2022-05-11 10:06:07 +00:00
|
|
|
#include <catch2/catch.hpp>
|
|
|
|
|
|
|
|
#include "libslic3r/BoundingBox.hpp"
|
|
|
|
#include "libslic3r/AStar.hpp"
|
|
|
|
#include "libslic3r/Execution/ExecutionSeq.hpp"
|
|
|
|
#include "libslic3r/PointGrid.hpp"
|
|
|
|
|
|
|
|
using namespace Slic3r;
|
|
|
|
|
2022-06-02 15:44:51 +00:00
|
|
|
TEST_CASE("Testing basic invariants of AStar", "[AStar]") {
|
|
|
|
struct DummyTracer {
|
|
|
|
using Node = int;
|
|
|
|
|
|
|
|
int goal = 0;
|
|
|
|
|
|
|
|
float distance(int a, int b) const { return a - b; }
|
|
|
|
|
|
|
|
float goal_heuristic(int n) const { return n == goal ? -1.f : 0.f; }
|
|
|
|
|
|
|
|
size_t unique_id(int n) const { return n; }
|
|
|
|
|
|
|
|
void foreach_reachable(int, std::function<bool(int)>) const {}
|
|
|
|
};
|
|
|
|
|
|
|
|
std::vector<int> out;
|
|
|
|
|
|
|
|
SECTION("Output is empty when source is also the destination") {
|
|
|
|
bool found = astar::search_route(DummyTracer{}, 0, std::back_inserter(out));
|
|
|
|
REQUIRE(out.empty());
|
|
|
|
REQUIRE(found);
|
|
|
|
}
|
|
|
|
|
|
|
|
SECTION("Return false when there is no route to destination") {
|
|
|
|
bool found = astar::search_route(DummyTracer{}, 1, std::back_inserter(out));
|
|
|
|
REQUIRE(!found);
|
|
|
|
REQUIRE(out.empty());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
struct PointGridTracer3D {
|
2022-05-11 10:06:07 +00:00
|
|
|
using Node = size_t;
|
|
|
|
const PointGrid<float> &grid;
|
|
|
|
size_t final;
|
|
|
|
|
2022-06-02 15:44:51 +00:00
|
|
|
PointGridTracer3D(const PointGrid<float> &g, size_t goal) :
|
2022-05-11 10:06:07 +00:00
|
|
|
grid{g}, final{goal} {}
|
|
|
|
|
|
|
|
template<class Fn>
|
|
|
|
void foreach_reachable(size_t from, Fn &&fn) const
|
|
|
|
{
|
|
|
|
Vec3i from_crd = grid.get_coord(from);
|
|
|
|
REQUIRE(grid.get_idx(from_crd) == from);
|
|
|
|
|
|
|
|
if (size_t i = grid.get_idx(from_crd + Vec3i{ 1, 0, 0}); i < grid.point_count()) fn(i);
|
|
|
|
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, 1, 0}); i < grid.point_count()) fn(i);
|
|
|
|
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, 0, 1}); i < grid.point_count()) fn(i);
|
|
|
|
if (size_t i = grid.get_idx(from_crd + Vec3i{ 1, 1, 0}); i < grid.point_count()) fn(i);
|
|
|
|
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, 1, 1}); i < grid.point_count()) fn(i);
|
|
|
|
if (size_t i = grid.get_idx(from_crd + Vec3i{ 1, 1, 1}); i < grid.point_count()) fn(i);
|
|
|
|
if (size_t i = grid.get_idx(from_crd + Vec3i{-1, 0, 0}); from_crd.x() > 0 && i < grid.point_count()) fn(i);
|
|
|
|
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, -1, 0}); from_crd.y() > 0 && i < grid.point_count()) fn(i);
|
|
|
|
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, 0, -1}); from_crd.z() > 0 && i < grid.point_count()) fn(i);
|
|
|
|
if (size_t i = grid.get_idx(from_crd + Vec3i{-1, -1, 0}); from_crd.x() > 0 && from_crd.y() > 0 && i < grid.point_count()) fn(i);
|
|
|
|
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, -1, -1}); from_crd.y() > 0 && from_crd.z() && i < grid.point_count()) fn(i);
|
|
|
|
if (size_t i = grid.get_idx(from_crd + Vec3i{-1, -1, -1}); from_crd.x() > 0 && from_crd.y() > 0 && from_crd.z() && i < grid.point_count()) fn(i);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
float distance(size_t a, size_t b) const
|
|
|
|
{
|
|
|
|
return (grid.get(a) - grid.get(b)).squaredNorm();
|
|
|
|
}
|
|
|
|
|
|
|
|
float goal_heuristic(size_t n) const
|
|
|
|
{
|
|
|
|
return n == final ? -1.f : (grid.get(n) - grid.get(final)).squaredNorm();
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t unique_id(size_t n) const { return n; }
|
|
|
|
};
|
|
|
|
|
2022-06-02 15:44:51 +00:00
|
|
|
template<class Node, class Cmp = std::less<Node>>
|
|
|
|
bool has_duplicates(const std::vector<Node> &res, Cmp cmp = {})
|
|
|
|
{
|
|
|
|
auto cpy = res;
|
|
|
|
std::sort(cpy.begin(), cpy.end(), cmp);
|
|
|
|
auto it = std::unique(cpy.begin(), cpy.end());
|
|
|
|
return it != cpy.end();
|
|
|
|
}
|
|
|
|
|
2022-05-11 10:06:07 +00:00
|
|
|
TEST_CASE("astar algorithm test over 3D point grid", "[AStar]") {
|
|
|
|
auto vol = BoundingBox3Base<Vec3f>{{0.f, 0.f, 0.f}, {1.f, 1.f, 1.f}};
|
|
|
|
|
|
|
|
auto pgrid = point_grid(ex_seq, vol, {0.1f, 0.1f, 0.1f});
|
|
|
|
|
2022-06-02 15:44:51 +00:00
|
|
|
size_t target = pgrid.point_count() - 1;
|
|
|
|
|
|
|
|
PointGridTracer3D pgt{pgrid, target};
|
2022-05-11 10:06:07 +00:00
|
|
|
std::vector<size_t> out;
|
2022-06-02 15:44:51 +00:00
|
|
|
bool found = astar::search_route(pgt, 0, std::back_inserter(out));
|
2022-05-11 10:06:07 +00:00
|
|
|
|
|
|
|
REQUIRE(found);
|
2022-06-02 15:44:51 +00:00
|
|
|
REQUIRE(!out.empty());
|
|
|
|
REQUIRE(out.front() == target);
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
std::cout << "Route taken: ";
|
|
|
|
for (auto it = out.rbegin(); it != out.rend(); ++it) {
|
|
|
|
std::cout << "(" << pgrid.get_coord(*it).transpose() << ") ";
|
|
|
|
}
|
|
|
|
std::cout << std::endl;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
REQUIRE(!has_duplicates(out)); // No duplicates in output
|
|
|
|
}
|
|
|
|
|
|
|
|
enum CellValue {ON, OFF};
|
|
|
|
|
|
|
|
struct CellGridTracer2D_AllDirs {
|
|
|
|
using Node = Vec2i;
|
|
|
|
|
|
|
|
static constexpr auto Cols = size_t(5);
|
|
|
|
static constexpr auto Rows = size_t(8);
|
|
|
|
static constexpr size_t GridSize = Cols * Rows;
|
|
|
|
|
|
|
|
const std::array<std::array<CellValue, Cols>, Rows> &grid;
|
|
|
|
Vec2i goal;
|
|
|
|
|
|
|
|
CellGridTracer2D_AllDirs(const std::array<std::array<CellValue, Cols>, Rows> &g,
|
|
|
|
const Vec2i &goal_)
|
|
|
|
: grid{g}, goal{goal_}
|
|
|
|
{}
|
|
|
|
|
|
|
|
template<class Fn>
|
|
|
|
void foreach_reachable(const Vec2i &src, Fn &&fn) const
|
|
|
|
{
|
2022-06-29 09:59:49 +00:00
|
|
|
auto is_inside = [](const Vec2i& v) { return v.x() >= 0 && v.x() < int(Cols) && v.y() >= 0 && v.y() < int(Rows); };
|
2022-06-02 15:44:51 +00:00
|
|
|
if (Vec2i crd = src + Vec2i{0, 1}; is_inside(crd) && grid[crd.y()] [crd.x()] == ON) fn(crd);
|
|
|
|
if (Vec2i crd = src + Vec2i{1, 0}; is_inside(crd) && grid[crd.y()] [crd.x()] == ON) fn(crd);
|
|
|
|
if (Vec2i crd = src + Vec2i{1, 1}; is_inside(crd) && grid[crd.y()] [crd.x()] == ON) fn(crd);
|
|
|
|
if (Vec2i crd = src + Vec2i{0, -1}; is_inside(crd) && grid[crd.y()] [crd.x()] == ON) fn(crd);
|
|
|
|
if (Vec2i crd = src + Vec2i{-1, 0}; is_inside(crd) && grid[crd.y()] [crd.x()] == ON) fn(crd);
|
|
|
|
if (Vec2i crd = src + Vec2i{-1, -1}; is_inside(crd) && grid[crd.y()] [crd.x()] == ON) fn(crd);
|
|
|
|
if (Vec2i crd = src + Vec2i{1, -1}; is_inside(crd) && grid[crd.y()] [crd.x()] == ON) fn(crd);
|
|
|
|
if (Vec2i crd = src + Vec2i{-1, 1}; is_inside(crd) && grid[crd.y()] [crd.x()] == ON) fn(crd);
|
|
|
|
}
|
|
|
|
|
|
|
|
float distance(const Vec2i & a, const Vec2i & b) const { return (a - b).squaredNorm(); }
|
|
|
|
|
|
|
|
float goal_heuristic(const Vec2i & n) const { return n == goal ? -1.f : (n - goal).squaredNorm(); }
|
|
|
|
|
|
|
|
size_t unique_id(const Vec2i & n) const { return n.y() * Cols + n.x(); }
|
|
|
|
};
|
|
|
|
|
|
|
|
struct CellGridTracer2D_Axis {
|
|
|
|
using Node = Vec2i;
|
|
|
|
|
|
|
|
static constexpr auto Cols = size_t(5);
|
|
|
|
static constexpr auto Rows = size_t(8);
|
|
|
|
static constexpr size_t GridSize = Cols * Rows;
|
|
|
|
|
|
|
|
const std::array<std::array<CellValue, Cols>, Rows> &grid;
|
|
|
|
Vec2i goal;
|
|
|
|
|
|
|
|
CellGridTracer2D_Axis(
|
|
|
|
const std::array<std::array<CellValue, Cols>, Rows> &g,
|
|
|
|
const Vec2i &goal_)
|
|
|
|
: grid{g}, goal{goal_}
|
|
|
|
{}
|
|
|
|
|
|
|
|
template<class Fn>
|
|
|
|
void foreach_reachable(const Vec2i &src, Fn &&fn) const
|
|
|
|
{
|
2022-06-29 09:59:49 +00:00
|
|
|
auto is_inside = [](const Vec2i& v) { return v.x() >= 0 && v.x() < int(Cols) && v.y() >= 0 && v.y() < int(Rows); };
|
2022-06-02 15:44:51 +00:00
|
|
|
if (Vec2i crd = src + Vec2i{0, 1}; is_inside(crd) && grid[crd.y()] [crd.x()] == ON) fn(crd);
|
|
|
|
if (Vec2i crd = src + Vec2i{0, -1}; is_inside(crd) && grid[crd.y()] [crd.x()] == ON) fn(crd);
|
|
|
|
if (Vec2i crd = src + Vec2i{1, 0}; is_inside(crd) && grid[crd.y()] [crd.x()] == ON) fn(crd);
|
|
|
|
if (Vec2i crd = src + Vec2i{-1, 0}; is_inside(crd) && grid[crd.y()] [crd.x()] == ON) fn(crd);
|
|
|
|
}
|
|
|
|
|
|
|
|
float distance(const Vec2i & a, const Vec2i & b) const { return (a - b).squaredNorm(); }
|
|
|
|
|
|
|
|
float goal_heuristic(const Vec2i &n) const
|
|
|
|
{
|
|
|
|
int manhattan_dst = std::abs(n.x() - goal.x()) +
|
|
|
|
std::abs(n.y() - goal.y());
|
|
|
|
|
|
|
|
return n == goal ? -1.f : manhattan_dst;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t unique_id(const Vec2i & n) const { return n.y() * Cols + n.x(); }
|
|
|
|
};
|
|
|
|
|
|
|
|
using TestClasses = std::tuple< CellGridTracer2D_AllDirs, CellGridTracer2D_Axis >;
|
|
|
|
|
|
|
|
TEMPLATE_LIST_TEST_CASE("Astar should avoid simple barrier", "[AStar]", TestClasses) {
|
|
|
|
|
|
|
|
std::array<std::array<CellValue, 5>, 8> grid = {{
|
|
|
|
{ON , ON , ON , ON , ON},
|
|
|
|
{ON , ON , ON , ON , ON},
|
|
|
|
{ON , ON , ON , ON , ON},
|
|
|
|
{ON , ON , ON , ON , ON},
|
|
|
|
{ON , ON , ON , ON , ON},
|
|
|
|
{ON , OFF, OFF, OFF, ON},
|
|
|
|
{ON , ON , ON , ON , ON},
|
|
|
|
{ON , ON , ON , ON , ON}
|
|
|
|
}};
|
|
|
|
|
|
|
|
Vec2i dst = {2, 0};
|
|
|
|
TestType cgt{grid, dst};
|
|
|
|
|
|
|
|
std::vector<Vec2i> out;
|
|
|
|
bool found = astar::search_route(cgt, {2, 7}, std::back_inserter(out));
|
|
|
|
|
|
|
|
REQUIRE(found);
|
|
|
|
REQUIRE(!out.empty());
|
|
|
|
REQUIRE(out.front() == dst);
|
|
|
|
REQUIRE(!has_duplicates(out, [](const Vec2i &a, const Vec2i &b) {
|
|
|
|
return a.x() == b.x() ? a.y() < b.y() : a.x() < b.x();
|
|
|
|
}));
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
std::cout << "Route taken: ";
|
|
|
|
for (auto it = out.rbegin(); it != out.rend(); ++it) {
|
|
|
|
std::cout << "(" << it->transpose() << ") ";
|
|
|
|
}
|
|
|
|
std::cout << std::endl;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
TEMPLATE_LIST_TEST_CASE("Astar should manage to avoid arbitrary barriers", "[AStar]", TestClasses) {
|
|
|
|
|
|
|
|
std::array<std::array<CellValue, 5>, 8> grid = {{
|
|
|
|
{ON , ON , ON , ON , ON},
|
|
|
|
{ON , ON , ON , OFF, ON},
|
|
|
|
{OFF, OFF, ON , OFF, ON},
|
|
|
|
{ON , ON , ON , OFF, ON},
|
|
|
|
{ON , OFF, ON , OFF, ON},
|
|
|
|
{ON , OFF, ON , ON , ON},
|
|
|
|
{ON , OFF, ON , OFF, ON},
|
|
|
|
{ON , ON , ON , ON , ON}
|
|
|
|
}};
|
|
|
|
|
|
|
|
Vec2i dst = {0, 0};
|
|
|
|
TestType cgt{grid, dst};
|
|
|
|
|
|
|
|
std::vector<Vec2i> out;
|
|
|
|
bool found = astar::search_route(cgt, {0, 7}, std::back_inserter(out));
|
|
|
|
|
|
|
|
REQUIRE(found);
|
|
|
|
REQUIRE(!out.empty());
|
|
|
|
REQUIRE(out.front() == dst);
|
|
|
|
REQUIRE(!has_duplicates(out, [](const Vec2i &a, const Vec2i &b) {
|
|
|
|
return a.x() == b.x() ? a.y() < b.y() : a.x() < b.x();
|
|
|
|
}));
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
std::cout << "Route taken: ";
|
|
|
|
for (auto it = out.rbegin(); it != out.rend(); ++it) {
|
|
|
|
std::cout << "(" << it->transpose() << ") ";
|
|
|
|
}
|
|
|
|
std::cout << std::endl;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
TEMPLATE_LIST_TEST_CASE("Astar should find the way out of a labyrinth", "[AStar]", TestClasses) {
|
|
|
|
|
|
|
|
std::array<std::array<CellValue, 5>, 8> grid = {{
|
|
|
|
{ON , ON , ON , ON , ON },
|
|
|
|
{ON , OFF, OFF, OFF, OFF},
|
|
|
|
{ON , ON , ON , ON , ON },
|
|
|
|
{OFF, OFF, OFF, OFF, ON },
|
|
|
|
{ON , ON , ON , ON , ON },
|
|
|
|
{ON , OFF, OFF, OFF, OFF},
|
|
|
|
{ON , ON , ON , ON , ON },
|
|
|
|
{OFF, OFF, OFF, OFF, ON }
|
|
|
|
}};
|
|
|
|
|
|
|
|
Vec2i dst = {4, 0};
|
|
|
|
TestType cgt{grid, dst};
|
|
|
|
|
|
|
|
std::vector<Vec2i> out;
|
|
|
|
bool found = astar::search_route(cgt, {4, 7}, std::back_inserter(out));
|
|
|
|
|
|
|
|
REQUIRE(found);
|
|
|
|
REQUIRE(!out.empty());
|
|
|
|
REQUIRE(out.front() == dst);
|
|
|
|
REQUIRE(!has_duplicates(out, [](const Vec2i &a, const Vec2i &b) {
|
|
|
|
return a.x() == b.x() ? a.y() < b.y() : a.x() < b.x();
|
|
|
|
}));
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
std::cout << "Route taken: ";
|
|
|
|
for (auto it = out.rbegin(); it != out.rend(); ++it) {
|
|
|
|
std::cout << "(" << it->transpose() << ") ";
|
|
|
|
}
|
|
|
|
std::cout << std::endl;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_CASE("Zero heuristic function should result in dijsktra's algo", "[AStar]")
|
|
|
|
{
|
|
|
|
struct GraphTracer {
|
|
|
|
using Node = size_t;
|
|
|
|
using QNode = astar::QNode<GraphTracer>;
|
|
|
|
|
|
|
|
struct Edge
|
|
|
|
{
|
|
|
|
size_t to_id = size_t(-1);
|
|
|
|
float cost = 0.f;
|
|
|
|
bool operator <(const Edge &e) const { return to_id < e.to_id; }
|
|
|
|
};
|
|
|
|
|
|
|
|
struct ENode: public QNode {
|
|
|
|
std::vector<Edge> edges;
|
|
|
|
|
|
|
|
ENode(size_t node_id, std::initializer_list<Edge> edgelist)
|
|
|
|
: QNode{node_id}, edges(edgelist)
|
|
|
|
{}
|
|
|
|
|
|
|
|
ENode &operator=(const QNode &q)
|
|
|
|
{
|
|
|
|
assert(node == q.node);
|
|
|
|
g = q.g;
|
|
|
|
h = q.h;
|
|
|
|
parent = q.parent;
|
|
|
|
queue_id = q.queue_id;
|
|
|
|
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// Example graph from
|
|
|
|
// https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/?ref=lbp
|
|
|
|
std::vector<ENode> nodes = {
|
|
|
|
{0, {{1, 4.f}, {7, 8.f}}},
|
|
|
|
{1, {{0, 4.f}, {2, 8.f}, {7, 11.f}}},
|
|
|
|
{2, {{1, 8.f}, {3, 7.f}, {5, 4.f}, {8, 2.f}}},
|
|
|
|
{3, {{2, 7.f}, {4, 9.f}, {5, 14.f}}},
|
|
|
|
{4, {{3, 9.f}, {5, 10.f}}},
|
|
|
|
{5, {{2, 4.f}, {3, 14.f}, {4, 10.f}, {6, 2.f}}},
|
|
|
|
{6, {{5, 2.f}, {7, 1.f}, {8, 6.f}}},
|
|
|
|
{7, {{0, 8.f}, {1, 11.f}, {6, 1.f}, {8, 7.f}}},
|
|
|
|
{8, {{2, 2.f}, {6, 6.f}, {7, 7.f}}}
|
|
|
|
};
|
|
|
|
|
|
|
|
float distance(size_t a, size_t b) const {
|
|
|
|
float ret = std::numeric_limits<float>::infinity();
|
|
|
|
if (a < nodes.size()) {
|
|
|
|
auto it = std::lower_bound(nodes[a].edges.begin(),
|
|
|
|
nodes[a].edges.end(),
|
|
|
|
Edge{b, 0.f});
|
|
|
|
|
|
|
|
if (it != nodes[a].edges.end()) {
|
|
|
|
ret = it->cost;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
float goal_heuristic(size_t) const { return 0.f; }
|
|
|
|
|
|
|
|
size_t unique_id(size_t n) const { return n; }
|
|
|
|
|
|
|
|
void foreach_reachable(size_t n, std::function<bool(int)> fn) const
|
|
|
|
{
|
|
|
|
if (n < nodes.size()) {
|
|
|
|
for (const Edge &e : nodes[n].edges)
|
|
|
|
fn(e.to_id);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} graph;
|
|
|
|
|
|
|
|
std::vector<size_t> out;
|
|
|
|
|
|
|
|
// 'graph.nodes' is able to be a node cache (it simulates an associative container)
|
|
|
|
bool found = astar::search_route(graph, size_t(0), std::back_inserter(out), graph.nodes);
|
|
|
|
|
|
|
|
// But should not crash or loop infinitely.
|
|
|
|
REQUIRE(!found);
|
|
|
|
|
|
|
|
// Without a destination, there is no output. But the algorithm should halt.
|
|
|
|
REQUIRE(out.empty());
|
|
|
|
|
|
|
|
// Source node should have it's parent unset
|
2022-06-03 08:08:11 +00:00
|
|
|
REQUIRE(graph.nodes[0].parent == astar::Unassigned);
|
2022-06-02 15:44:51 +00:00
|
|
|
|
|
|
|
// All other nodes should have their parents set
|
|
|
|
for (size_t i = 1; i < graph.nodes.size(); ++i)
|
2022-06-03 08:08:11 +00:00
|
|
|
REQUIRE(graph.nodes[i].parent != astar::Unassigned);
|
2022-06-02 15:44:51 +00:00
|
|
|
|
|
|
|
std::array<float, 9> ref_distances = {0.f, 4.f, 12.f, 19.f, 21.f,
|
|
|
|
11.f, 9.f, 8.f, 14.f};
|
|
|
|
|
|
|
|
// Try to trace each node back to the source node. Each of them should
|
|
|
|
// arrive to the source within less hops than the full number of nodes.
|
|
|
|
for (size_t i = 0, k = 0; i < graph.nodes.size(); ++i, k = 0) {
|
|
|
|
GraphTracer::QNode *q = &graph.nodes[i];
|
|
|
|
REQUIRE(q->g == Approx(ref_distances[i]));
|
2022-06-03 08:08:11 +00:00
|
|
|
while (k++ < graph.nodes.size() && q->parent != astar::Unassigned)
|
2022-06-02 15:44:51 +00:00
|
|
|
q = &graph.nodes[q->parent];
|
|
|
|
|
2022-06-03 08:08:11 +00:00
|
|
|
REQUIRE(q->parent == astar::Unassigned);
|
2022-06-02 15:44:51 +00:00
|
|
|
}
|
2022-05-11 10:06:07 +00:00
|
|
|
}
|