PrusaSlicer-NonPlainar/tests/libslic3r/test_geometry.cpp

419 lines
17 KiB
C++
Raw Normal View History

#include <catch2/catch.hpp>
#include "libslic3r/Point.hpp"
#include "libslic3r/BoundingBox.hpp"
#include "libslic3r/Polygon.hpp"
#include "libslic3r/Polyline.hpp"
#include "libslic3r/Line.hpp"
#include "libslic3r/Geometry.hpp"
#include "libslic3r/ClipperUtils.hpp"
#include "libslic3r/ShortestPath.hpp"
using namespace Slic3r;
TEST_CASE("Polygon::contains works properly", "[Geometry]"){
// this test was failing on Windows (GH #1950)
Slic3r::Polygon polygon(std::vector<Point>({
Point(207802834,-57084522),
Point(196528149,-37556190),
Point(173626821,-25420928),
Point(171285751,-21366123),
Point(118673592,-21366123),
Point(116332562,-25420928),
Point(93431208,-37556191),
Point(82156517,-57084523),
Point(129714478,-84542120),
Point(160244873,-84542120)
}));
Point point(95706562, -57294774);
REQUIRE(polygon.contains(point));
}
SCENARIO("Intersections of line segments", "[Geometry]"){
GIVEN("Integer coordinates"){
Line line1(Point(5,15),Point(30,15));
Line line2(Point(10,20), Point(10,10));
THEN("The intersection is valid"){
Point point;
line1.intersection(line2,&point);
REQUIRE(Point(10,15) == point);
}
}
GIVEN("Scaled coordinates"){
Line line1(Point(73.6310778185108 / 0.00001, 371.74239268924 / 0.00001), Point(73.6310778185108 / 0.00001, 501.74239268924 / 0.00001));
Line line2(Point(75/0.00001, 437.9853/0.00001), Point(62.7484/0.00001, 440.4223/0.00001));
THEN("There is still an intersection"){
Point point;
REQUIRE(line1.intersection(line2,&point));
}
}
}
/*
Tests for unused methods still written in perl
{
my $polygon = Slic3r::Polygon->new(
[45919000, 515273900], [14726100, 461246400], [14726100, 348753500], [33988700, 315389800],
[43749700, 343843000], [45422300, 352251500], [52362100, 362637800], [62748400, 369577600],
[75000000, 372014700], [87251500, 369577600], [97637800, 362637800], [104577600, 352251500],
[107014700, 340000000], [104577600, 327748400], [97637800, 317362100], [87251500, 310422300],
[82789200, 309534700], [69846100, 294726100], [254081000, 294726100], [285273900, 348753500],
[285273900, 461246400], [254081000, 515273900],
);
# this points belongs to $polyline
# note: it's actually a vertex, while we should better check an intermediate point
my $point = Slic3r::Point->new(104577600, 327748400);
local $Slic3r::Geometry::epsilon = 1E-5;
is_deeply Slic3r::Geometry::polygon_segment_having_point($polygon, $point)->pp,
[ [107014700, 340000000], [104577600, 327748400] ],
'polygon_segment_having_point';
}
{
auto point = Point(736310778.185108, 5017423926.8924);
auto line = Line(Point((long int) 627484000, (long int) 3695776000), Point((long int) 750000000, (long int)3720147000));
//is Slic3r::Geometry::point_in_segment($point, $line), 0, 'point_in_segment';
}
// Possible to delete
{
//my $p1 = [10, 10];
//my $p2 = [10, 20];
//my $p3 = [10, 30];
//my $p4 = [20, 20];
//my $p5 = [0, 20];
THEN("Points in a line give the correct angles"){
//is Slic3r::Geometry::angle3points($p2, $p3, $p1), PI(), 'angle3points';
//is Slic3r::Geometry::angle3points($p2, $p1, $p3), PI(), 'angle3points';
}
THEN("Left turns give the correct angle"){
//is Slic3r::Geometry::angle3points($p2, $p4, $p3), PI()/2, 'angle3points';
//is Slic3r::Geometry::angle3points($p2, $p1, $p4), PI()/2, 'angle3points';
}
THEN("Right turns give the correct angle"){
//is Slic3r::Geometry::angle3points($p2, $p3, $p4), PI()/2*3, 'angle3points';
//is Slic3r::Geometry::angle3points($p2, $p1, $p5), PI()/2*3, 'angle3points';
}
//my $p1 = [30, 30];
//my $p2 = [20, 20];
//my $p3 = [10, 10];
//my $p4 = [30, 10];
//is Slic3r::Geometry::angle3points($p2, $p1, $p3), PI(), 'angle3points';
//is Slic3r::Geometry::angle3points($p2, $p1, $p4), PI()/2*3, 'angle3points';
//is Slic3r::Geometry::angle3points($p2, $p1, $p1), 2*PI(), 'angle3points';
}
SCENARIO("polygon_is_convex works"){
GIVEN("A square of dimension 10"){
//my $cw_square = [ [0,0], [0,10], [10,10], [10,0] ];
THEN("It is not convex clockwise"){
//is polygon_is_convex($cw_square), 0, 'cw square is not convex';
}
THEN("It is convex counter-clockwise"){
//is polygon_is_convex([ reverse @$cw_square ]), 1, 'ccw square is convex';
}
}
GIVEN("A concave polygon"){
//my $convex1 = [ [0,0], [10,0], [10,10], [0,10], [0,6], [4,6], [4,4], [0,4] ];
THEN("It is concave"){
//is polygon_is_convex($convex1), 0, 'concave polygon';
}
}
}*/
TEST_CASE("Creating a polyline generates the obvious lines", "[Geometry]"){
Slic3r::Polyline polyline;
polyline.points = std::vector<Point>({Point(0, 0), Point(10, 0), Point(20, 0)});
REQUIRE(polyline.lines().at(0).a == Point(0,0));
REQUIRE(polyline.lines().at(0).b == Point(10,0));
REQUIRE(polyline.lines().at(1).a == Point(10,0));
REQUIRE(polyline.lines().at(1).b == Point(20,0));
}
TEST_CASE("Splitting a Polygon generates a polyline correctly", "[Geometry]"){
Slic3r::Polygon polygon(std::vector<Point>({Point(0, 0), Point(10, 0), Point(5, 5)}));
Slic3r::Polyline split = polygon.split_at_index(1);
REQUIRE(split.points[0]==Point(10,0));
REQUIRE(split.points[1]==Point(5,5));
REQUIRE(split.points[2]==Point(0,0));
REQUIRE(split.points[3]==Point(10,0));
}
TEST_CASE("Bounding boxes are scaled appropriately", "[Geometry]"){
BoundingBox bb(std::vector<Point>({Point(0, 1), Point(10, 2), Point(20, 2)}));
bb.scale(2);
REQUIRE(bb.min == Point(0,2));
REQUIRE(bb.max == Point(40,4));
}
TEST_CASE("Offseting a line generates a polygon correctly", "[Geometry]"){
Slic3r::Polyline tmp = { Point(10,10), Point(20,10) };
Slic3r::Polygon area = offset(tmp,5).at(0);
REQUIRE(area.area() == Slic3r::Polygon(std::vector<Point>({Point(10,5),Point(20,5),Point(20,15),Point(10,15)})).area());
}
SCENARIO("Circle Fit, TaubinFit with Newton's method", "[Geometry]") {
GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") {
Vec2d expected_center(-6, 0);
Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524), Vec2d(0, 6.0), Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)};
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;});
WHEN("Circle fit is called on the entire array") {
Vec2d result_center(0,0);
result_center = Geometry::circle_taubin_newton(sample);
THEN("A center point of -6,0 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the first four points") {
Vec2d result_center(0,0);
result_center = Geometry::circle_taubin_newton(sample.cbegin(), sample.cbegin()+4);
THEN("A center point of -6,0 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the middle four points") {
Vec2d result_center(0,0);
result_center = Geometry::circle_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
THEN("A center point of -6,0 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
}
GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") {
Vec2d expected_center(-3, 9);
Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524),
Vec2d(0, 6.0),
Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)};
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;});
WHEN("Circle fit is called on the entire array") {
Vec2d result_center(0,0);
result_center = Geometry::circle_taubin_newton(sample);
THEN("A center point of 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the first four points") {
Vec2d result_center(0,0);
result_center = Geometry::circle_taubin_newton(sample.cbegin(), sample.cbegin()+4);
THEN("A center point of 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the middle four points") {
Vec2d result_center(0,0);
result_center = Geometry::circle_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
THEN("A center point of 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
}
GIVEN("A vector of Points arranged in a half-circle with approximately the same distance R from some point") {
Point expected_center { Point::new_scale(-3, 9)};
Points sample {Point::new_scale(6.0, 0), Point::new_scale(5.1961524, 3), Point::new_scale(3 ,5.1961524),
Point::new_scale(0, 6.0),
Point::new_scale(3, 5.1961524), Point::new_scale(-5.1961524, 3), Point::new_scale(-6.0, 0)};
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Point& a) { return a + expected_center;});
WHEN("Circle fit is called on the entire array") {
Point result_center(0,0);
result_center = Geometry::circle_taubin_newton(sample);
THEN("A center point of scaled 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the first four points") {
Point result_center(0,0);
result_center = Geometry::circle_taubin_newton(sample.cbegin(), sample.cbegin()+4);
THEN("A center point of scaled 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the middle four points") {
Point result_center(0,0);
result_center = Geometry::circle_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
THEN("A center point of scaled 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
}
}
SCENARIO("Path chaining", "[Geometry]") {
GIVEN("A path") {
std::vector<Point> points = { Point(26,26),Point(52,26),Point(0,26),Point(26,52),Point(26,0),Point(0,52),Point(52,52),Point(52,0) };
THEN("Chained with no diagonals (thus 26 units long)") {
std::vector<Points::size_type> indices = chain_points(points);
for (Points::size_type i = 0; i + 1 < indices.size(); ++ i) {
double dist = (points.at(indices.at(i)).cast<double>() - points.at(indices.at(i+1)).cast<double>()).norm();
REQUIRE(std::abs(dist-26) <= EPSILON);
}
}
}
GIVEN("Loop pieces") {
Point a { 2185796, 19058485 };
Point b { 3957902, 18149382 };
Point c { 2912841, 18790564 };
Point d { 2831848, 18832390 };
Point e { 3179601, 18627769 };
Point f { 3137952, 18653370 };
Polylines polylines = { { a, b },
{ c, d },
{ e, f },
{ d, a },
{ f, c },
{ b, e } };
Polylines chained = chain_polylines(polylines, &a);
THEN("Connected without a gap") {
for (size_t i = 0; i < chained.size(); ++i) {
const Polyline &pl1 = (i == 0) ? chained.back() : chained[i - 1];
const Polyline &pl2 = chained[i];
REQUIRE(pl1.points.back() == pl2.points.front());
}
}
}
}
SCENARIO("Line distances", "[Geometry]"){
GIVEN("A line"){
Line line(Point(0, 0), Point(20, 0));
THEN("Points on the line segment have 0 distance"){
REQUIRE(line.distance_to(Point(0, 0)) == 0);
REQUIRE(line.distance_to(Point(20, 0)) == 0);
REQUIRE(line.distance_to(Point(10, 0)) == 0);
}
THEN("Points off the line have the appropriate distance"){
REQUIRE(line.distance_to(Point(10, 10)) == 10);
REQUIRE(line.distance_to(Point(50, 0)) == 30);
}
}
}
SCENARIO("Polygon convex/concave detection", "[Geometry]"){
GIVEN(("A Square with dimension 100")){
auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({
Point(100,100),
Point(200,100),
Point(200,200),
Point(100,200)}));
THEN("It has 4 convex points counterclockwise"){
REQUIRE(square.concave_points(PI*4/3).size() == 0);
REQUIRE(square.convex_points(PI*2/3).size() == 4);
}
THEN("It has 4 concave points clockwise"){
square.make_clockwise();
REQUIRE(square.concave_points(PI*4/3).size() == 4);
REQUIRE(square.convex_points(PI*2/3).size() == 0);
}
}
GIVEN("A Square with an extra colinearvertex"){
auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({
Point(150,100),
Point(200,100),
Point(200,200),
Point(100,200),
Point(100,100)}));
THEN("It has 4 convex points counterclockwise"){
REQUIRE(square.concave_points(PI*4/3).size() == 0);
REQUIRE(square.convex_points(PI*2/3).size() == 4);
}
}
GIVEN("A Square with an extra collinear vertex in different order"){
auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({
Point(200,200),
Point(100,200),
Point(100,100),
Point(150,100),
Point(200,100)}));
THEN("It has 4 convex points counterclockwise"){
REQUIRE(square.concave_points(PI*4/3).size() == 0);
REQUIRE(square.convex_points(PI*2/3).size() == 4);
}
}
GIVEN("A triangle"){
auto triangle = Slic3r::Polygon(std::vector<Point>({
Point(16000170,26257364),
Point(714223,461012),
Point(31286371,461008)
}));
THEN("it has three convex vertices"){
REQUIRE(triangle.concave_points(PI*4/3).size() == 0);
REQUIRE(triangle.convex_points(PI*2/3).size() == 3);
}
}
GIVEN("A triangle with an extra collinear point"){
auto triangle = Slic3r::Polygon(std::vector<Point>({
Point(16000170,26257364),
Point(714223,461012),
Point(20000000,461012),
Point(31286371,461012)
}));
THEN("it has three convex vertices"){
REQUIRE(triangle.concave_points(PI*4/3).size() == 0);
REQUIRE(triangle.convex_points(PI*2/3).size() == 3);
}
}
GIVEN("A polygon with concave vertices with angles of specifically 4/3pi"){
// Two concave vertices of this polygon have angle = PI*4/3, so this test fails
// if epsilon is not used.
auto polygon = Slic3r::Polygon(std::vector<Point>({
Point(60246458,14802768),Point(64477191,12360001),
Point(63727343,11060995),Point(64086449,10853608),
Point(66393722,14850069),Point(66034704,15057334),
Point(65284646,13758387),Point(61053864,16200839),
Point(69200258,30310849),Point(62172547,42483120),
Point(61137680,41850279),Point(67799985,30310848),
Point(51399866,1905506),Point(38092663,1905506),
Point(38092663,692699),Point(52100125,692699)
}));
THEN("the correct number of points are detected"){
REQUIRE(polygon.concave_points(PI*4/3).size() == 6);
REQUIRE(polygon.convex_points(PI*2/3).size() == 10);
}
}
}
TEST_CASE("Triangle Simplification does not result in less than 3 points", "[Geometry]"){
auto triangle = Slic3r::Polygon(std::vector<Point>({
Point(16000170,26257364), Point(714223,461012), Point(31286371,461008)
}));
REQUIRE(triangle.simplify(250000).at(0).points.size() == 3);
}
SCENARIO("Ported from xs/t/14_geometry.t", "[Geometry]"){
GIVEN(("square")){
Slic3r::Points points { { 100, 100 }, {100, 200 }, { 200, 200 }, { 200, 100 }, { 150, 150 } };
Slic3r::Polygon hull = Slic3r::Geometry::convex_hull(points);
SECTION("convex hull returns the correct number of points") { REQUIRE(hull.points.size() == 4); }
}
SECTION("arrange returns expected number of positions") {
Pointfs positions;
Slic3r::Geometry::arrange(4, Vec2d(20, 20), 5, nullptr, positions);
REQUIRE(positions.size() == 4);
}
SECTION("directions_parallel") {
REQUIRE(Slic3r::Geometry::directions_parallel(0, 0, 0));
REQUIRE(Slic3r::Geometry::directions_parallel(0, M_PI, 0));
REQUIRE(Slic3r::Geometry::directions_parallel(0, 0, M_PI / 180));
REQUIRE(Slic3r::Geometry::directions_parallel(0, M_PI, M_PI / 180));
REQUIRE(! Slic3r::Geometry::directions_parallel(M_PI /2, M_PI, 0));
REQUIRE(! Slic3r::Geometry::directions_parallel(M_PI /2, PI, M_PI /180));
}
}