PrusaSlicer-NonPlainar/xs/src/libslic3r/GCode/PressureEqualizer.cpp

612 lines
24 KiB
C++
Raw Normal View History

#include <memory.h>
#include <string.h>
2016-09-13 13:59:23 +00:00
#include <float.h>
#include "../libslic3r.h"
#include "../PrintConfig.hpp"
#include "PressureEqualizer.hpp"
namespace Slic3r {
GCodePressureEqualizer::GCodePressureEqualizer(const Slic3r::GCodeConfig *config) :
m_config(config)
{
reset();
}
GCodePressureEqualizer::~GCodePressureEqualizer()
{
}
void GCodePressureEqualizer::reset()
{
circular_buffer_pos = 0;
circular_buffer_size = 100;
circular_buffer_items = 0;
circular_buffer.assign(circular_buffer_size, GCodeLine());
output_buffer.clear();
output_buffer_length = 0;
m_current_extruder = 0;
// Zero the position of the XYZE axes + the current feed
memset(m_current_pos, 0, sizeof(float) * 5);
m_current_extrusion_role = erNone;
// Expect the first command to fill the nozzle (deretract).
m_retracted = true;
// Calculate filamet crossections for the multiple extruders.
m_filament_crossections.clear();
for (size_t i = 0; i < m_config->filament_diameter.values.size(); ++ i) {
double r = m_config->filament_diameter.values[i];
double a = 0.25f*M_PI*r*r;
m_filament_crossections.push_back(float(a));
}
m_max_segment_length = 20.f;
// Volumetric rate of a 0.45mm x 0.2mm extrusion at 60mm/s XY movement: 0.45*0.2*60*60=5.4*60 = 324 mm^3/min
// Volumetric rate of a 0.45mm x 0.2mm extrusion at 20mm/s XY movement: 0.45*0.2*20*60=1.8*60 = 108 mm^3/min
// Slope of the volumetric rate, changing from 20mm/s to 60mm/s over 2 seconds: (5.4-1.8)*60*60/2=60*60*1.8 = 6480 mm^3/min^2 = 1.8 mm^3/s^2
m_max_volumetric_extrusion_rate_slope_positive = (this->m_config == NULL) ? 6480.f :
this->m_config->max_volumetric_extrusion_rate_slope_positive.value * 60. * 60.;
m_max_volumetric_extrusion_rate_slope_negative = (this->m_config == NULL) ? 6480.f :
this->m_config->max_volumetric_extrusion_rate_slope_negative.value * 60. * 60.;
for (size_t i = 0; i < numExtrusionRoles; ++ i) {
m_max_volumetric_extrusion_rate_slopes[i].negative = m_max_volumetric_extrusion_rate_slope_negative;
m_max_volumetric_extrusion_rate_slopes[i].positive = m_max_volumetric_extrusion_rate_slope_positive;
}
// Don't regulate the pressure in infill.
m_max_volumetric_extrusion_rate_slopes[erBridgeInfill].negative = 0;
m_max_volumetric_extrusion_rate_slopes[erBridgeInfill].positive = 0;
// Don't regulate the pressure in gap fill.
m_max_volumetric_extrusion_rate_slopes[erGapFill].negative = 0;
m_max_volumetric_extrusion_rate_slopes[erGapFill].positive = 0;
m_stat.reset();
}
const char* GCodePressureEqualizer::process(const char *szGCode, bool flush)
{
// Reset length of the output_buffer.
output_buffer_length = 0;
if (szGCode != 0) {
const char *p = szGCode;
while (*p != 0) {
// Find end of the line.
const char *endl = p;
// Slic3r always generates end of lines in a Unix style.
for (; *endl != 0 && *endl != '\n'; ++ endl) ;
if (circular_buffer_items == circular_buffer_size)
// Buffer is full. Push out the oldest line.
output_gcode_line(circular_buffer[circular_buffer_pos]);
else
++ circular_buffer_items;
// Process a G-code line, store it into the provided GCodeLine object.
size_t idx_tail = circular_buffer_pos;
circular_buffer_pos = circular_buffer_idx_next(circular_buffer_pos);
if (! process_line(p, endl - p, circular_buffer[idx_tail])) {
// The line has to be forgotten. It contains comment marks, which shall be
// filtered out of the target g-code.
circular_buffer_pos = idx_tail;
-- circular_buffer_items;
}
p = endl;
if (*p == '\n')
++ p;
}
}
if (flush) {
// Flush the remaining valid lines of the circular buffer.
for (size_t idx = circular_buffer_idx_head(); circular_buffer_items > 0; -- circular_buffer_items) {
output_gcode_line(circular_buffer[idx]);
if (++ idx == circular_buffer_size)
idx = 0;
}
// Reset the index pointer.
assert(circular_buffer_items == 0);
circular_buffer_pos = 0;
#if 1
printf("Statistics: \n");
printf("Minimum volumetric extrusion rate: %f\n", m_stat.volumetric_extrusion_rate_min);
printf("Maximum volumetric extrusion rate: %f\n", m_stat.volumetric_extrusion_rate_max);
if (m_stat.extrusion_length > 0)
m_stat.volumetric_extrusion_rate_avg /= m_stat.extrusion_length;
printf("Average volumetric extrusion rate: %f\n", m_stat.volumetric_extrusion_rate_avg);
m_stat.reset();
#endif
}
return output_buffer.data();
}
// Is a white space?
static inline bool is_ws(const char c) { return c == ' ' || c == '\t'; }
// Is it an end of line? Consider a comment to be an end of line as well.
static inline bool is_eol(const char c) { return c == 0 || c == '\r' || c == '\n' || c == ';'; };
// Is it a white space or end of line?
static inline bool is_ws_or_eol(const char c) { return is_ws(c) || is_eol(c); };
// Eat whitespaces.
static void eatws(const char *&line)
{
while (is_ws(*line))
++ line;
}
// Parse an int starting at the current position of a line.
// If succeeded, the line pointer is advanced.
static inline int parse_int(const char *&line)
{
char *endptr = NULL;
long result = strtol(line, &endptr, 10);
if (endptr == NULL || !is_ws_or_eol(*endptr))
throw std::runtime_error("GCodePressureEqualizer: Error parsing an int");
line = endptr;
return int(result);
};
// Parse an int starting at the current position of a line.
// If succeeded, the line pointer is advanced.
static inline float parse_float(const char *&line)
{
char *endptr = NULL;
float result = strtof(line, &endptr);
if (endptr == NULL || !is_ws_or_eol(*endptr))
throw std::runtime_error("GCodePressureEqualizer: Error parsing a float");
line = endptr;
return result;
};
#define EXTRUSION_ROLE_TAG ";_EXTRUSION_ROLE:"
bool GCodePressureEqualizer::process_line(const char *line, const size_t len, GCodeLine &buf)
{
if (strncmp(line, EXTRUSION_ROLE_TAG, strlen(EXTRUSION_ROLE_TAG)) == 0) {
line += strlen(EXTRUSION_ROLE_TAG);
int role = atoi(line);
this->m_current_extrusion_role = ExtrusionRole(role);
return false;
}
// Set the type, copy the line to the buffer.
buf.type = GCODELINETYPE_OTHER;
buf.modified = false;
if (buf.raw.size() < len + 1)
buf.raw.assign(line, line + len + 1);
else
memcpy(buf.raw.data(), line, len);
buf.raw[len] = 0;
buf.raw_length = len;
memcpy(buf.pos_start, m_current_pos, sizeof(float)*5);
memcpy(buf.pos_end, m_current_pos, sizeof(float)*5);
memset(buf.pos_provided, 0, 5);
buf.volumetric_extrusion_rate = 0.f;
buf.volumetric_extrusion_rate_start = 0.f;
buf.volumetric_extrusion_rate_end = 0.f;
buf.max_volumetric_extrusion_rate_slope_positive = 0.f;
buf.max_volumetric_extrusion_rate_slope_negative = 0.f;
buf.extrusion_role = m_current_extrusion_role;
// Parse the G-code line, store the result into the buf.
switch (toupper(*line ++)) {
case 'G': {
int gcode = parse_int(line);
eatws(line);
switch (gcode) {
case 0:
case 1:
{
// G0, G1: A FFF 3D printer does not make a difference between the two.
float new_pos[5];
memcpy(new_pos, m_current_pos, sizeof(float)*5);
bool changed[5] = { false, false, false, false, false };
while (!is_eol(*line)) {
char axis = toupper(*line++);
int i = -1;
switch (axis) {
case 'X':
case 'Y':
case 'Z':
i = axis - 'X';
break;
case 'E':
i = 3;
break;
case 'F':
i = 4;
break;
default:
assert(false);
}
if (i == -1)
throw std::runtime_error(std::string("GCodePressureEqualizer: Invalid axis for G0/G1: ") + axis);
buf.pos_provided[i] = true;
new_pos[i] = parse_float(line);
if (i == 3 && m_config->use_relative_e_distances.value)
new_pos[i] += m_current_pos[i];
changed[i] = new_pos[i] != m_current_pos[i];
eatws(line);
}
if (changed[3]) {
// Extrusion, retract or unretract.
float diff = new_pos[3] - m_current_pos[3];
if (diff < 0) {
buf.type = GCODELINETYPE_RETRACT;
m_retracted = true;
} else if (! changed[0] && ! changed[1] && ! changed[2]) {
// assert(m_retracted);
buf.type = GCODELINETYPE_UNRETRACT;
m_retracted = false;
} else {
assert(changed[0] || changed[1]);
// Moving in XY plane.
buf.type = GCODELINETYPE_EXTRUDE;
// Calculate the volumetric extrusion rate.
float diff[4];
for (size_t i = 0; i < 4; ++ i)
diff[i] = new_pos[i] - m_current_pos[i];
// volumetric extrusion rate = A_filament * F_xyz * L_e / L_xyz [mm^3/min]
float len2 = diff[0]*diff[0]+diff[1]*diff[1]+diff[2]*diff[2];
float rate = m_filament_crossections[m_current_extruder] * new_pos[4] * sqrt((diff[3]*diff[3])/len2);
buf.volumetric_extrusion_rate = rate;
buf.volumetric_extrusion_rate_start = rate;
buf.volumetric_extrusion_rate_end = rate;
m_stat.update(rate, sqrt(len2));
if (rate < 10.f) {
printf("Extremely low flow rate: %f\n", rate);
}
}
} else if (changed[0] || changed[1] || changed[2]) {
// Moving without extrusion.
buf.type = GCODELINETYPE_MOVE;
}
memcpy(m_current_pos, new_pos, sizeof(float) * 5);
break;
}
case 92:
{
// G92 : Set Position
// Set a logical coordinate position to a new value without actually moving the machine motors.
// Which axes to set?
bool set = false;
while (!is_eol(*line)) {
char axis = toupper(*line++);
switch (axis) {
case 'X':
case 'Y':
case 'Z':
m_current_pos[axis - 'X'] = (!is_ws_or_eol(*line)) ? parse_float(line) : 0.f;
set = true;
break;
case 'E':
m_current_pos[3] = (!is_ws_or_eol(*line)) ? parse_float(line) : 0.f;
set = true;
break;
default:
throw std::runtime_error(std::string("GCodePressureEqualizer: Incorrect axis in a G92 G-code: ") + axis);
}
eatws(line);
}
assert(set);
break;
}
case 10:
case 22:
// Firmware retract.
buf.type = GCODELINETYPE_RETRACT;
m_retracted = true;
break;
case 11:
case 23:
// Firmware unretract.
buf.type = GCODELINETYPE_UNRETRACT;
m_retracted = false;
break;
default:
// Ignore the rest.
break;
}
break;
}
case 'M': {
int mcode = parse_int(line);
eatws(line);
switch (mcode) {
default:
// Ignore the rest of the M-codes.
break;
}
break;
}
case 'T':
{
// Activate an extruder head.
int new_extruder = parse_int(line);
if (new_extruder != m_current_extruder) {
m_current_extruder = new_extruder;
m_retracted = true;
buf.type = GCODELINETYPE_TOOL_CHANGE;
} else {
buf.type = GCODELINETYPE_NOOP;
}
break;
}
}
buf.extruder_id = m_current_extruder;
memcpy(buf.pos_end, m_current_pos, sizeof(float)*5);
adjust_volumetric_rate();
return true;
}
void GCodePressureEqualizer::output_gcode_line(GCodeLine &line)
{
if (! line.modified) {
push_to_output(line.raw.data(), line.raw_length, true);
return;
}
// The line was modified.
// Find the comment.
const char *comment = line.raw.data();
while (*comment != ';' && *comment != 0) ++comment;
if (*comment != ';')
comment = NULL;
// Emit the line with lowered extrusion rates.
float l2 = line.dist_xyz2();
float l = sqrt(l2);
size_t nSegments = size_t(ceil(l / m_max_segment_length));
char text[2048];
if (nSegments == 1) {
// Just update this segment.
push_line_to_output(line, line.feedrate() * line.volumetric_correction_avg(), comment);
} else {
bool accelerating = line.volumetric_extrusion_rate_start < line.volumetric_extrusion_rate_end;
// Update the initial and final feed rate values.
line.pos_start[4] = line.volumetric_extrusion_rate_start * line.pos_end[4] / line.volumetric_extrusion_rate;
line.pos_end [4] = line.volumetric_extrusion_rate_end * line.pos_end[4] / line.volumetric_extrusion_rate;
float feed_avg = 0.5f * (line.pos_start[4] + line.pos_end[4]);
// Limiting volumetric extrusion rate slope for this segment.
float max_volumetric_extrusion_rate_slope = accelerating ?
line.max_volumetric_extrusion_rate_slope_positive : line.max_volumetric_extrusion_rate_slope_negative;
// Total time for the segment, corrected for the possibly lowered volumetric feed rate,
// if accelerating / decelerating over the complete segment.
float t_total = line.dist_xyz() / feed_avg;
// Time of the acceleration / deceleration part of the segment, if accelerating / decelerating
// with the maximum volumetric extrusion rate slope.
float t_acc = 0.5f * (line.volumetric_extrusion_rate_start + line.volumetric_extrusion_rate_end) / max_volumetric_extrusion_rate_slope;
float l_acc = l;
float l_steady = 0.f;
if (t_acc < t_total) {
// One may achieve higher print speeds if part of the segment is not speed limited.
float l_acc = t_acc * feed_avg;
float l_steady = l - l_acc;
if (l_steady < 0.5f * m_max_segment_length) {
l_acc = l;
l_steady = 0.f;
} else
nSegments = size_t(ceil(l_acc / m_max_segment_length));
}
float pos_start[5];
float pos_end [5];
float pos_end2 [4];
memcpy(pos_start, line.pos_start, sizeof(float)*5);
memcpy(pos_end , line.pos_end , sizeof(float)*5);
if (l_steady > 0.f) {
// There will be a steady feed segment emitted.
if (accelerating) {
// Prepare the final steady feed rate segment.
memcpy(pos_end2, pos_end, sizeof(float)*4);
float t = l_acc / l;
for (int i = 0; i < 4; ++ i) {
pos_end[i] = pos_start[i] + (pos_end[i] - pos_start[i]) * t;
line.pos_provided[i] = true;
}
} else {
// Emit the steady feed rate segment.
float t = l_steady / l;
for (int i = 0; i < 4; ++ i) {
line.pos_end[i] = pos_start[i] + (pos_end[i] - pos_start[i]) * t;
line.pos_provided[i] = true;
}
push_line_to_output(line, pos_start[4], comment);
comment = NULL;
memcpy(line.pos_start, line.pos_end, sizeof(float)*5);
memcpy(pos_start, line.pos_end, sizeof(float)*5);
}
}
// Split the segment into pieces.
for (size_t i = 1; i < nSegments; ++ i) {
float t = float(i) / float(nSegments);
for (size_t j = 0; j < 4; ++ j) {
line.pos_end[j] = pos_start[j] + (pos_end[j] - pos_start[j]) * t;
line.pos_provided[j] = true;
}
// Interpolate the feed rate at the center of the segment.
push_line_to_output(line, pos_start[4] + (pos_end[4] - pos_start[4]) * (float(i) - 0.5f) / float(nSegments), comment);
comment = NULL;
memcpy(line.pos_start, line.pos_end, sizeof(float)*5);
}
if (l_steady > 0.f && accelerating) {
for (int i = 0; i < 4; ++ i) {
line.pos_end[i] = pos_end2[i];
line.pos_provided[i] = true;
}
push_line_to_output(line, pos_end[4], comment);
}
}
}
void GCodePressureEqualizer::adjust_volumetric_rate()
{
if (circular_buffer_items < 2)
return;
// Go back from the current circular_buffer_pos and lower the feedtrate to decrease the slope of the extrusion rate changes.
const size_t idx_head = circular_buffer_idx_head();
const size_t idx_tail = circular_buffer_idx_prev(circular_buffer_idx_tail());
size_t idx = idx_tail;
if (idx == idx_head || ! circular_buffer[idx].extruding())
// Nothing to do, the last move is not extruding.
return;
float feedrate_per_extrusion_role[numExtrusionRoles];
for (size_t i = 0; i < numExtrusionRoles; ++ i)
feedrate_per_extrusion_role[i] = FLT_MAX;
feedrate_per_extrusion_role[circular_buffer[idx].extrusion_role] = circular_buffer[idx].volumetric_extrusion_rate_start;
bool modified = true;
while (modified && idx != idx_head) {
size_t idx_prev = circular_buffer_idx_prev(idx);
for (; ! circular_buffer[idx_prev].extruding() && idx_prev != idx_head; idx_prev = circular_buffer_idx_prev(idx_prev)) ;
if (! circular_buffer[idx_prev].extruding())
break;
float rate_succ = circular_buffer[idx].volumetric_extrusion_rate_start;
// What is the gradient of the extrusion rate between idx_prev and idx?
idx = idx_prev;
GCodeLine &line = circular_buffer[idx];
for (size_t iRole = 1; iRole < numExtrusionRoles; ++ iRole) {
float rate_slope = m_max_volumetric_extrusion_rate_slopes[iRole].negative;
if (rate_slope == 0)
// The negative rate is unlimited.
continue;
float rate_end = feedrate_per_extrusion_role[iRole];
if (iRole == line.extrusion_role && rate_succ < rate_end)
rate_end = rate_succ;
if (line.volumetric_extrusion_rate_end > rate_end) {
line.volumetric_extrusion_rate_end = rate_end;
line.modified = true;
} else if (iRole == line.extrusion_role) {
rate_end = line.volumetric_extrusion_rate_end;
} else if (rate_end == FLT_MAX) {
// The rate for ExtrusionRole iRole is unlimited.
continue;
} else {
// Use the original, 'floating' extrusion rate as a starting point for the limiter.
}
// modified = false;
float rate_start = rate_end + rate_slope * line.time_corrected();
if (rate_start < line.volumetric_extrusion_rate_start) {
// Limit the volumetric extrusion rate at the start of this segment due to a segment
// of ExtrusionType iRole, which will be extruded in the future.
line.volumetric_extrusion_rate_start = rate_start;
line.max_volumetric_extrusion_rate_slope_negative = rate_slope;
line.modified = true;
// modified = true;
}
feedrate_per_extrusion_role[iRole] = (iRole == line.extrusion_role) ? line.volumetric_extrusion_rate_start : rate_start;
}
}
// Go forward and adjust the feedrate to decrease the slope of the extrusion rate changes.
for (size_t i = 0; i < numExtrusionRoles; ++ i)
feedrate_per_extrusion_role[i] = FLT_MAX;
feedrate_per_extrusion_role[circular_buffer[idx].extrusion_role] = circular_buffer[idx].volumetric_extrusion_rate_end;
assert(circular_buffer[idx].extruding());
while (idx != idx_tail) {
size_t idx_next = circular_buffer_idx_next(idx);
for (; ! circular_buffer[idx_next].extruding() && idx_next != idx_tail; idx_next = circular_buffer_idx_next(idx_next)) ;
if (! circular_buffer[idx_next].extruding())
break;
float rate_prec = circular_buffer[idx].volumetric_extrusion_rate_end;
// What is the gradient of the extrusion rate between idx_prev and idx?
idx = idx_next;
GCodeLine &line = circular_buffer[idx];
for (size_t iRole = 1; iRole < numExtrusionRoles; ++ iRole) {
float rate_slope = m_max_volumetric_extrusion_rate_slopes[iRole].positive;
if (rate_slope == 0)
// The positive rate is unlimited.
continue;
float rate_start = feedrate_per_extrusion_role[iRole];
if (iRole == line.extrusion_role && rate_prec < rate_start)
rate_start = rate_prec;
if (line.volumetric_extrusion_rate_start > rate_start) {
line.volumetric_extrusion_rate_start = rate_start;
line.modified = true;
} else if (iRole == line.extrusion_role) {
rate_start = line.volumetric_extrusion_rate_start;
} else if (rate_start == FLT_MAX) {
// The rate for ExtrusionRole iRole is unlimited.
continue;
} else {
// Use the original, 'floating' extrusion rate as a starting point for the limiter.
}
float rate_end = (rate_slope == 0) ? FLT_MAX : rate_start + rate_slope * line.time_corrected();
if (rate_end < line.volumetric_extrusion_rate_end) {
// Limit the volumetric extrusion rate at the start of this segment due to a segment
// of ExtrusionType iRole, which was extruded before.
line.volumetric_extrusion_rate_end = rate_end;
line.max_volumetric_extrusion_rate_slope_positive = rate_slope;
line.modified = true;
}
feedrate_per_extrusion_role[iRole] = (iRole == line.extrusion_role) ? line.volumetric_extrusion_rate_end : rate_end;
}
}
}
void GCodePressureEqualizer::push_axis_to_output(const char axis, const float value, bool add_eol)
{
char buf[2048];
int len = sprintf(buf,
(axis == 'E') ? " %c%.3f" : " %c%.5f",
axis, value);
push_to_output(buf, len, add_eol);
}
void GCodePressureEqualizer::push_to_output(const char *text, const size_t len, bool add_eol)
{
// New length of the output buffer content.
size_t len_new = output_buffer_length + len + 1;
if (add_eol)
++ len_new;
// Resize the output buffer to a power of 2 higher than the required memory.
if (output_buffer.size() < len_new) {
size_t v = len_new;
// Compute the next highest power of 2 of 32-bit v
// http://graphics.stanford.edu/~seander/bithacks.html
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
output_buffer.resize(v);
}
// Copy the text to the output.
if (len != 0) {
memcpy(output_buffer.data() + output_buffer_length, text, len);
output_buffer_length += len;
}
if (add_eol)
output_buffer[output_buffer_length ++] = '\n';
output_buffer[output_buffer_length] = 0;
}
void GCodePressureEqualizer::push_line_to_output(const GCodeLine &line, const float new_feedrate, const char *comment)
{
push_to_output("G1", 2, false);
for (size_t i = 0; i < 3; ++ i)
if (line.pos_provided[i])
push_axis_to_output('X'+i, line.pos_end[i]);
push_axis_to_output('E', m_config->use_relative_e_distances.value ? (line.pos_end[3] - line.pos_start[3]) : line.pos_end[3]);
// if (line.pos_provided[4] || fabs(line.feedrate() - new_feedrate) > 1e-5)
push_axis_to_output('F', new_feedrate);
// output comment and EOL
push_to_output(comment, (comment == NULL) ? 0 : strlen(comment), true);
}
} // namespace Slic3r