PrusaSlicer-NonPlainar/src/libslic3r/Fill/FillGyroid.cpp

194 lines
8.0 KiB
C++
Raw Normal View History

#include "../ClipperUtils.hpp"
#include "../ShortestPath.hpp"
#include "../Surface.hpp"
#include <cmath>
#include <algorithm>
#include <iostream>
#include "FillGyroid.hpp"
namespace Slic3r {
static inline double f(double x, double z_sin, double z_cos, bool vertical, bool flip)
2018-02-23 17:32:35 +00:00
{
if (vertical) {
double phase_offset = (z_cos < 0 ? M_PI : 0) + M_PI;
double a = sin(x + phase_offset);
2018-02-23 17:32:35 +00:00
double b = - z_cos;
double res = z_sin * cos(x + phase_offset + (flip ? M_PI : 0.));
2018-02-23 17:32:35 +00:00
double r = sqrt(sqr(a) + sqr(b));
return asin(a/r) + asin(res/r) + M_PI;
}
else {
double phase_offset = z_sin < 0 ? M_PI : 0.;
double a = cos(x + phase_offset);
double b = - z_sin;
double res = z_cos * sin(x + phase_offset + (flip ? 0 : M_PI));
double r = sqrt(sqr(a) + sqr(b));
return (asin(a/r) + asin(res/r) + 0.5 * M_PI);
}
}
static inline Polyline make_wave(
const std::vector<Vec2d>& one_period, double width, double height, double offset, double scaleFactor,
double z_cos, double z_sin, bool vertical)
2018-02-23 17:32:35 +00:00
{
std::vector<Vec2d> points = one_period;
double period = points.back()(0);
points.pop_back();
int n = points.size();
do {
points.emplace_back(Vec2d(points[points.size()-n](0) + period, points[points.size()-n](1)));
} while (points.back()(0) < width);
points.back()(0) = width;
// and construct the final polyline to return:
Polyline polyline;
for (auto& point : points) {
point(1) += offset;
point(1) = clamp(0., height, double(point(1)));
if (vertical)
std::swap(point(0), point(1));
polyline.points.emplace_back((point * scaleFactor).cast<coord_t>());
}
return polyline;
}
static std::vector<Vec2d> make_one_period(double width, double scaleFactor, double z_cos, double z_sin, bool vertical, bool flip)
{
std::vector<Vec2d> points;
double dx = M_PI_4; // very coarse spacing to begin with
double limit = std::min(2*M_PI, width);
for (double x = 0.; x < limit + EPSILON; x += dx) { // so the last point is there too
x = std::min(x, limit);
points.emplace_back(Vec2d(x,f(x, z_sin,z_cos, vertical, flip)));
}
// now we will check all internal points and in case some are too far from the line connecting its neighbours,
// we will add one more point on each side:
const double tolerance = .1;
for (unsigned int i=1;i<points.size()-1;++i) {
auto& lp = points[i-1]; // left point
auto& tp = points[i]; // this point
Vec2d lrv = tp - lp;
auto& rp = points[i+1]; // right point
// calculate distance of the point to the line:
double dist_mm = unscale<double>(scaleFactor) * std::abs(cross2(rp, lp) - cross2(rp - lp, tp)) / lrv.norm();
if (dist_mm > tolerance) { // if the difference from straight line is more than this
double x = 0.5f * (points[i-1](0) + points[i](0));
points.emplace_back(Vec2d(x, f(x, z_sin, z_cos, vertical, flip)));
x = 0.5f * (points[i+1](0) + points[i](0));
points.emplace_back(Vec2d(x, f(x, z_sin, z_cos, vertical, flip)));
// we added the points to the end, but need them all in order
std::sort(points.begin(), points.end(), [](const Vec2d &lhs, const Vec2d &rhs){ return lhs < rhs; });
// decrement i so we also check the first newly added point
--i;
}
}
return points;
}
2018-04-05 08:31:53 +00:00
static Polylines make_gyroid_waves(double gridZ, double density_adjusted, double line_spacing, double width, double height)
{
const double scaleFactor = scale_(line_spacing) / density_adjusted;
2018-02-23 17:32:35 +00:00
//scale factor for 5% : 8 712 388
// 1z = 10^-6 mm ?
const double z = gridZ / scaleFactor;
const double z_sin = sin(z);
const double z_cos = cos(z);
bool vertical = (std::abs(z_sin) <= std::abs(z_cos));
double lower_bound = 0.;
double upper_bound = height;
bool flip = true;
if (vertical) {
flip = false;
lower_bound = -M_PI;
upper_bound = width - M_PI_2;
std::swap(width,height);
}
std::vector<Vec2d> one_period = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip); // creates one period of the waves, so it doesn't have to be recalculated all the time
Polylines result;
for (double y0 = lower_bound; y0 < upper_bound+EPSILON; y0 += 2*M_PI) // creates odd polylines
result.emplace_back(make_wave(one_period, width, height, y0, scaleFactor, z_cos, z_sin, vertical));
flip = !flip; // even polylines are a bit shifted
one_period = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip); // updates the one period sample
for (double y0 = lower_bound + M_PI; y0 < upper_bound+EPSILON; y0 += 2*M_PI) // creates even polylines
result.emplace_back(make_wave(one_period, width, height, y0, scaleFactor, z_cos, z_sin, vertical));
return result;
}
void FillGyroid::_fill_surface_single(
const FillParams &params,
unsigned int thickness_layers,
const std::pair<float, Point> &direction,
ExPolygon &expolygon,
Polylines &polylines_out)
{
2018-04-05 08:31:53 +00:00
// no rotation is supported for this infill pattern (yet)
BoundingBox bb = expolygon.contour.bounding_box();
2018-04-05 08:31:53 +00:00
// Density adjusted to have a good %of weight.
double density_adjusted = std::max(0., params.density * 2.44);
2018-04-05 08:31:53 +00:00
// Distance between the gyroid waves in scaled coordinates.
coord_t distance = coord_t(scale_(this->spacing) / density_adjusted);
// align bounding box to a multiple of our grid module
2018-04-05 08:31:53 +00:00
bb.merge(_align_to_grid(bb.min, Point(2.*M_PI*distance, 2.*M_PI*distance)));
// generate pattern
2018-02-23 17:32:35 +00:00
Polylines polylines = make_gyroid_waves(
scale_(this->z),
2018-04-05 08:31:53 +00:00
density_adjusted,
this->spacing,
ceil(bb.size()(0) / distance) + 1.,
ceil(bb.size()(1) / distance) + 1.);
// move pattern in place
2018-02-23 17:32:35 +00:00
for (Polyline &polyline : polylines)
polyline.translate(bb.min(0), bb.min(1));
// clip pattern to boundaries
polylines = intersection_pl(polylines, (Polygons)expolygon);
// connect lines
if (! params.dont_connect && ! polylines.empty()) { // prevent calling leftmost_point() on empty collections
ExPolygon expolygon_off;
{
ExPolygons expolygons_off = offset_ex(expolygon, (float)SCALED_EPSILON);
if (! expolygons_off.empty()) {
// When expanding a polygon, the number of islands could only shrink. Therefore the offset_ex shall generate exactly one expanded island for one input island.
assert(expolygons_off.size() == 1);
std::swap(expolygon_off, expolygons_off.front());
}
}
bool first = true;
for (Polyline &polyline : chain_polylines(std::move(polylines))) {
if (! first) {
// Try to connect the lines.
Points &pts_end = polylines_out.back().points;
2018-02-23 17:32:35 +00:00
const Point &first_point = polyline.points.front();
const Point &last_point = pts_end.back();
// TODO: we should also check that both points are on a fill_boundary to avoid
// connecting paths on the boundaries of internal regions
// TODO: avoid crossing current infill path
if ((last_point - first_point).cast<double>().norm() <= 5 * distance &&
expolygon_off.contains(Line(last_point, first_point))) {
// Append the polyline.
2018-02-23 17:32:35 +00:00
pts_end.insert(pts_end.end(), polyline.points.begin(), polyline.points.end());
continue;
}
}
// The lines cannot be connected.
2018-02-23 17:32:35 +00:00
polylines_out.emplace_back(std::move(polyline));
first = false;
}
}
}
} // namespace Slic3r