|
FDEBUG_PRINTF_P(PSTR("MMU => '%dok'\n"), mmu_finda);
|
|
//printf_P(PSTR("Eact: %d\n"), int(e_active()));
|
|
if (!mmu_finda && CHECK_FSENSOR && fsensor_enabled) {
|
|
fsensor_stop_and_save_print();
|
|
enquecommand_front_P(PSTR("FSENSOR_RECOVER")); //then recover
|
|
ad_markDepleted(mmu_extruder);
|
|
if (lcd_autoDepleteEnabled() && !ad_allDepleted())
|
|
{
|
|
enquecommand_front_P(PSTR("M600 AUTO")); //save print and run M600 command
|
|
}
|
|
else
|
|
{
|
|
enquecommand_front_P(PSTR("M600")); //save print and run M600 command
|
|
}
|
|
}
|
|
mmu_state = S::Idle;
|
|
if (mmu_cmd == 0)
|
|
mmu_ready = true;
|
|
}
|
|
else if ((mmu_last_request + MMU_P0_TIMEOUT) < _millis())
|
|
{ //resend request after timeout (30s)
|
|
mmu_state = S::Idle;
|
|
}
|
|
return;
|
|
case S::WaitCmd: //response to mmu commands
|
|
if (mmu_idl_sens)
|
|
{
|
|
if (PIN_GET(IR_SENSOR_PIN) == 0 && mmu_loading_flag)
|
|
{
|
|
DEBUG_PRINTF_P(PSTR("MMU <= 'A'\n"));
|
|
mmu_puts_P(PSTR("A\n")); //send 'abort' request
|
|
mmu_idl_sens = 0;
|
|
//printf_P(PSTR("MMU IDLER_SENSOR = 0 - ABORT\n"));
|
|
}
|
|
//else
|
|
//printf_P(PSTR("MMU IDLER_SENSOR = 1 - WAIT\n"));
|
|
}
|
|
if (mmu_rx_ok() > 0)
|
|
{
|
|
DEBUG_PRINTF_P(PSTR("MMU => 'ok'\n"));
|
|
mmu_attempt_nr = 0;
|
|
mmu_last_cmd = MmuCmd::None;
|
|
mmu_ready = true;
|
|
mmu_state = S::Idle;
|
|
}
|
|
else if ((mmu_last_request + MMU_CMD_TIMEOUT) < _millis())
|
|
{ //resend request after timeout (5 min)
|
|
if (mmu_last_cmd)
|
|
{
|
|
if (mmu_attempt_nr++ < MMU_MAX_RESEND_ATTEMPTS) {
|
|
DEBUG_PRINTF_P(PSTR("MMU retry attempt nr. %d\n"), mmu_attempt_nr - 1);
|
|
mmu_cmd = mmu_last_cmd;
|
|
}
|
|
else {
|
|
mmu_cmd = MmuCmd::None;
|
|
mmu_last_cmd = MmuCmd::None; //check
|
|
mmu_attempt_nr = 0;
|
|
}
|
|
}
|
|
mmu_state = S::Idle;
|
|
}
|
|
return;
|
|
case S::GetDrvError:
|
|
if (mmu_rx_ok() > 0)
|
|
{
|
|
fscanf_P(uart2io, PSTR("%d"), &mmu_power_failures); //scan power failures
|
|
DEBUG_PRINTF_P(PSTR("MMU => 'ok'\n"));
|
|
mmu_last_cmd = MmuCmd::None;
|
|
mmu_ready = true;
|
|
mmu_state = S::Idle;
|
|
}
|
|
else if ((mmu_last_request + MMU_CMD_TIMEOUT) < _millis())
|
|
{ //resend request after timeout (5 min)
|
|
mmu_state = S::Idle;
|
|
}
|
|
}
|
|
}
|
|
|
|
void mmu_reset(void)
|
|
{
|
|
#ifdef MMU_HWRESET //HW - pulse reset pin
|
|
digitalWrite(MMU_RST_PIN, LOW);
|
|
_delay_us(100);
|
|
digitalWrite(MMU_RST_PIN, HIGH);
|
|
#else //SW - send X0 command
|
|
mmu_puts_P(PSTR("X0\n"));
|
|
#endif
|
|
}
|
|
|
|
int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
|
|
{
|
|
printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
|
|
mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
|
|
unsigned char timeout = MMU_TIMEOUT; //10x100ms
|
|
while ((mmu_rx_ok() <= 0) && (--timeout))
|
|
delay_keep_alive(MMU_TODELAY);
|
|
return timeout?1:0;
|
|
}
|
|
|
|
//! @brief Enqueue MMUv2 command
|
|
//!
|
|
//! Call manage_response() after enqueuing to process command.
|
|
//! If T command is enqueued, it disables current for extruder motor if TMC2130 driver present.
|
|
//! If T or L command is enqueued, it marks filament loaded in AutoDeplete module.
|
|
void mmu_command(MmuCmd cmd)
|
|
{
|
|
if ((cmd >= MmuCmd::T0) && (cmd <= MmuCmd::T4))
|
|
{
|
|
//disable extruder motor
|
|
#ifdef TMC2130
|
|
tmc2130_set_pwr(E_AXIS, 0);
|
|
#endif //TMC2130
|
|
//printf_P(PSTR("E-axis disabled\n"));
|
|
ad_markLoaded(cmd - MmuCmd::T0);
|
|
}
|
|
if ((cmd >= MmuCmd::L0) && (cmd <= MmuCmd::L4))
|
|
{
|
|
ad_markLoaded(cmd - MmuCmd::L0);
|
|
}
|
|
|
|
mmu_cmd = cmd;
|
|
mmu_ready = false;
|
|
}
|
|
|
|
//! @brief Rotate extruder idler to catch filament
|
|
//! @par synchronize
|
|
//! * true blocking call
|
|
//! * false non-blocking call
|
|
void mmu_load_step(bool synchronize)
|
|
{
|
|
current_position[E_AXIS] = current_position[E_AXIS] + MMU_LOAD_FEEDRATE * 0.1;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMU_LOAD_FEEDRATE, active_extruder);
|
|
if (synchronize) st_synchronize();
|
|
}
|
|
|
|
//! @brief Is nozzle hot enough to move extruder wheels and do we have idler sensor?
|
|
//!
|
|
//! Do load steps only if temperature is higher then min. temp for safe extrusion and
|
|
//! idler sensor present.
|
|
//! Otherwise "cold extrusion prevented" would be send to serial line periodically
|
|
//! and watchdog reset will be triggered by lack of keep_alive processing.
|
|
//!
|
|
//! @retval true temperature is high enough to move extruder
|
|
//! @retval false temperature is not high enough to move extruder, turned
|
|
//! off E-stepper to prevent over-heating and allow filament pull-out if necessary
|
|
bool can_extrude()
|
|
{
|
|
if ((degHotend(active_extruder) < EXTRUDE_MINTEMP) || !ir_sensor_detected)
|
|
{
|
|
disable_e0();
|
|
delay_keep_alive(100);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool mmu_get_response(uint8_t move)
|
|
{
|
|
mmu_loading_flag = false;
|
|
|
|
printf_P(PSTR("mmu_get_response - begin move:%d\n"), move);
|
|
KEEPALIVE_STATE(IN_PROCESS);
|
|
while (mmu_cmd != 0)
|
|
{
|
|
delay_keep_alive(100);
|
|
}
|
|
|
|
while (!mmu_ready)
|
|
{
|
|
if ((mmu_state != S::WaitCmd) && (mmu_last_cmd == 0))
|
|
break;
|
|
|
|
switch (move) {
|
|
case MMU_LOAD_MOVE:
|
|
mmu_loading_flag = true;
|
|
if (can_extrude()) mmu_load_step();
|
|
//don't rely on "ok" signal from mmu unit; if filament detected by idler sensor during loading stop loading movements to prevent infinite loading
|
|
if (PIN_GET(IR_SENSOR_PIN) == 0) move = MMU_NO_MOVE;
|
|
break;
|
|
case MMU_UNLOAD_MOVE:
|
|
if (PIN_GET(IR_SENSOR_PIN) == 0) //filament is still detected by idler sensor, printer helps with unlading
|
|
{
|
|
if (can_extrude())
|
|
{
|
|
printf_P(PSTR("Unload 1\n"));
|
|
current_position[E_AXIS] = current_position[E_AXIS] - MMU_LOAD_FEEDRATE * MMU_LOAD_TIME_MS*0.001;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMU_LOAD_FEEDRATE, active_extruder);
|
|
st_synchronize();
|
|
}
|
|
}
|
|
else //filament was unloaded from idler, no additional movements needed
|
|
{
|
|
printf_P(PSTR("Unloading finished 1\n"));
|
|
disable_e0(); //turn off E-stepper to prevent overheating and alow filament pull-out if necessary
|
|
move = MMU_NO_MOVE;
|
|
}
|
|
break;
|
|
case MMU_TCODE_MOVE: //first do unload and then continue with infinite loading movements
|
|
if (PIN_GET(IR_SENSOR_PIN) == 0) //filament detected by idler sensor, we must unload first
|
|
{
|
|
if (can_extrude())
|
|
{
|
|
printf_P(PSTR("Unload 2\n"));
|
|
current_position[E_AXIS] = current_position[E_AXIS] - MMU_LOAD_FEEDRATE * MMU_LOAD_TIME_MS*0.001;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMU_LOAD_FEEDRATE, active_extruder);
|
|
st_synchronize();
|
|
}
|
|
}
|
|
else //delay to allow mmu unit to pull out filament from bondtech gears and then start with infinite loading
|
|
{
|
|
printf_P(PSTR("Unloading finished 2\n"));
|
|
disable_e0(); //turn off E-stepper to prevent overheating and alow filament pull-out if necessary
|
|
delay_keep_alive(MMU_LOAD_TIME_MS);
|
|
move = MMU_LOAD_MOVE;
|
|
printf_P(PSTR("mmu_get_response - begin move:%d\n"), move);
|
|
}
|
|
break;
|
|
case MMU_NO_MOVE:
|
|
default:
|
|
delay_keep_alive(100);
|
|
break;
|
|
}
|
|
}
|
|
printf_P(PSTR("mmu_get_response() returning: %d\n"), mmu_ready);
|
|
bool ret = mmu_ready;
|
|
mmu_ready = false;
|
|
// printf_P(PSTR("mmu_get_response - end %d\n"), ret?1:0);
|
|
return ret;
|
|
}
|
|
|
|
//! @brief Wait for active extruder to reach temperature set
|
|
//!
|
|
//! This function is blocking and showing lcd_wait_for_heater() screen
|
|
//! which is constantly updated with nozzle temperature.
|
|
void mmu_wait_for_heater_blocking()
|
|
{
|
|
while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5)
|
|
{
|
|
delay_keep_alive(1000);
|
|
lcd_wait_for_heater();
|
|
}
|
|
}
|
|
|
|
void manage_response(bool move_axes, bool turn_off_nozzle, uint8_t move)
|
|
{
|
|
bool response = false;
|
|
mmu_print_saved = false;
|
|
bool lcd_update_was_enabled = false;
|
|
float hotend_temp_bckp = degTargetHotend(active_extruder);
|
|
float z_position_bckp = current_position[Z_AXIS];
|
|
float x_position_bckp = current_position[X_AXIS];
|
|
float y_position_bckp = current_position[Y_AXIS];
|
|
uint8_t screen = 0; //used for showing multiscreen messages
|
|
|
|
while(!response)
|
|
{
|
|
response = mmu_get_response(move); //wait for "ok" from mmu
|
|
if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
|
|
if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
|
|
|
|
uint8_t mmu_fail = eeprom_read_byte((uint8_t*)EEPROM_MMU_FAIL);
|
|
uint16_t mmu_fail_tot = eeprom_read_word((uint16_t*)EEPROM_MMU_FAIL_TOT);
|
|
if(mmu_fail < 255) eeprom_update_byte((uint8_t*)EEPROM_MMU_FAIL, mmu_fail + 1);
|
|
if(mmu_fail_tot < 65535) eeprom_update_word((uint16_t*)EEPROM_MMU_FAIL_TOT, mmu_fail_tot + 1);
|
|
|
|
if (lcd_update_enabled) {
|
|
lcd_update_was_enabled = true;
|
|
lcd_update_enable(false);
|
|
}
|
|
st_synchronize();
|
|
mmu_print_saved = true;
|
|
printf_P(PSTR("MMU not responding\n"));
|
|
hotend_temp_bckp = degTargetHotend(active_extruder);
|
|
if (move_axes) {
|
|
z_position_bckp = current_position[Z_AXIS];
|
|
x_position_bckp = current_position[X_AXIS];
|
|
y_position_bckp = current_position[Y_AXIS];
|
|
|
|
//lift z
|
|
current_position[Z_AXIS] += Z_PAUSE_LIFT;
|
|
if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
|
|
st_synchronize();
|
|
|
|
//Move XY to side
|
|
current_position[X_AXIS] = X_PAUSE_POS;
|
|
current_position[Y_AXIS] = Y_PAUSE_POS;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
|
|
st_synchronize();
|
|
}
|
|
if (turn_off_nozzle) {
|
|
//set nozzle target temperature to 0
|
|
setAllTargetHotends(0);
|
|
}
|
|
disable_e0(); //turn off E-stepper to prevent overheating and alow filament pull-out if necessary
|
|
}
|
|
|
|
//first three lines are used for printing multiscreen message; last line contains measured and target nozzle temperature
|
|
if (screen == 0) { //screen 0
|
|
lcd_display_message_fullscreen_P(_i("MMU needs user attention."));
|
|
screen++;
|
|
}
|
|
else { //screen 1
|
|
if((degTargetHotend(active_extruder) == 0) && turn_off_nozzle) lcd_display_message_fullscreen_P(_i("Press the knob to resume nozzle temperature."));
|
|
else lcd_display_message_fullscreen_P(_i("Fix the issue and then press button on MMU unit."));
|
|
screen=0;
|
|
}
|
|
|
|
lcd_set_degree();
|
|
|
|
|
|
//5 seconds delay
|
|
for (uint8_t i = 0; i < 5; i++) {
|
|
if (lcd_clicked()) {
|
|
setTargetHotend(hotend_temp_bckp, active_extruder);
|
|
/// mmu_cmd = mmu_last_cmd;
|
|
break;
|
|
}
|
|
|
|
//Print the hotend temperature (9 chars total) and fill rest of the line with space
|
|
lcd_set_cursor(0, 4); //line 4
|
|
int chars = lcd_printf_P(_N("%c%3d/%d%c"), LCD_STR_THERMOMETER[0],(int)(degHotend(active_extruder) + 0.5), (int)(degTargetHotend(active_extruder) + 0.5), LCD_STR_DEGREE[0]);
|
|
lcd_space(9 - chars);
|
|
delay_keep_alive(1000);
|
|
}
|
|
}
|
|
else if (mmu_print_saved) {
|
|
printf_P(PSTR("MMU starts responding\n"));
|
|
if (turn_off_nozzle)
|
|
{
|
|
lcd_clear();
|
|
setTargetHotend(hotend_temp_bckp, active_extruder);
|
|
if (((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5)) {
|
|
lcd_display_message_fullscreen_P(_i("MMU OK. Resuming temperature..."));
|
|
delay_keep_alive(3000);
|
|
}
|
|
mmu_wait_for_heater_blocking();
|
|
}
|
|
if (move_axes) {
|
|
lcd_clear();
|
|
lcd_display_message_fullscreen_P(_i("MMU OK. Resuming position..."));
|
|
current_position[X_AXIS] = x_position_bckp;
|
|
current_position[Y_AXIS] = y_position_bckp;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
|
|
st_synchronize();
|
|
current_position[Z_AXIS] = z_position_bckp;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
|
|
st_synchronize();
|
|
}
|
|
else {
|
|
lcd_clear();
|
|
lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
|
|
delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
|
|
}
|
|
}
|
|
}
|
|
if (lcd_update_was_enabled) lcd_update_enable(true);
|
|
#ifdef TMC2130
|
|
//enable extruder motor (disabled in mmu_command, start of T-code processing)
|
|
tmc2130_set_pwr(E_AXIS, 1);
|
|
//printf_P(PSTR("E-axis enabled\n"));
|
|
#endif //TMC2130
|
|
}
|
|
|
|
//! @brief load filament to nozzle of multimaterial printer
|
|
//!
|
|
//! This function is used only only after T? (user select filament) and M600 (change filament).
|
|
//! It is not used after T0 .. T4 command (select filament), in such case, gcode is responsible for loading
|
|
//! filament to nozzle.
|
|
//!
|
|
void mmu_load_to_nozzle()
|
|
{
|
|
st_synchronize();
|
|
|
|
bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
|
|
if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
|
|
if (ir_sensor_detected)
|
|
{
|
|
current_position[E_AXIS] += 3.0f;
|
|
}
|
|
else
|
|
{
|
|
current_position[E_AXIS] += 7.2f;
|
|
}
|
|
float feedrate = 562;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
|
|
st_synchronize();
|
|
current_position[E_AXIS] += 14.4f;
|
|
feedrate = 871;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
|
|
st_synchronize();
|
|
current_position[E_AXIS] += 36.0f;
|
|
feedrate = 1393;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
|
|
st_synchronize();
|
|
current_position[E_AXIS] += 14.4f;
|
|
feedrate = 871;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
|
|
st_synchronize();
|
|
if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
|
|
}
|
|
|
|
void mmu_M600_wait_and_beep() {
|
|
//Beep and wait for user to remove old filament and prepare new filament for load
|
|
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
|
|
int counterBeep = 0;
|
|
lcd_display_message_fullscreen_P(_i("Remove old filament and press the knob to start loading new filament."));
|
|
bool bFirst=true;
|
|
|
|
while (!lcd_clicked()){
|
|
manage_heater();
|
|
manage_inactivity(true);
|
|
|
|
#if BEEPER > 0
|
|
if (counterBeep == 500) {
|
|
counterBeep = 0;
|
|
}
|
|
SET_OUTPUT(BEEPER);
|
|
if (counterBeep == 0) {
|
|
if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
|
|
{
|
|
bFirst=false;
|
|
WRITE(BEEPER, HIGH);
|
|
}
|
|
}
|
|
if (counterBeep == 20) {
|
|
WRITE(BEEPER, LOW);
|
|
}
|
|
|
|
counterBeep++;
|
|
#endif //BEEPER > 0
|
|
|
|
delay_keep_alive(4);
|
|
}
|
|
WRITE(BEEPER, LOW);
|
|
}
|
|
|
|
void mmu_M600_load_filament(bool automatic)
|
|
{
|
|
//load filament for mmu v2
|
|
tmp_extruder = mmu_extruder;
|
|
if (!automatic) {
|
|
#ifdef MMU_M600_SWITCH_EXTRUDER
|
|
bool yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
|
|
if(yes) tmp_extruder = choose_extruder_menu();
|
|
#endif //MMU_M600_SWITCH_EXTRUDER
|
|
}
|
|
else {
|
|
tmp_extruder = ad_getAlternative(tmp_extruder);
|
|
}
|
|
lcd_update_enable(false);
|
|
lcd_clear();
|
|
lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
|
|
lcd_print(" ");
|
|
lcd_print(tmp_extruder + 1);
|
|
snmm_filaments_used |= (1 << tmp_extruder); //for stop print
|
|
|
|
// printf_P(PSTR("T code: %d \n"), tmp_extruder);
|
|
// mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
|
|
mmu_command(static_cast<MmuCmd>(MmuCmd::T0 + tmp_extruder));
|
|
|
|
manage_response(false, true, MMU_LOAD_MOVE);
|
|
mmu_continue_loading();
|
|
mmu_extruder = tmp_extruder; //filament change is finished
|
|
|
|
mmu_load_to_nozzle();
|
|
load_filament_final_feed();
|
|
st_synchronize();
|
|
}
|
|
|
|
|
|
#ifdef SNMM
|
|
void extr_mov(float shift, float feed_rate)
|
|
{ //move extruder no matter what the current heater temperature is
|
|
set_extrude_min_temp(.0);
|
|
current_position[E_AXIS] += shift;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
|
|
set_extrude_min_temp(EXTRUDE_MINTEMP);
|
|
}
|
|
#endif //SNMM
|
|
|
|
|
|
void change_extr(int
|
|
#ifdef SNMM
|
|
extr
|
|
#endif //SNMM
|
|
) { //switches multiplexer for extruders
|
|
#ifdef SNMM
|
|
st_synchronize();
|
|
_delay(100);
|
|
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
|
|
mmu_extruder = extr;
|
|
|
|
pinMode(E_MUX0_PIN, OUTPUT);
|
|
pinMode(E_MUX1_PIN, OUTPUT);
|
|
|
|
switch (extr) {
|
|
case 1:
|
|
WRITE(E_MUX0_PIN, HIGH);
|
|
WRITE(E_MUX1_PIN, LOW);
|
|
|
|
break;
|
|
case 2:
|
|
WRITE(E_MUX0_PIN, LOW);
|
|
WRITE(E_MUX1_PIN, HIGH);
|
|
|
|
break;
|
|
case 3:
|
|
WRITE(E_MUX0_PIN, HIGH);
|
|
WRITE(E_MUX1_PIN, HIGH);
|
|
|
|
break;
|
|
default:
|
|
WRITE(E_MUX0_PIN, LOW);
|
|
WRITE(E_MUX1_PIN, LOW);
|
|
|
|
break;
|
|
}
|
|
_delay(100);
|
|
#endif
|
|
}
|
|
|
|
int get_ext_nr()
|
|
{ //reads multiplexer input pins and return current extruder number (counted from 0)
|
|
#ifndef SNMM
|
|
return(mmu_extruder); //update needed
|
|
#else
|
|
return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
|
|
#endif
|
|
}
|
|
|
|
|
|
void display_loading()
|
|
{
|
|
switch (mmu_extruder)
|
|
{
|
|
case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
|
|
case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
|
|
case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
|
|
default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
|
|
}
|
|
}
|
|
|
|
void extr_adj(int extruder) //loading filament for SNMM
|
|
{
|
|
#ifndef SNMM
|
|
MmuCmd cmd = static_cast<MmuCmd>(MmuCmd::L0 + extruder);
|
|
if (cmd > MmuCmd::L4)
|
|
{
|
|
printf_P(PSTR("Filament out of range %d \n"),extruder);
|
|
return;
|
|
}
|
|
mmu_command(cmd);
|
|
|
|
//show which filament is currently loaded
|
|
|
|
lcd_update_enable(false);
|
|
lcd_clear();
|
|
lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
|
|
//if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
|
|
//else lcd.print(" ");
|
|
lcd_print(" ");
|
|
lcd_print(extruder + 1);
|
|
|
|
// get response
|
|
manage_response(false, false);
|
|
|
|
lcd_update_enable(true);
|
|
|
|
|
|
//lcd_return_to_status();
|
|
#else
|
|
|
|
bool correct;
|
|
max_feedrate[E_AXIS] =80;
|
|
//max_feedrate[E_AXIS] = 50;
|
|
START:
|
|
lcd_clear();
|
|
lcd_set_cursor(0, 0);
|
|
switch (extruder) {
|
|
case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
|
|
case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
|
|
case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
|
|
default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
|
|
}
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
do{
|
|
extr_mov(0.001,1000);
|
|
delay_keep_alive(2);
|
|
} while (!lcd_clicked());
|
|
//delay_keep_alive(500);
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
st_synchronize();
|
|
//correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
|
|
//if (!correct) goto START;
|
|
//extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
|
|
//extr_mov(BOWDEN_LENGTH/2.f, 500);
|
|
extr_mov(bowden_length[extruder], 500);
|
|
lcd_clear();
|
|
lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
|
|
if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
|
|
else lcd_print(" ");
|
|
lcd_print(mmu_extruder + 1);
|
|
lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
|
|
st_synchronize();
|
|
max_feedrate[E_AXIS] = 50;
|
|
lcd_update_enable(true);
|
|
lcd_return_to_status();
|
|
lcdDrawUpdate = 2;
|
|
#endif
|
|
}
|
|
|
|
struct E_step
|
|
{
|
|
float extrude; //!< extrude distance in mm
|
|
float feed_rate; //!< feed rate in mm/s
|
|
};
|
|
static const E_step ramming_sequence[] PROGMEM =
|
|
{
|
|
{1.0, 1000.0/60},
|
|
{1.0, 1500.0/60},
|
|
{2.0, 2000.0/60},
|
|
{1.5, 3000.0/60},
|
|
{2.5, 4000.0/60},
|
|
{-15.0, 5000.0/60},
|
|
{-14.0, 1200.0/60},
|
|
{-6.0, 600.0/60},
|
|
{10.0, 700.0/60},
|
|
{-10.0, 400.0/60},
|
|
{-50.0, 2000.0/60},
|
|
};
|
|
|
|
//! @brief Unload sequence to optimize shape of the tip of the unloaded filament
|
|
void mmu_filament_ramming()
|
|
{
|
|
for(uint8_t i = 0; i < (sizeof(ramming_sequence)/sizeof(E_step));++i)
|
|
{
|
|
current_position[E_AXIS] += pgm_read_float(&(ramming_sequence[i].extrude));
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
|
|
current_position[E_AXIS], pgm_read_float(&(ramming_sequence[i].feed_rate)), active_extruder);
|
|
st_synchronize();
|
|
}
|
|
}
|
|
|
|
void extr_unload()
|
|
{ //unload just current filament for multimaterial printers
|
|
#ifdef SNMM
|
|
float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
|
|
float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
|
|
uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
|
|
#endif
|
|
|
|
if (degHotend0() > EXTRUDE_MINTEMP)
|
|
{
|
|
#ifndef SNMM
|
|
st_synchronize();
|
|
|
|
//show which filament is currently unloaded
|
|
lcd_update_enable(false);
|
|
lcd_clear();
|
|
lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
|
|
lcd_print(" ");
|
|
if (mmu_extruder == MMU_FILAMENT_UNKNOWN) lcd_print(" ");
|
|
else lcd_print(mmu_extruder + 1);
|
|
|
|
mmu_filament_ramming();
|
|
|
|
mmu_command(MmuCmd::U0);
|
|
// get response
|
|
manage_response(false, true, MMU_UNLOAD_MOVE);
|
|
|
|
lcd_update_enable(true);
|
|
#else //SNMM
|
|
|
|
lcd_clear();
|
|
lcd_display_message_fullscreen_P(PSTR(""));
|
|
max_feedrate[E_AXIS] = 50;
|
|
lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
|
|
lcd_print(" ");
|
|
lcd_print(mmu_extruder + 1);
|
|
lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
|
|
if (current_position[Z_AXIS] < 15) {
|
|
current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
|
|
}
|
|
|
|
current_position[E_AXIS] += 10; //extrusion
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
|
|
st_current_set(2, E_MOTOR_HIGH_CURRENT);
|
|
if (current_temperature[0] < 230) { //PLA & all other filaments
|
|
current_position[E_AXIS] += 5.4;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
|
|
current_position[E_AXIS] += 3.2;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
current_position[E_AXIS] += 3;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
|
|
}
|
|
else { //ABS
|
|
current_position[E_AXIS] += 3.1;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
|
|
current_position[E_AXIS] += 3.1;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
|
|
current_position[E_AXIS] += 4;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
/*current_position[X_AXIS] += 23; //delay
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
|
|
current_position[X_AXIS] -= 23; //delay
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
|
|
delay_keep_alive(4700);
|
|
}
|
|
|
|
max_feedrate[E_AXIS] = 80;
|
|
current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
|
|
current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
|
|
st_synchronize();
|
|
//st_current_init();
|
|
if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
|
|
else st_current_set(2, tmp_motor_loud[2]);
|
|
lcd_update_enable(true);
|
|
lcd_return_to_status();
|
|
max_feedrate[E_AXIS] = 50;
|
|
#endif //SNMM
|
|
}
|
|
else
|
|
{
|
|
show_preheat_nozzle_warning();
|
|
}
|
|
//lcd_return_to_status();
|
|
}
|
|
|
|
//wrapper functions for loading filament
|
|
void extr_adj_0()
|
|
{
|
|
#ifndef SNMM
|
|
enquecommand_P(PSTR("M701 E0"));
|
|
#else
|
|
change_extr(0);
|
|
extr_adj(0);
|
|
#endif
|
|
}
|
|
|
|
void extr_adj_1()
|
|
{
|
|
#ifndef SNMM
|
|
enquecommand_P(PSTR("M701 E1"));
|
|
#else
|
|
change_extr(1);
|
|
extr_adj(1);
|
|
#endif
|
|
}
|
|
|
|
void extr_adj_2()
|
|
{
|
|
#ifndef SNMM
|
|
enquecommand_P(PSTR("M701 E2"));
|
|
#else
|
|
change_extr(2);
|
|
extr_adj(2);
|
|
#endif
|
|
}
|
|
|
|
void extr_adj_3()
|
|
{
|
|
#ifndef SNMM
|
|
enquecommand_P(PSTR("M701 E3"));
|
|
#else
|
|
change_extr(3);
|
|
extr_adj(3);
|
|
#endif
|
|
}
|
|
|
|
void extr_adj_4()
|
|
{
|
|
#ifndef SNMM
|
|
enquecommand_P(PSTR("M701 E4"));
|
|
#else
|
|
change_extr(4);
|
|
extr_adj(4);
|
|
#endif
|
|
}
|
|
|
|
void mmu_load_to_nozzle_0()
|
|
{
|
|
lcd_mmu_load_to_nozzle(0);
|
|
}
|
|
|
|
void mmu_load_to_nozzle_1()
|
|
{
|
|
lcd_mmu_load_to_nozzle(1);
|
|
}
|
|
|
|
void mmu_load_to_nozzle_2()
|
|
{
|
|
lcd_mmu_load_to_nozzle(2);
|
|
}
|
|
|
|
void mmu_load_to_nozzle_3()
|
|
{
|
|
lcd_mmu_load_to_nozzle(3);
|
|
}
|
|
|
|
void mmu_load_to_nozzle_4()
|
|
{
|
|
lcd_mmu_load_to_nozzle(4);
|
|
}
|
|
|
|
void mmu_eject_fil_0()
|
|
{
|
|
mmu_eject_filament(0, true);
|
|
}
|
|
|
|
void mmu_eject_fil_1()
|
|
{
|
|
mmu_eject_filament(1, true);
|
|
}
|
|
|
|
void mmu_eject_fil_2()
|
|
{
|
|
mmu_eject_filament(2, true);
|
|
}
|
|
|
|
void mmu_eject_fil_3()
|
|
{
|
|
mmu_eject_filament(3, true);
|
|
}
|
|
|
|
void mmu_eject_fil_4()
|
|
{
|
|
mmu_eject_filament(4, true);
|
|
}
|
|
|
|
void load_all()
|
|
{
|
|
#ifndef SNMM
|
|
enquecommand_P(PSTR("M701 E0"));
|
|
enquecommand_P(PSTR("M701 E1"));
|
|
enquecommand_P(PSTR("M701 E2"));
|
|
enquecommand_P(PSTR("M701 E3"));
|
|
enquecommand_P(PSTR("M701 E4"));
|
|
#else
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
change_extr(i);
|
|
extr_adj(i);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
//wrapper functions for changing extruders
|
|
void extr_change_0()
|
|
{
|
|
change_extr(0);
|
|
lcd_return_to_status();
|
|
}
|
|
|
|
void extr_change_1()
|
|
{
|
|
change_extr(1);
|
|
lcd_return_to_status();
|
|
}
|
|
|
|
void extr_change_2()
|
|
{
|
|
change_extr(2);
|
|
lcd_return_to_status();
|
|
}
|
|
|
|
void extr_change_3()
|
|
{
|
|
change_extr(3);
|
|
lcd_return_to_status();
|
|
}
|
|
|
|
#ifdef SNMM
|
|
//wrapper functions for unloading filament
|
|
void extr_unload_all()
|
|
{
|
|
if (degHotend0() > EXTRUDE_MINTEMP)
|
|
{
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
change_extr(i);
|
|
extr_unload();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
show_preheat_nozzle_warning();
|
|
lcd_return_to_status();
|
|
}
|
|
}
|
|
|
|
//unloading just used filament (for snmm)
|
|
void extr_unload_used()
|
|
{
|
|
if (degHotend0() > EXTRUDE_MINTEMP) {
|
|
for (int i = 0; i < 4; i++) {
|
|
if (snmm_filaments_used & (1 << i)) {
|
|
change_extr(i);
|
|
extr_unload();
|
|
}
|
|
}
|
|
snmm_filaments_used = 0;
|
|
}
|
|
else {
|
|
show_preheat_nozzle_warning();
|
|
lcd_return_to_status();
|
|
}
|
|
}
|
|
#endif //SNMM
|
|
|
|
void extr_unload_0()
|
|
{
|
|
change_extr(0);
|
|
extr_unload();
|
|
}
|
|
|
|
void extr_unload_1()
|
|
{
|
|
change_extr(1);
|
|
extr_unload();
|
|
}
|
|
|
|
void extr_unload_2()
|
|
{
|
|
change_extr(2);
|
|
extr_unload();
|
|
}
|
|
|
|
void extr_unload_3()
|
|
{
|
|
change_extr(3);
|
|
extr_unload();
|
|
}
|
|
|
|
void extr_unload_4()
|
|
{
|
|
change_extr(4);
|
|
extr_unload();
|
|
}
|
|
|
|
bool mmu_check_version()
|
|
{
|
|
return (mmu_buildnr >= MMU_REQUIRED_FW_BUILDNR);
|
|
}
|
|
|
|
void mmu_show_warning()
|
|
{
|
|
printf_P(PSTR("MMU2 firmware version invalid. Required version: build number %d or higher."), MMU_REQUIRED_FW_BUILDNR);
|
|
kill(_i("Please update firmware in your MMU2. Waiting for reset."));
|
|
}
|
|
|
|
void lcd_mmu_load_to_nozzle(uint8_t filament_nr)
|
|
{
|
|
if (degHotend0() > EXTRUDE_MINTEMP)
|
|
{
|
|
tmp_extruder = filament_nr;
|
|
lcd_update_enable(false);
|
|
lcd_clear();
|
|
lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
|
|
lcd_print(" ");
|
|
lcd_print(tmp_extruder + 1);
|
|
mmu_command(static_cast<MmuCmd>(MmuCmd::T0 + tmp_extruder));
|
|
manage_response(true, true, MMU_TCODE_MOVE);
|
|
mmu_continue_loading();
|
|
mmu_extruder = tmp_extruder; //filament change is finished
|
|
mmu_load_to_nozzle();
|
|
load_filament_final_feed();
|
|
st_synchronize();
|
|
custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
|
|
lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
|
|
lcd_return_to_status();
|
|
lcd_update_enable(true);
|
|
lcd_load_filament_color_check();
|
|
lcd_setstatuspgm(_T(WELCOME_MSG));
|
|
custom_message_type = CUSTOM_MSG_TYPE_STATUS;
|
|
}
|
|
else
|
|
{
|
|
show_preheat_nozzle_warning();
|
|
}
|
|
}
|
|
|
|
void mmu_eject_filament(uint8_t filament, bool recover)
|
|
{
|
|
if (filament < 5)
|
|
{
|
|
|
|
if (degHotend0() > EXTRUDE_MINTEMP)
|
|
{
|
|
st_synchronize();
|
|
|
|
{
|
|
LcdUpdateDisabler disableLcdUpdate;
|
|
lcd_clear();
|
|
lcd_set_cursor(0, 1); lcd_puts_P(_i("Ejecting filament"));
|
|
current_position[E_AXIS] -= 80;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
|
|
st_synchronize();
|
|
mmu_command(static_cast<MmuCmd>(MmuCmd::E0 + filament));
|
|
manage_response(false, false, MMU_UNLOAD_MOVE);
|
|
if (recover)
|
|
{
|
|
lcd_show_fullscreen_message_and_wait_P(_i("Please remove filament and then press the knob."));
|
|
mmu_command(MmuCmd::R0);
|
|
manage_response(false, false);
|
|
}
|
|
|
|
}
|
|
}
|
|
else
|
|
{
|
|
show_preheat_nozzle_warning();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
puts_P(PSTR("Filament nr out of range!"));
|
|
}
|
|
}
|
|
|
|
static void load_more()
|
|
{
|
|
for (uint8_t i = 0; i < MMU_IDLER_SENSOR_ATTEMPTS_NR; i++)
|
|
{
|
|
if (PIN_GET(IR_SENSOR_PIN) == 0) return;
|
|
DEBUG_PRINTF_P(PSTR("Additional load attempt nr. %d\n"), i);
|
|
mmu_command(MmuCmd::C0);
|
|
manage_response(true, true, MMU_LOAD_MOVE);
|
|
}
|
|
}
|
|
|
|
void mmu_continue_loading()
|
|
{
|
|
if (ir_sensor_detected)
|
|
{
|
|
load_more();
|
|
|
|
if (PIN_GET(IR_SENSOR_PIN) != 0) {
|
|
uint8_t mmu_load_fail = eeprom_read_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL);
|
|
uint16_t mmu_load_fail_tot = eeprom_read_word((uint16_t*)EEPROM_MMU_LOAD_FAIL_TOT);
|
|
if(mmu_load_fail < 255) eeprom_update_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL, mmu_load_fail + 1);
|
|
if(mmu_load_fail_tot < 65535) eeprom_update_word((uint16_t*)EEPROM_MMU_LOAD_FAIL_TOT, mmu_load_fail_tot + 1);
|
|
|
|
mmu_command(static_cast<MmuCmd>(MmuCmd::T0 + tmp_extruder));
|
|
manage_response(true, true, MMU_TCODE_MOVE);
|
|
load_more();
|
|
|
|
if (PIN_GET(IR_SENSOR_PIN) != 0)
|
|
{
|
|
//pause print, show error message and then repeat last T-code
|
|
stop_and_save_print_to_ram(0, 0);
|
|
|
|
//lift z
|
|
current_position[Z_AXIS] += Z_PAUSE_LIFT;
|
|
if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
|
|
st_synchronize();
|
|
|
|
//Move XY to side
|
|
current_position[X_AXIS] = X_PAUSE_POS;
|
|
current_position[Y_AXIS] = Y_PAUSE_POS;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
|
|
st_synchronize();
|
|
|
|
mmu_command(MmuCmd::U0);
|
|
manage_response(false, true, MMU_UNLOAD_MOVE);
|
|
|
|
setAllTargetHotends(0);
|
|
lcd_setstatuspgm(_i("MMU load failed "));////MSG_RECOVERING_PRINT c=20 r=1
|
|
mmu_fil_loaded = false; //so we can retry same T-code again
|
|
isPrintPaused = true;
|
|
}
|
|
}
|
|
}
|
|
else { //mmu_ir_sensor_detected == false
|
|
mmu_command(MmuCmd::C0);
|
|
}
|
|
}
|