PrusaSlicer-NonPlainar/resources/shaders/gouraud.vs

98 lines
3.2 KiB
Plaintext
Raw Normal View History

2018-05-21 11:08:02 +00:00
#version 110
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
//#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
//#define LIGHT_FRONT_SHININESS 5.0
#define INTENSITY_AMBIENT 0.3
const vec3 ZERO = vec3(0.0, 0.0, 0.0);
struct PrintBoxDetection
{
bool actived;
2018-05-21 11:08:02 +00:00
vec3 min;
vec3 max;
2018-06-21 06:37:04 +00:00
mat4 volume_world_matrix;
2018-05-21 11:08:02 +00:00
};
struct SlopeDetection
{
bool actived;
float normal_z;
mat3 volume_world_normal_matrix;
};
2018-05-21 11:08:02 +00:00
uniform PrintBoxDetection print_box;
uniform SlopeDetection slope;
2018-05-21 11:08:02 +00:00
// Clipping plane, x = min z, y = max z. Used by the FFF and SLA previews to clip with a top / bottom plane.
uniform vec2 z_range;
// Clipping plane - general orientation. Used by the SLA gizmo.
uniform vec4 clipping_plane;
// x = diffuse, y = specular;
2018-05-21 11:08:02 +00:00
varying vec2 intensity;
varying vec3 delta_box_min;
varying vec3 delta_box_max;
varying vec3 clipping_planes_dots;
2018-11-27 13:50:57 +00:00
varying vec4 model_pos;
varying float world_pos_z;
varying float world_normal_z;
varying vec3 eye_normal;
2018-05-21 11:08:02 +00:00
void main()
{
// First transform the normal into camera space and normalize the result.
eye_normal = normalize(gl_NormalMatrix * gl_Normal);
2018-05-21 11:08:02 +00:00
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
2018-05-21 11:08:02 +00:00
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
vec3 position = (gl_ModelViewMatrix * gl_Vertex).xyz;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
2018-05-21 11:08:02 +00:00
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
2018-05-21 11:08:02 +00:00
model_pos = gl_Vertex;
// Point in homogenous coordinates.
vec4 world_pos = print_box.volume_world_matrix * gl_Vertex;
world_pos_z = world_pos.z;
2018-05-21 11:08:02 +00:00
// compute deltas for out of print volume detection (world coordinates)
if (print_box.actived)
2018-05-21 11:08:02 +00:00
{
delta_box_min = world_pos.xyz - print_box.min;
delta_box_max = world_pos.xyz - print_box.max;
2018-05-21 11:08:02 +00:00
}
else
{
delta_box_min = ZERO;
delta_box_max = ZERO;
}
2018-05-21 11:08:02 +00:00
// z component of normal vector in world coordinate used for slope shading
world_normal_z = slope.actived ? (normalize(slope.volume_world_normal_matrix * gl_Normal)).z : 0.0;
2018-05-21 11:08:02 +00:00
gl_Position = ftransform();
// Fill in the scalars for fragment shader clipping. Fragments with any of these components lower than zero are discarded.
clipping_planes_dots = vec3(dot(world_pos, clipping_plane), world_pos.z - z_range.x, z_range.y - world_pos.z);
}