PrusaSlicer-NonPlainar/xs/src/libslic3r/MotionPlanner.cpp

295 lines
10 KiB
C++
Raw Normal View History

#include "BoundingBox.hpp"
#include "MotionPlanner.hpp"
#include <limits> // for numeric_limits
#include "boost/polygon/voronoi.hpp"
using boost::polygon::voronoi_builder;
using boost::polygon::voronoi_diagram;
namespace Slic3r {
MotionPlanner::MotionPlanner(const ExPolygons &islands)
: islands(islands), initialized(false)
{}
MotionPlanner::~MotionPlanner()
{
for (std::vector<MotionPlannerGraph*>::iterator graph = this->graphs.begin(); graph != this->graphs.end(); ++graph)
delete *graph;
}
size_t
MotionPlanner::islands_count() const
{
return this->islands.size();
}
void
MotionPlanner::initialize()
{
if (this->initialized) return;
if (this->islands.empty()) return; // prevent initialization of empty BoundingBox
ExPolygons expp;
for (ExPolygons::const_iterator island = this->islands.begin(); island != this->islands.end(); ++island) {
island->simplify(SCALED_EPSILON, expp);
}
this->islands = expp;
// loop through islands in order to create inner expolygons and collect their contours
this->inner.reserve(this->islands.size());
Polygons outer_holes;
for (ExPolygons::const_iterator island = this->islands.begin(); island != this->islands.end(); ++island) {
this->inner.push_back(ExPolygonCollection());
offset(*island, &this->inner.back().expolygons, -MP_INNER_MARGIN);
outer_holes.push_back(island->contour);
}
// grow island contours in order to prepare holes of the outer environment
// This is actually wrong because it might merge contours that are close,
// thus confusing the island check in shortest_path() below
//offset(outer_holes, &outer_holes, +MP_OUTER_MARGIN);
// generate outer contour as bounding box of everything
Points points;
for (Polygons::const_iterator contour = outer_holes.begin(); contour != outer_holes.end(); ++contour)
points.insert(points.end(), contour->points.begin(), contour->points.end());
BoundingBox bb(points);
// grow outer contour
Polygons contour;
offset(bb.polygon(), &contour, +MP_OUTER_MARGIN);
assert(contour.size() == 1);
// make expolygon for outer environment
ExPolygons outer;
diff(contour, outer_holes, &outer);
assert(outer.size() == 1);
this->outer = outer.front();
this->graphs.resize(this->islands.size() + 1, NULL);
this->initialized = true;
}
void
MotionPlanner::shortest_path(const Point &from, const Point &to, Polyline* polyline)
{
if (!this->initialized) this->initialize();
if (this->islands.empty()) {
polyline->points.push_back(from);
polyline->points.push_back(to);
return;
}
// Are both points in the same island?
int island_idx = -1;
for (ExPolygons::const_iterator island = this->islands.begin(); island != this->islands.end(); ++island) {
if (island->contains_point(from) && island->contains_point(to)) {
// since both points are in the same island, is a direct move possible?
// if so, we avoid generating the visibility environment
if (island->contains_line(Line(from, to))) {
polyline->points.push_back(from);
polyline->points.push_back(to);
return;
}
island_idx = island - this->islands.begin();
break;
}
}
// Now check whether points are inside the environment.
Point inner_from = from;
Point inner_to = to;
bool from_is_inside, to_is_inside;
if (island_idx == -1) {
if (!(from_is_inside = this->outer.contains_point(from))) {
// Find the closest inner point to start from.
from.nearest_point(this->outer, &inner_from);
}
if (!(to_is_inside = this->outer.contains_point(to))) {
// Find the closest inner point to start from.
to.nearest_point(this->outer, &inner_to);
}
} else {
if (!(from_is_inside = this->inner[island_idx].contains_point(from))) {
// Find the closest inner point to start from.
from.nearest_point(this->inner[island_idx], &inner_from);
}
if (!(to_is_inside = this->inner[island_idx].contains_point(to))) {
// Find the closest inner point to start from.
to.nearest_point(this->inner[island_idx], &inner_to);
}
}
// perform actual path search
MotionPlannerGraph* graph = this->init_graph(island_idx);
graph->shortest_path(graph->find_node(inner_from), graph->find_node(inner_to), polyline);
polyline->points.insert(polyline->points.begin(), from);
polyline->points.push_back(to);
}
MotionPlannerGraph*
MotionPlanner::init_graph(int island_idx)
{
if (this->graphs[island_idx + 1] == NULL) {
Polygons pp;
if (island_idx == -1) {
pp = this->outer;
} else {
pp = this->inner[island_idx];
}
MotionPlannerGraph* graph = this->graphs[island_idx + 1] = new MotionPlannerGraph();
// add polygon boundaries as edges
size_t node_idx = 0;
Lines lines;
for (Polygons::const_iterator polygon = pp.begin(); polygon != pp.end(); ++polygon) {
graph->nodes.push_back(polygon->points.back());
node_idx++;
for (Points::const_iterator p = polygon->points.begin(); p != polygon->points.end(); ++p) {
graph->nodes.push_back(*p);
double dist = graph->nodes[node_idx-1].distance_to(*p);
graph->add_edge(node_idx-1, node_idx, dist);
graph->add_edge(node_idx, node_idx-1, dist);
node_idx++;
}
polygon->lines(&lines);
}
// add Voronoi edges as internal edges
{
typedef voronoi_diagram<double> VD;
typedef std::map<const VD::vertex_type*,size_t> t_vd_vertices;
VD vd;
t_vd_vertices vd_vertices;
boost::polygon::construct_voronoi(lines.begin(), lines.end(), &vd);
for (VD::const_edge_iterator edge = vd.edges().begin(); edge != vd.edges().end(); ++edge) {
if (edge->is_infinite()) continue;
const VD::vertex_type* v0 = edge->vertex0();
const VD::vertex_type* v1 = edge->vertex1();
Point p0 = Point(v0->x(), v0->y());
Point p1 = Point(v1->x(), v1->y());
// contains_point() should probably be faster than contains_line(),
// and should it fail on any boundary points it's not a big problem
if (island_idx == -1) {
if (!this->outer.contains_point(p0) || !this->outer.contains_point(p1)) continue;
} else {
if (!this->inner[island_idx].contains_point(p0) || !this->inner[island_idx].contains_point(p1)) continue;
}
t_vd_vertices::const_iterator i_v0 = vd_vertices.find(v0);
size_t v0_idx;
if (i_v0 == vd_vertices.end()) {
graph->nodes.push_back(p0);
v0_idx = node_idx;
vd_vertices[v0] = node_idx;
node_idx++;
} else {
v0_idx = i_v0->second;
}
t_vd_vertices::const_iterator i_v1 = vd_vertices.find(v1);
size_t v1_idx;
if (i_v1 == vd_vertices.end()) {
graph->nodes.push_back(p1);
v1_idx = node_idx;
vd_vertices[v1] = node_idx;
node_idx++;
} else {
v1_idx = i_v1->second;
}
double dist = graph->nodes[v0_idx].distance_to(graph->nodes[v1_idx]);
graph->add_edge(v0_idx, v1_idx, dist);
}
}
return graph;
}
return this->graphs[island_idx + 1];
}
void
MotionPlannerGraph::add_edge(size_t from, size_t to, double weight)
{
// extend adjacency list until this start node
if (this->adjacency_list.size() < from+1)
this->adjacency_list.resize(from+1);
this->adjacency_list[from].push_back(neighbor(to, weight));
}
size_t
MotionPlannerGraph::find_node(const Point &point) const
{
/*
for (Points::const_iterator p = this->nodes.begin(); p != this->nodes.end(); ++p) {
if (p->coincides_with(point)) return p - this->nodes.begin();
}
*/
return point.nearest_point_index(this->nodes);
}
void
MotionPlannerGraph::shortest_path(size_t from, size_t to, Polyline* polyline)
{
// this prevents a crash in case for some reason we got here with an empty adjacency list
if (this->adjacency_list.empty()) return;
const weight_t max_weight = std::numeric_limits<weight_t>::infinity();
std::vector<weight_t> min_distance;
std::vector<node_t> previous;
{
int n = this->adjacency_list.size();
min_distance.clear();
min_distance.resize(n, max_weight);
min_distance[from] = 0;
previous.clear();
previous.resize(n, -1);
std::set<std::pair<weight_t, node_t> > vertex_queue;
vertex_queue.insert(std::make_pair(min_distance[from], from));
while (!vertex_queue.empty())
{
weight_t dist = vertex_queue.begin()->first;
node_t u = vertex_queue.begin()->second;
vertex_queue.erase(vertex_queue.begin());
// Visit each edge exiting u
const std::vector<neighbor> &neighbors = this->adjacency_list[u];
for (std::vector<neighbor>::const_iterator neighbor_iter = neighbors.begin();
neighbor_iter != neighbors.end();
neighbor_iter++)
{
node_t v = neighbor_iter->target;
weight_t weight = neighbor_iter->weight;
weight_t distance_through_u = dist + weight;
if (distance_through_u < min_distance[v]) {
vertex_queue.erase(std::make_pair(min_distance[v], v));
min_distance[v] = distance_through_u;
previous[v] = u;
vertex_queue.insert(std::make_pair(min_distance[v], v));
}
}
}
}
for (node_t vertex = to; vertex != -1; vertex = previous[vertex])
polyline->points.push_back(this->nodes[vertex]);
polyline->reverse();
}
#ifdef SLIC3RXS
REGISTER_CLASS(MotionPlanner, "MotionPlanner");
#endif
}