PrusaSlicer-NonPlainar/src/libslic3r/ShortestPath.cpp

480 lines
20 KiB
C++
Raw Normal View History

#include "ShortestPath.hpp"
#include "KDTreeIndirect.hpp"
#include "MutablePriorityQueue.hpp"
#if 0
#undef NDEBUG
#undef assert
#endif
#include <cmath>
#include <cassert>
namespace Slic3r {
// Chain perimeters (always closed) and thin fills (closed or open) using a greedy algorithm.
// Solving a Traveling Salesman Problem (TSP) with the modification, that the sites are not always points, but points and segments.
// Solving using a greedy algorithm, where a shortest edge is added to the solution if it does not produce a bifurcation or a cycle.
// Return index and "reversed" flag.
// https://en.wikipedia.org/wiki/Multi-fragment_algorithm
// The algorithm builds a tour for the traveling salesman one edge at a time and thus maintains multiple tour fragments, each of which
// is a simple path in the complete graph of cities. At each stage, the algorithm selects the edge of minimal cost that either creates
// a new fragment, extends one of the existing paths or creates a cycle of length equal to the number of cities.
std::vector<std::pair<size_t, bool>> chain_extrusion_entities(std::vector<ExtrusionEntity*> &entities, const Point *start_near)
{
std::vector<std::pair<size_t, bool>> out;
if (entities.empty()) {
// Nothing to do.
}
else if (entities.size() == 1)
{
// Just sort the end points so that the first point visited is closest to start_near.
ExtrusionEntity *extrusion_entity = entities.front();
out.emplace_back(0, extrusion_entity->can_reverse() && start_near != nullptr &&
(extrusion_entity->last_point() - *start_near).cast<double>().squaredNorm() < (extrusion_entity->first_point() - *start_near).cast<double>().squaredNorm());
}
else
{
// End points of entities for the KD tree closest point search.
// A single end point is inserted into the search structure for loops, two end points are entered for open paths.
struct EndPoint {
EndPoint(const Vec2d &pos) : pos(pos) {}
Vec2d pos;
// Identifier of the chain, to which this end point belongs. Zero means unassigned.
size_t chain_id = 0;
// Link to the closest currently valid end point.
EndPoint *edge_out = nullptr;
// Reverse of edge_out. As there may be multiple end points with the same edge_out,
// these other edge_in points are chained using the on_circle_prev / on_circle_next cyclic loop.
EndPoint *edge_in = nullptr;
EndPoint* on_circle_prev = nullptr;
EndPoint* on_circle_next = nullptr;
void on_circle_merge(EndPoint *other)
{
EndPoint *a = this;
EndPoint *b = other;
assert(a->validate());
assert(b->validate());
if (a->on_circle_next == nullptr)
std::swap(a, b);
if (a->on_circle_next == nullptr) {
a->on_circle_next = a->on_circle_prev = b;
b->on_circle_next = b->on_circle_prev = a;
} else if (b->on_circle_next == nullptr) {
b->on_circle_next = a;
b->on_circle_prev = a->on_circle_prev;
a->on_circle_prev = b;
b->on_circle_prev->on_circle_next = b;
} else {
EndPoint *next = a->on_circle_next;
EndPoint *prev = b->on_circle_prev;
a->on_circle_next = b;
b->on_circle_prev = a;
prev->on_circle_next = next;
next->on_circle_prev = prev;
}
assert(this->validate());
}
void on_circle_detach()
{
if (this->on_circle_next) {
EndPoint *next = this->on_circle_next;
EndPoint *prev = this->on_circle_prev;
if (prev == next) {
next->on_circle_next = nullptr;
next->on_circle_prev = nullptr;
} else {
prev->on_circle_next = next;
next->on_circle_prev = prev;
}
assert(prev->validate());
assert(next->validate());
this->on_circle_next = this->on_circle_prev = nullptr;
}
assert(this->validate());
}
bool on_circle_empty() const
{
assert((this->on_circle_prev == nullptr) == (this->on_circle_next == nullptr));
assert(this->on_circle_prev == nullptr || (this->on_circle_prev != this && this->on_circle_next != this));
return this->on_circle_next == nullptr;
}
#ifndef NDEBUG
bool validate()
{
assert((this->on_circle_prev == nullptr) == (this->on_circle_next == nullptr));
assert(this->on_circle_prev == nullptr || (this->on_circle_prev != this && this->on_circle_next != this));
assert(this->edge_out == nullptr || edge_out->edge_in != nullptr);
assert(this->distance_out >= 0.);
assert(this->edge_in == nullptr || this->edge_in->edge_out == this);
// Point which is a member of path (chain_id > 0) must not be in circle of some edge_in.
assert(this->chain_id == 0 || this->on_circle_empty());
if (! this->on_circle_empty()) {
// Iterate over the cycle and validate the loop.
std::set<const EndPoint*> visited;
const EndPoint *ep = this;
bool edge_in_found = false;
do {
// This end point is visited for the first time.
assert(visited.insert(ep).second);
assert(ep->on_circle_next != ep);
assert(ep->on_circle_prev != ep);
assert(ep->on_circle_next->on_circle_prev == ep);
assert(ep->on_circle_prev->on_circle_next == ep);
assert(ep->edge_out != nullptr && ep->edge_out == this->edge_out);
if (ep->edge_out->edge_in == ep)
edge_in_found = true;
ep = ep->on_circle_next;
} while (ep != this);
assert(edge_in_found);
}
return true;
}
#endif /* NDEBUG */
// Distance to the next end point following the link.
// Zero value -> start of the final path.
double distance_out = std::numeric_limits<double>::max();
size_t heap_idx = std::numeric_limits<size_t>::max();
};
std::vector<EndPoint> end_points;
end_points.reserve(entities.size() * 2);
for (const ExtrusionEntity* const &entity : entities) {
end_points.emplace_back(entity->first_point().cast<double>());
end_points.emplace_back(entity->last_point().cast<double>());
}
// Construct the closest point KD tree over end points of extrusion entities.
auto coordinate_fn = [&end_points](size_t idx, size_t dimension) -> double { return end_points[idx].pos[dimension]; };
KDTreeIndirect<2, double, decltype(coordinate_fn)> kdtree(coordinate_fn, end_points.size());
// Helper to detect loops in already connected paths.
// Unique chain IDs are assigned to paths. If paths are connected, end points will not have their chain IDs updated, but the chain IDs
// will remember an "equivalent" chain ID, which is the lowest ID of all the IDs in the path, and the lowest ID is equivalent to itself.
class EquivalentChains {
public:
// Zero'th chain ID is invalid.
EquivalentChains(size_t reserve) { m_equivalent_with.reserve(reserve); m_equivalent_with.emplace_back(0); }
// Generate next equivalence class.
size_t next() {
m_equivalent_with.emplace_back(++ m_last_chain_id);
return m_last_chain_id;
}
// Get equivalence class for chain ID.
size_t operator()(size_t chain_id) {
if (chain_id != 0) {
for (size_t last = chain_id;;) {
size_t lower = m_equivalent_with[last];
if (lower == last) {
m_equivalent_with[chain_id] = lower;
chain_id = lower;
break;
}
last = lower;
}
}
return chain_id;
}
size_t merge(size_t chain_id1, size_t chain_id2) {
size_t chain_id = std::min((*this)(chain_id1), (*this)(chain_id2));
m_equivalent_with[chain_id1] = chain_id;
m_equivalent_with[chain_id2] = chain_id;
return chain_id;
}
#ifndef NDEBUG
bool validate()
{
assert(m_last_chain_id > 0);
assert(m_last_chain_id + 1 == m_equivalent_with.size());
for (size_t i = 0; i < m_equivalent_with.size(); ++ i) {
for (size_t last = i;;) {
size_t lower = m_equivalent_with[last];
assert(lower <= last);
if (lower == last)
break;
last = lower;
}
}
return true;
}
#endif /* NDEBUG */
private:
// Unique chain ID assigned to chains of end points of entities.
size_t m_last_chain_id = 0;
std::vector<size_t> m_equivalent_with;
} equivalent_chain(entities.size());
// Find the first end point closest to start_near.
EndPoint *first_point = nullptr;
size_t first_point_idx = std::numeric_limits<size_t>::max();
if (start_near != nullptr) {
size_t idx = find_closest_point(kdtree, start_near->cast<double>());
assert(idx != kdtree.npos);
assert(idx < end_points.size());
first_point = &end_points[idx];
first_point->distance_out = 0.;
first_point->chain_id = equivalent_chain.next();
first_point_idx = idx;
}
#ifndef NDEBUG
auto validate_graph = [&end_points, &equivalent_chain]() -> bool {
for (EndPoint& ep : end_points)
ep.validate();
assert(equivalent_chain.validate());
return true;
};
#endif /* NDEBUG */
// Assign the closest point and distance to the end points.
assert(validate_graph());
for (EndPoint &end_point : end_points) {
assert(end_point.edge_out == nullptr);
if (&end_point != first_point) {
size_t this_idx = &end_point - &end_points.front();
// Find the closest point to this end_point, which lies on a different extrusion path (filtered by the lambda).
// Ignore the starting point as the starting point is considered to be occupied, no end point coud connect to it.
size_t next_idx = find_closest_point(kdtree, end_point.pos,
[this_idx, first_point_idx](size_t idx){ return idx != first_point_idx && (idx ^ this_idx) > 1; });
assert(next_idx != kdtree.npos);
assert(next_idx < end_points.size());
EndPoint &end_point2 = end_points[next_idx];
end_point.edge_out = &end_point2;
if (end_point2.edge_in == nullptr)
end_point2.edge_in = &end_point;
else {
assert(end_point.on_circle_empty());
assert(end_point2.edge_in->edge_out == &end_point2);
end_point.on_circle_merge(end_point2.edge_in);
}
end_point.distance_out = (end_point2.pos - end_point.pos).squaredNorm();
}
assert(validate_graph());
}
// Initialize a heap of end points sorted by the lowest distance to the next valid point of a path.
auto queue = make_mutable_priority_queue<EndPoint*>(
[](EndPoint *ep, size_t idx){ ep->heap_idx = idx; },
[](EndPoint *l, EndPoint *r){ return l->distance_out < r->distance_out; });
queue.reserve(end_points.size() * 2 - 1);
for (EndPoint &ep : end_points)
if (first_point != &ep)
queue.push(&ep);
#ifndef NDEBUG
auto validate_graph_and_queue = [&validate_graph, &end_points, &queue, first_point]() -> bool {
assert(validate_graph());
for (EndPoint &ep : end_points) {
if (ep.heap_idx < queue.size()) {
// End point is on the heap.
assert(*(queue.cbegin() + ep.heap_idx) == &ep);
assert(ep.chain_id == 0);
// Point on the heap may only points to other points on the heap.
assert(ep.edge_in == nullptr || ep.edge_in ->heap_idx < queue.size());
assert(ep.edge_out == nullptr || ep.edge_out->heap_idx < queue.size());
} else {
// End point is NOT on the heap, therefore it is part of the output path.
assert(ep.heap_idx == std::numeric_limits<size_t>::max());
assert(ep.chain_id != 0);
assert(ep.on_circle_empty());
if (&ep == first_point) {
assert(ep.edge_in == nullptr);
assert(ep.edge_out == nullptr);
} else {
assert(ep.edge_in != nullptr);
assert(ep.edge_out != nullptr);
assert(ep.edge_in != &ep);
assert(ep.edge_in == ep.edge_out);
assert(ep.edge_in->edge_out == &ep);
assert(ep.edge_out->edge_in == &ep);
assert(ep.edge_in->heap_idx == std::numeric_limits<size_t>::max());
// Detect loops.
for (EndPoint *pt = &ep; pt != nullptr;) {
// Out of queue. It is a final point.
assert(pt->heap_idx == std::numeric_limits<size_t>::max());
EndPoint *pt_other = &end_points[(pt - &end_points.front()) ^ 1];
if (pt_other->heap_idx < queue.size())
// The other side of this segment is undecided yet.
break;
pt = pt_other->edge_out;
}
}
}
}
for (EndPoint *ep : queue)
// Points in the queue are not connected yet.
assert(ep->chain_id == 0);
return true;
};
#endif /* NDEBUG */
// Chain the end points: find (entities.size() - 1) shortest links not forming bifurcations or loops.
std::vector<EndPoint*> end_points_update;
end_points_update.reserve(16);
assert(entities.size() >= 2);
for (int iter = int(entities.size()) - 2;; -- iter) {
assert(validate_graph_and_queue());
// Take the first end point, for which the link points to the currently closest valid neighbor.
EndPoint &end_point1 = *queue.top();
assert(end_point1.edge_out != nullptr);
// No point on the queue may be connected yet.
assert(end_point1.chain_id == 0);
// Take the closest end point to the first end point,
EndPoint &end_point2 = *end_point1.edge_out;
// The closest point must not be connected yet.
assert(end_point2.chain_id == 0);
// If end_point1.edge_out == end_point2, then end_point2.edge_in == &end_point1, or end_point2.edge_in points to some point on loop of end_point1.
assert(end_point2.edge_in != nullptr);
// End points of the opposite ends of the segments.
size_t end_point1_other_chain_id = equivalent_chain(end_points[(&end_point1 - &end_points.front()) ^ 1].chain_id);
size_t end_point2_other_chain_id = equivalent_chain(end_points[(&end_point2 - &end_points.front()) ^ 1].chain_id);
if (end_point1_other_chain_id == end_point2_other_chain_id && end_point1_other_chain_id != 0) {
// This edge forms a loop. Update end_point1 and try another one.
++ iter;
assert(end_point1.edge_out != nullptr);
assert(end_point1.edge_out->edge_in != nullptr);
assert(! end_point1.on_circle_empty() || end_point1.edge_out->edge_in == &end_point1);
end_point1.edge_out->edge_in = end_point1.on_circle_empty() ? nullptr : end_point1.on_circle_next;
end_point1.edge_out = nullptr;
if (! end_point1.on_circle_empty())
end_point1.on_circle_detach();
assert(validate_graph_and_queue());
end_points_update.emplace_back(&end_point1);
} else {
// Remove the first and second point from the queue.
queue.pop();
queue.remove(end_point2.heap_idx);
#ifndef NDEBUG
// Mark them as removed from the queue.
end_point1.heap_idx = std::numeric_limits<size_t>::max();
end_point2.heap_idx = std::numeric_limits<size_t>::max();
#endif /* NDEBUG */
// Collect the other end points pointing to this one, detach them from the on_circle linked list.
for (EndPoint *pt_first : { end_point1.edge_in, end_point2.edge_in })
if (pt_first != nullptr) {
EndPoint *pt = pt_first;
do {
if (pt != &end_point1 && pt != &end_point2) {
// Point is in the queue.
assert(pt->heap_idx < queue.size());
// Point is not connected yet.
assert(pt->chain_id == 0);
end_points_update.emplace_back(pt);
pt->edge_out = nullptr;
}
EndPoint *next = pt->on_circle_next;
pt->on_circle_prev = nullptr;
pt->on_circle_next = nullptr;
pt = next;
} while (pt != nullptr && pt != pt_first);
}
// If end_point1 was on a circle, the circle belonged to end_point2.edge_in, which was broken in the loop above.
assert(end_point1.on_circle_empty());
// If end_point2 pointed to end_point1, then end_point2 was on a circle that belonged to end_point1.edge_in, which was broken in the loop above.
//assert(end_point2.on_circle_empty() == (end_point2.edge_out == &end_point1));
assert(end_point2.on_circle_empty() || end_point2.edge_out != nullptr);
end_point2.edge_out->edge_in = end_point2.on_circle_empty() ? nullptr : end_point2.on_circle_next;
// The end_point2.link may not necessarily point back to end_point1 due to numeric issues and points on circles.
// Update the link back.
end_point1.edge_out = &end_point2;
end_point1.edge_in = &end_point2;
end_point2.edge_out = &end_point1;
end_point2.edge_in = &end_point1;
end_point2.distance_out = end_point1.distance_out;
// Assign chain IDs to the newly connected end points, set equivalent_chain if two chains were merged.
size_t chain_id =
(end_point1_other_chain_id == 0) ?
((end_point2_other_chain_id == 0) ? equivalent_chain.next() : end_point2_other_chain_id) :
((end_point2_other_chain_id == 0) ? end_point1_other_chain_id :
(end_point1_other_chain_id == end_point2_other_chain_id) ?
end_point1_other_chain_id :
equivalent_chain.merge(end_point1_other_chain_id, end_point2_other_chain_id));
end_point1.chain_id = chain_id;
end_point2.chain_id = chain_id;
if (! end_point2.on_circle_empty())
end_point2.on_circle_detach();
assert(validate_graph_and_queue());
}
#ifndef NDEBUG
for (EndPoint *end_point : end_points_update) {
assert(end_point->edge_out == nullptr);
// Point is in the queue.
assert(end_point->heap_idx < queue.size());
// Point is not connected yet.
assert(end_point->chain_id == 0);
}
#endif /* NDEBUG */
if (iter == 0) {
// Last iteration. There shall be exactly one or two end points waiting to be connected.
if (first_point == nullptr) {
// Two unconnected points are the end points of the constructed path.
assert(end_points_update.size() == 2);
first_point = end_points_update.front();
} else
assert(end_points_update.size() == 1);
// Mark both points as ends of the path.
for (EndPoint *end_point : end_points_update)
end_point->edge_in = end_point->edge_out = nullptr;
break;
}
// Update links, distances and queue positions of all points that used to point to end_point1 or end_point2.
for (EndPoint *end_point : end_points_update) {
size_t this_idx = end_point - &end_points.front();
// Find the closest point to this end_point, which lies on a different extrusion path (filtered by the filter lambda).
size_t next_idx = find_closest_point(kdtree, end_point->pos, [&end_points, &equivalent_chain, this_idx](size_t idx) {
assert(end_points[this_idx].edge_out == nullptr);
assert(end_points[this_idx].chain_id == 0);
if ((idx ^ this_idx) <= 1 || end_points[idx].chain_id != 0)
// Points of the same segment shall not be connected,
// cannot connect to an already connected point (ideally those would be removed from the KD tree, but the update is difficult).
return false;
size_t chain1 = equivalent_chain(end_points[this_idx ^ 1].chain_id);
size_t chain2 = equivalent_chain(end_points[idx ^ 1].chain_id);
return chain1 != chain2 || chain1 == 0;
});
assert(next_idx != kdtree.npos);
assert(next_idx < end_points.size());
EndPoint &end_point2 = end_points[next_idx];
end_point->edge_out = &end_point2;
if (end_point2.edge_in == nullptr)
end_point2.edge_in = end_point;
else {
assert(end_point->on_circle_empty());
assert(end_point2.edge_in->edge_out == &end_point2);
end_point->on_circle_merge(end_point2.edge_in);
}
end_point->distance_out = (end_points[next_idx].pos - end_point->pos).squaredNorm();
// Update position of this end point in the queue based on the distance calculated at the line above.
queue.update(end_point->heap_idx);
//FIXME Remove the other end point from the KD tree.
// As the KD tree update is expensive, do it only after some larger number of points is removed from the queue.
assert(validate_graph_and_queue());
}
end_points_update.clear();
}
assert(queue.size() == (first_point == nullptr) ? 1 : 2);
// Now interconnect pairs of segments into a chain.
assert(first_point != nullptr);
do {
size_t first_point_id = first_point - &end_points.front();
size_t extrusion_entity_id = first_point_id >> 1;
EndPoint *second_point = &end_points[first_point_id ^ 1];
ExtrusionEntity *extrusion_entity = entities[extrusion_entity_id];
out.emplace_back(extrusion_entity_id, extrusion_entity->can_reverse() && (first_point_id & 1));
first_point = second_point->edge_out;
} while (first_point != nullptr);
}
assert(out.size() == entities.size());
return out;
}
} // namespace Slic3r