PrusaSlicer-NonPlainar/tests/fff_print/test_extrusion_entity.cpp

410 lines
17 KiB
C++
Raw Normal View History

#include <catch2/catch.hpp>
#include <cstdlib>
#include "libslic3r/ExtrusionEntityCollection.hpp"
#include "libslic3r/ExtrusionEntity.hpp"
#include "libslic3r/Point.hpp"
#include "libslic3r/ShortestPath.hpp"
#include "libslic3r/libslic3r.h"
#include "test_data.hpp"
using namespace Slic3r;
static inline Slic3r::Point random_point(float LO=-50, float HI=50)
{
Vec2f pt = Vec2f(LO, LO) + (Vec2d(rand(), rand()) * (HI-LO) / RAND_MAX).cast<float>();
return pt.cast<coord_t>();
}
// build a sample extrusion entity collection with random start and end points.
static Slic3r::ExtrusionPath random_path(size_t length = 20, float LO = -50, float HI = 50)
{
ExtrusionPath t {erPerimeter, 1.0, 1.0, 1.0};
for (size_t j = 0; j < length; ++ j)
t.polyline.append(random_point(LO, HI));
return t;
}
static Slic3r::ExtrusionPaths random_paths(size_t count = 10, size_t length = 20, float LO = -50, float HI = 50)
{
Slic3r::ExtrusionPaths p;
for (size_t i = 0; i < count; ++ i)
p.push_back(random_path(length, LO, HI));
return p;
}
SCENARIO("ExtrusionPath", "[ExtrusionEntity]") {
GIVEN("Simple path") {
Slic3r::ExtrusionPath path{ erExternalPerimeter };
path.polyline = { { 100, 100 }, { 200, 100 }, { 200, 200 } };
path.mm3_per_mm = 1.;
THEN("first point") {
REQUIRE(path.first_point() == path.polyline.front());
}
THEN("cloned") {
auto cloned = std::unique_ptr<ExtrusionEntity>(path.clone());
REQUIRE(cloned->role() == path.role());
}
}
}
static ExtrusionPath new_extrusion_path(const Polyline &polyline, ExtrusionRole role, double mm3_per_mm)
{
ExtrusionPath path(role);
path.polyline = polyline;
path.mm3_per_mm = 1.;
return path;
}
SCENARIO("ExtrusionLoop", "[ExtrusionEntity]")
{
GIVEN("Square") {
Polygon square { { 100, 100 }, { 200, 100 }, { 200, 200 }, { 100, 200 } };
ExtrusionLoop loop;
loop.paths.emplace_back(new_extrusion_path(square.split_at_first_point(), erExternalPerimeter, 1.));
THEN("polygon area") {
REQUIRE(loop.polygon().area() == Approx(square.area()));
}
THEN("loop length") {
REQUIRE(loop.length() == Approx(square.length()));
}
WHEN("cloned") {
auto loop2 = std::unique_ptr<ExtrusionLoop>(dynamic_cast<ExtrusionLoop*>(loop.clone()));
THEN("cloning worked") {
REQUIRE(loop2 != nullptr);
}
THEN("loop contains one path") {
REQUIRE(loop2->paths.size() == 1);
}
THEN("cloned role") {
REQUIRE(loop2->paths.front().role() == erExternalPerimeter);
}
}
WHEN("cloned and split") {
auto loop2 = std::unique_ptr<ExtrusionLoop>(dynamic_cast<ExtrusionLoop*>(loop.clone()));
loop2->split_at_vertex(square.points[2]);
THEN("splitting a single-path loop results in a single path") {
REQUIRE(loop2->paths.size() == 1);
}
THEN("path has correct number of points") {
REQUIRE(loop2->paths.front().size() == 5);
}
THEN("expected point order") {
REQUIRE(loop2->paths.front().polyline[0] == square.points[2]);
REQUIRE(loop2->paths.front().polyline[1] == square.points[3]);
REQUIRE(loop2->paths.front().polyline[2] == square.points[0]);
REQUIRE(loop2->paths.front().polyline[3] == square.points[1]);
REQUIRE(loop2->paths.front().polyline[4] == square.points[2]);
}
}
}
GIVEN("Loop with two pieces") {
Polyline polyline1 { { 100, 100 }, { 200, 100 }, { 200, 200 } };
Polyline polyline2 { { 200, 200 }, { 100, 200 }, { 100, 100 } };
ExtrusionLoop loop;
loop.paths.emplace_back(new_extrusion_path(polyline1, erExternalPerimeter, 1.));
loop.paths.emplace_back(new_extrusion_path(polyline2, erOverhangPerimeter, 1.));
double tot_len = polyline1.length() + polyline2.length();
THEN("length") {
REQUIRE(loop.length() == Approx(tot_len));
}
WHEN("splitting at intermediate point") {
auto loop2 = std::unique_ptr<ExtrusionLoop>(dynamic_cast<ExtrusionLoop*>(loop.clone()));
loop2->split_at_vertex(polyline1.points[1]);
THEN("length after splitting is unchanged") {
REQUIRE(loop2->length() == Approx(tot_len));
}
THEN("loop contains three paths after splitting") {
REQUIRE(loop2->paths.size() == 3);
}
THEN("expected starting point") {
REQUIRE(loop2->paths.front().polyline.front() == polyline1.points[1]);
}
THEN("expected ending point") {
REQUIRE(loop2->paths.back().polyline.back() == polyline1.points[1]);
}
THEN("paths have common point") {
REQUIRE(loop2->paths.front().polyline.back() == loop2->paths[1].polyline.front());
REQUIRE(loop2->paths[1].polyline.back() == loop2->paths[2].polyline.front());
}
THEN("expected order after splitting") {
REQUIRE(loop2->paths.front().role() == erExternalPerimeter);
REQUIRE(loop2->paths[1].role() == erOverhangPerimeter);
REQUIRE(loop2->paths[2].role() == erExternalPerimeter);
}
THEN("path has correct number of points") {
REQUIRE(loop2->paths.front().polyline.size() == 2);
REQUIRE(loop2->paths[1].polyline.size() == 3);
REQUIRE(loop2->paths[2].polyline.size() == 2);
}
THEN("clipped path has expected length") {
double l = loop2->length();
ExtrusionPaths paths;
loop2->clip_end(3, &paths);
double l2 = 0;
for (const ExtrusionPath &p : paths)
l2 += p.length();
REQUIRE(l2 == Approx(l - 3.));
}
}
WHEN("splitting at endpoint") {
auto loop2 = std::unique_ptr<ExtrusionLoop>(dynamic_cast<ExtrusionLoop*>(loop.clone()));
loop2->split_at_vertex(polyline2.points.front());
THEN("length after splitting is unchanged") {
REQUIRE(loop2->length() == Approx(tot_len));
}
THEN("loop contains two paths after splitting") {
REQUIRE(loop2->paths.size() == 2);
}
THEN("expected starting point") {
REQUIRE(loop2->paths.front().polyline.front() == polyline2.points.front());
}
THEN("expected ending point") {
REQUIRE(loop2->paths.back().polyline.back() == polyline2.points.front());
}
THEN("paths have common point") {
REQUIRE(loop2->paths.front().polyline.back() == loop2->paths[1].polyline.front());
REQUIRE(loop2->paths[1].polyline.back() == loop2->paths.front().polyline.front());
}
THEN("expected order after splitting") {
REQUIRE(loop2->paths.front().role() == erOverhangPerimeter);
REQUIRE(loop2->paths[1].role() == erExternalPerimeter);
}
THEN("path has correct number of points") {
REQUIRE(loop2->paths.front().polyline.size() == 3);
REQUIRE(loop2->paths[1].polyline.size() == 3);
}
}
WHEN("splitting at an edge") {
Point point(250, 150);
auto loop2 = std::unique_ptr<ExtrusionLoop>(dynamic_cast<ExtrusionLoop*>(loop.clone()));
loop2->split_at(point, false, 0);
THEN("length after splitting is unchanged") {
REQUIRE(loop2->length() == Approx(tot_len));
}
Point expected_start_point(200, 150);
THEN("expected starting point") {
REQUIRE(loop2->paths.front().polyline.front() == expected_start_point);
}
THEN("expected ending point") {
REQUIRE(loop2->paths.back().polyline.back() == expected_start_point);
}
}
}
GIVEN("Loop with four pieces") {
Polyline polyline1 { { 59312736, 4821067 }, { 64321068, 4821067 }, { 64321068, 4821067 }, { 64321068, 9321068 }, { 59312736, 9321068 } };
Polyline polyline2 { { 59312736, 9321068 }, { 9829401, 9321068 } };
Polyline polyline3 { { 9829401, 9321068 }, { 4821067, 9321068 }, { 4821067, 4821067 }, { 9829401, 4821067 } };
Polyline polyline4 { { 9829401, 4821067 }, { 59312736,4821067 } };
ExtrusionLoop loop;
loop.paths.emplace_back(new_extrusion_path(polyline1, erExternalPerimeter, 1.));
loop.paths.emplace_back(new_extrusion_path(polyline2, erOverhangPerimeter, 1.));
loop.paths.emplace_back(new_extrusion_path(polyline3, erExternalPerimeter, 1.));
loop.paths.emplace_back(new_extrusion_path(polyline4, erOverhangPerimeter, 1.));
double len = loop.length();
WHEN("splitting at vertex") {
Point point(4821067, 9321068);
if (! loop.split_at_vertex(point))
loop.split_at(point, false, 0);
THEN("total length is preserved after splitting") {
REQUIRE(loop.length() == Approx(len));
}
THEN("order is correctly preserved after splitting") {
REQUIRE(loop.paths.front().role() == erExternalPerimeter);
REQUIRE(loop.paths[1].role() == erOverhangPerimeter);
REQUIRE(loop.paths[2].role() == erExternalPerimeter);
REQUIRE(loop.paths[3].role() == erOverhangPerimeter);
}
}
}
GIVEN("Some complex loop") {
ExtrusionLoop loop;
loop.paths.emplace_back(new_extrusion_path(
Polyline { { 15896783, 15868739 }, { 24842049, 12117558 }, { 33853238, 15801279 }, { 37591780, 24780128 }, { 37591780, 24844970 },
{ 33853231, 33825297 }, { 24842049, 37509013 }, { 15896798, 33757841 }, { 12211841, 24812544 }, { 15896783, 15868739 } },
erExternalPerimeter, 1.));
double len = loop.length();
THEN("split_at() preserves total length") {
loop.split_at({ 15896783, 15868739 }, false, 0);
REQUIRE(loop.length() == Approx(len));
}
}
}
SCENARIO("ExtrusionEntityCollection: Basics", "[ExtrusionEntity]")
{
Polyline polyline { { 100, 100 }, { 200, 100 }, { 200, 200 } };
ExtrusionPath path = new_extrusion_path(polyline, erExternalPerimeter, 1.);
ExtrusionLoop loop;
loop.paths.emplace_back(new_extrusion_path(Polygon(polyline.points).split_at_first_point(), erInternalInfill, 1.));
ExtrusionEntityCollection collection;
collection.append(path);
THEN("no_sort is false by default") {
REQUIRE(! collection.no_sort);
}
collection.append(collection);
THEN("append ExtrusionEntityCollection") {
REQUIRE(collection.entities.size() == 2);
}
collection.append(path);
THEN("append ExtrusionPath") {
REQUIRE(collection.entities.size() == 3);
}
collection.append(loop);
THEN("append ExtrusionLoop") {
REQUIRE(collection.entities.size() == 4);
}
THEN("appended collection was duplicated") {
REQUIRE(dynamic_cast<ExtrusionEntityCollection*>(collection.entities[1])->entities.size() == 1);
}
WHEN("cloned") {
auto coll2 = std::unique_ptr<ExtrusionEntityCollection>(dynamic_cast<ExtrusionEntityCollection*>(collection.clone()));
THEN("expected no_sort value") {
assert(! coll2->no_sort);
}
coll2->no_sort = true;
THEN("no_sort is kept after clone") {
auto coll3 = std::unique_ptr<ExtrusionEntityCollection>(dynamic_cast<ExtrusionEntityCollection*>(coll2->clone()));
assert(coll3->no_sort);
}
}
}
SCENARIO("ExtrusionEntityCollection: Polygon flattening", "[ExtrusionEntity]")
{
srand(0xDEADBEEF); // consistent seed for test reproducibility.
// Generate one specific random path set and save it for later comparison
Slic3r::ExtrusionPaths nosort_path_set = random_paths();
Slic3r::ExtrusionEntityCollection sub_nosort;
sub_nosort.append(nosort_path_set);
sub_nosort.no_sort = true;
Slic3r::ExtrusionEntityCollection sub_sort;
sub_sort.no_sort = false;
sub_sort.append(random_paths());
GIVEN("A Extrusion Entity Collection with a child that has one child that is marked as no-sort") {
Slic3r::ExtrusionEntityCollection sample;
Slic3r::ExtrusionEntityCollection output;
sample.append(sub_sort);
sample.append(sub_nosort);
sample.append(sub_sort);
WHEN("The EEC is flattened with default options (preserve_order=false)") {
output = sample.flatten();
THEN("The output EEC contains no Extrusion Entity Collections") {
CHECK(std::count_if(output.entities.cbegin(), output.entities.cend(), [=](const ExtrusionEntity* e) {return e->is_collection();}) == 0);
}
}
WHEN("The EEC is flattened with preservation (preserve_order=true)") {
output = sample.flatten(true);
THEN("The output EECs contains one EEC.") {
CHECK(std::count_if(output.entities.cbegin(), output.entities.cend(), [=](const ExtrusionEntity* e) {return e->is_collection();}) == 1);
}
AND_THEN("The ordered EEC contains the same order of elements than the original") {
// find the entity in the collection
for (auto e : output.entities)
if (e->is_collection()) {
ExtrusionEntityCollection *temp = dynamic_cast<ExtrusionEntityCollection*>(e);
// check each Extrusion path against nosort_path_set to see if the first and last match the same
CHECK(nosort_path_set.size() == temp->entities.size());
for (size_t i = 0; i < nosort_path_set.size(); ++ i) {
CHECK(temp->entities[i]->first_point() == nosort_path_set[i].first_point());
CHECK(temp->entities[i]->last_point() == nosort_path_set[i].last_point());
}
}
}
}
}
}
TEST_CASE("ExtrusionEntityCollection: Chained path", "[ExtrusionEntity]") {
struct Test {
Polylines unchained;
Polylines chained;
Point initial_point;
};
std::vector<Test> tests {
{
{
{ {0,15}, {0,18}, {0,20} },
{ {0,10}, {0,8}, {0,5} }
},
{
{ {0,20}, {0,18}, {0,15} },
{ {0,10}, {0,8}, {0,5} }
},
{ 0, 30 }
},
{
{
{ {4,0}, {10,0}, {15,0} },
{ {10,5}, {15,5}, {20,5} }
},
{
{ {20,5}, {15,5}, {10,5} },
{ {15,0}, {10,0}, {4,0} }
},
{ 30, 0 }
},
{
{
{ {15,0}, {10,0}, {4,0} },
{ {10,5}, {15,5}, {20,5} }
},
{
{ {20,5}, {15,5}, {10,5} },
{ {15,0}, {10,0}, {4,0} }
},
{ 30, 0 }
},
};
for (const Test &test : tests) {
Polylines chained = chain_polylines(test.unchained, &test.initial_point);
REQUIRE(chained == test.chained);
ExtrusionEntityCollection unchained_extrusions;
extrusion_entities_append_paths(unchained_extrusions.entities, test.unchained,
erInternalInfill, 0., 0.4f, 0.3f);
THEN("Chaining works") {
ExtrusionEntityCollection chained_extrusions = unchained_extrusions.chained_path_from(test.initial_point);
REQUIRE(chained_extrusions.entities.size() == test.chained.size());
for (size_t i = 0; i < chained_extrusions.entities.size(); ++ i) {
const Points &p1 = test.chained[i].points;
const Points &p2 = dynamic_cast<const ExtrusionPath*>(chained_extrusions.entities[i])->polyline.points;
REQUIRE(p1 == p2);
}
}
THEN("Chaining produces no change with no_sort") {
unchained_extrusions.no_sort = true;
ExtrusionEntityCollection chained_extrusions = unchained_extrusions.chained_path_from(test.initial_point);
REQUIRE(chained_extrusions.entities.size() == test.unchained.size());
for (size_t i = 0; i < chained_extrusions.entities.size(); ++ i) {
const Points &p1 = test.unchained[i].points;
const Points &p2 = dynamic_cast<const ExtrusionPath*>(chained_extrusions.entities[i])->polyline.points;
REQUIRE(p1 == p2);
}
}
}
}
TEST_CASE("ExtrusionEntityCollection: Chained path with no explicit starting point", "[ExtrusionEntity]") {
auto polylines = Polylines { { { 0, 15 }, {0, 18}, {0, 20} }, { { 0, 10 }, {0, 8}, {0, 5} } };
auto target = Polylines { { {0, 5}, {0, 8}, { 0, 10 } }, { { 0, 15 }, {0, 18}, {0, 20} } };
auto chained = chain_polylines(polylines);
REQUIRE(chained == target);
}