PrusaSlicer-NonPlainar/src/libslic3r/VoronoiOffset.cpp

377 lines
18 KiB
C++
Raw Normal View History

// Polygon offsetting code inspired by OpenVoronoi by Anders Wallin
// https://github.com/aewallin/openvoronoi
// This offsetter uses results of boost::polygon Voronoi.
#include "VoronoiOffset.hpp"
#include <cmath>
namespace Slic3r {
using VD = Geometry::VoronoiDiagram;
namespace detail {
// Intersect a circle with a ray, return the two parameters
double first_circle_segment_intersection_parameter(
const Vec2d &center, const double r, const Vec2d &pt, const Vec2d &v)
{
const Vec2d d = pt - center;
#ifndef NDEBUG
double d0 = (pt - center).norm();
double d1 = (pt + v - center).norm();
assert(r < std::max(d0, d1) + EPSILON);
#endif /* NDEBUG */
const double a = v.squaredNorm();
const double b = 2. * d.dot(v);
const double c = d.squaredNorm() - r * r;
std::pair<int, std::array<double, 2>> out;
double u = b * b - 4. * a * c;
assert(u > - EPSILON);
double t;
if (u <= 0) {
// Degenerate to a single closest point.
t = - b / (2. * a);
assert(t >= - EPSILON && t <= 1. + EPSILON);
return Slic3r::clamp(0., 1., t);
} else {
u = sqrt(u);
out.first = 2;
double t0 = (- b - u) / (2. * a);
double t1 = (- b + u) / (2. * a);
// One of the intersections shall be found inside the segment.
assert((t0 >= - EPSILON && t0 <= 1. + EPSILON) || (t1 >= - EPSILON && t1 <= 1. + EPSILON));
if (t1 < 0.)
return 0.;
if (t0 > 1.)
return 1.;
return (t0 > 0.) ? t0 : t1;
}
}
Vec2d voronoi_edge_offset_point(
const VD &vd,
const Lines &lines,
// Distance of a VD vertex to the closest site (input polygon edge or vertex).
const std::vector<double> &vertex_dist,
// Minium distance of a VD edge to the closest site (input polygon edge or vertex).
// For a parabolic segment the distance may be smaller than the distance of the two end points.
const std::vector<double> &edge_dist,
// Edge for which to calculate the offset point. If the distance towards the input polygon
// is not monotonical, pick the offset point closer to edge.vertex0().
const VD::edge_type &edge,
// Distance from the input polygon along the edge.
const double offset_distance)
{
const VD::vertex_type *v0 = edge.vertex0();
const VD::vertex_type *v1 = edge.vertex1();
const VD::cell_type *cell = edge.cell();
const VD::cell_type *cell2 = edge.twin()->cell();
const Line &line0 = lines[cell->source_index()];
const Line &line1 = lines[cell2->source_index()];
if (v0 == nullptr || v1 == nullptr) {
assert(edge.is_infinite());
assert(v0 != nullptr || v1 != nullptr);
// Offsetting on an unconstrained edge.
assert(offset_distance > vertex_dist[(v0 ? v0 : v1) - &vd.vertices().front()] - EPSILON);
Vec2d pt, dir;
double t;
if (cell->contains_point() && cell2->contains_point()) {
const Point &pt0 = (cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b;
const Point &pt1 = (cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b;
// Direction vector of this unconstrained Voronoi edge.
dir = Vec2d(double(pt0.y() - pt1.y()), double(pt1.x() - pt0.x()));
if (v0 == nullptr) {
v0 = v1;
dir = - dir;
}
pt = Vec2d(v0->x(), v0->y());
t = detail::first_circle_segment_intersection_parameter(Vec2d(pt0.x(), pt0.y()), offset_distance, pt, dir);
} else {
// Infinite edges could not be created by two segment sites.
assert(cell->contains_point() != cell2->contains_point());
// Linear edge goes through the endpoint of a segment.
assert(edge.is_linear());
assert(edge.is_secondary());
const Line &line = cell->contains_segment() ? line0 : line1;
const Point &ipt = cell->contains_segment() ?
((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b) :
((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b);
assert(line.a == ipt || line.b == ipt);
pt = Vec2d(ipt.x(), ipt.y());
dir = Vec2d(line.a.y() - line.b.y(), line.b.x() - line.a.x());
assert(dir.norm() > 0.);
t = offset_distance / dir.norm();
if (((line.a == ipt) == cell->contains_point()) == (v0 == nullptr))
t = - t;
}
return pt + t * dir;
} else {
// Constrained edge.
Vec2d p0(v0->x(), v0->y());
Vec2d p1(v1->x(), v1->y());
double d0 = vertex_dist[v0 - &vd.vertices().front()];
double d1 = vertex_dist[v1 - &vd.vertices().front()];
if (cell->contains_segment() && cell2->contains_segment()) {
// This edge is a bisector of two line segments. Distance to the input polygon increases/decreases monotonically.
double ddif = d1 - d0;
assert(offset_distance > std::min(d0, d1) - EPSILON && offset_distance < std::max(d0, d1) + EPSILON);
double t = (ddif == 0) ? 0. : clamp(0., 1., (offset_distance - d0) / ddif);
return Slic3r::lerp(p0, p1, t);
} else {
// One cell contains a point, the other contains an edge or a point.
assert(cell->contains_point() || cell2->contains_point());
const Point &ipt = cell->contains_point() ?
((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b) :
((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b);
double t = detail::first_circle_segment_intersection_parameter(
Vec2d(ipt.x(), ipt.y()), offset_distance, p0, p1 - p0);
return Slic3r::lerp(p0, p1, t);
}
}
}
};
Polygons voronoi_offset(const VD &vd, const Lines &lines, double offset_distance, double discretization_error)
{
// Distance of a VD vertex to the closest site (input polygon edge or vertex).
std::vector<double> vertex_dist(vd.num_vertices(), std::numeric_limits<double>::max());
// Minium distance of a VD edge to the closest site (input polygon edge or vertex).
// For a parabolic segment the distance may be smaller than the distance of the two end points.
std::vector<double> edge_dist(vd.num_edges(), std::numeric_limits<double>::max());
// Calculate minimum distance of input polygons to voronoi vertices and voronoi edges.
for (const VD::edge_type &edge : vd.edges()) {
const VD::vertex_type *v0 = edge.vertex0();
const VD::vertex_type *v1 = edge.vertex1();
const VD::cell_type *cell = edge.cell();
const VD::cell_type *cell2 = edge.twin()->cell();
const Line &line0 = lines[cell->source_index()];
const Line &line1 = lines[cell2->source_index()];
double d0, d1, dmin;
if (v0 == nullptr || v1 == nullptr) {
assert(edge.is_infinite());
if (cell->contains_point() && cell2->contains_point()) {
const Point &pt0 = (cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b;
const Point &pt1 = (cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b;
d0 = d1 = std::numeric_limits<double>::max();
if (v0 == nullptr && v1 == nullptr) {
dmin = (pt1.cast<double>() - pt0.cast<double>()).norm();
} else {
Vec2d pt((pt0 + pt1).cast<double>() * 0.5);
Vec2d dir(double(pt0.y() - pt1.y()), double(pt1.x() - pt0.x()));
Vec2d pt0d(pt0.x(), pt0.y());
if (v0) {
Vec2d a(v0->x(), v0->y());
d0 = (a - pt0d).norm();
dmin = ((a - pt).dot(dir) < 0.) ? (a - pt0d).norm() : d0;
vertex_dist[v0 - &vd.vertices().front()] = d0;
} else {
Vec2d a(v1->x(), v1->y());
d1 = (a - pt0d).norm();
dmin = ((a - pt).dot(dir) < 0.) ? (a - pt0d).norm() : d1;
vertex_dist[v1 - &vd.vertices().front()] = d1;
}
}
} else {
// Infinite edges could not be created by two segment sites.
assert(cell->contains_point() != cell2->contains_point());
// Linear edge goes through the endpoint of a segment.
assert(edge.is_linear());
assert(edge.is_secondary());
#ifndef NDEBUG
if (cell->contains_segment()) {
const Point &pt1 = (cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b;
assert((pt1.x() == line0.a.x() && pt1.y() == line0.a.y()) ||
(pt1.x() == line0.b.x() && pt1.y() == line0.b.y()));
} else {
const Point &pt0 = (cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b;
assert((pt0.x() == line1.a.x() && pt0.y() == line1.a.y()) ||
(pt0.x() == line1.b.x() && pt0.y() == line1.b.y()));
}
const Point &pt = cell->contains_segment() ?
((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b) :
((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b);
#endif /* NDEBUG */
if (v0) {
assert((Point(v0->x(), v0->y()) - pt).cast<double>().norm() < SCALED_EPSILON);
d0 = dmin = 0.;
vertex_dist[v0 - &vd.vertices().front()] = d0;
} else {
assert((Point(v1->x(), v1->y()) - pt).cast<double>().norm() < SCALED_EPSILON);
d1 = dmin = 0.;
vertex_dist[v1 - &vd.vertices().front()] = d1;
}
}
} else {
// Finite edge has valid points at both sides.
if (cell->contains_segment() && cell2->contains_segment()) {
// This edge is a bisector of two line segments.
d0 = std::hypot(v0->x() - line0.a.x(), v0->y() - line0.a.y());
d1 = std::hypot(v0->x() - line0.b.x(), v0->y() - line0.b.y());
if (d0 < d1)
d1 = std::hypot(v1->x() - line0.a.x(), v1->y() - line0.a.y());
else {
d0 = d1;
d1 = std::hypot(v1->x() - line0.b.x(), v1->y() - line0.b.y());
}
dmin = std::min(d0, d1);
} else {
assert(cell->contains_point() || cell2->contains_point());
const Point &pt0 = cell->contains_point() ?
((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b) :
((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b);
// Project p0 to line segment <v0, v1>.
Vec2d p0(v0->x(), v0->y());
Vec2d p1(v1->x(), v1->y());
Vec2d px(pt0.x(), pt0.y());
Vec2d v = p1 - p0;
d0 = (p0 - px).norm();
d1 = (p1 - px).norm();
double t = v.dot(px - p0);
double l2 = v.squaredNorm();
if (t > 0. && t < l2) {
// Foot point on the line segment.
Vec2d foot = p0 + (t / l2) * v;
dmin = (foot - px).norm();
} else
dmin = std::min(d0, d1);
}
vertex_dist[v0 - &vd.vertices().front()] = d0;
vertex_dist[v1 - &vd.vertices().front()] = d1;
}
edge_dist[&edge - &vd.edges().front()] = dmin;
}
// Mark cells intersected by the offset curve.
std::vector<unsigned char> seed_cells(vd.num_cells(), false);
for (const VD::cell_type &cell : vd.cells()) {
const VD::edge_type *first_edge = cell.incident_edge();
const VD::edge_type *edge = first_edge;
do {
double dmin = edge_dist[edge - &vd.edges().front()];
double dmax = std::numeric_limits<double>::max();
const VD::vertex_type *v0 = edge->vertex0();
const VD::vertex_type *v1 = edge->vertex1();
if (v0 != nullptr)
dmax = vertex_dist[v0 - &vd.vertices().front()];
if (v1 != nullptr)
dmax = std::max(dmax, vertex_dist[v1 - &vd.vertices().front()]);
if (offset_distance >= dmin && offset_distance <= dmax) {
// This cell is being intersected by the offset curve.
seed_cells[&cell - &vd.cells().front()] = true;
break;
}
edge = edge->next();
} while (edge != first_edge);
}
auto edge_dir = [&vd, &vertex_dist, &edge_dist, offset_distance](const VD::edge_type *edge) {
const VD::vertex_type *v0 = edge->vertex0();
const VD::vertex_type *v1 = edge->vertex1();
double d0 = v0 ? vertex_dist[v0 - &vd.vertices().front()] : std::numeric_limits<double>::max();
double d1 = v1 ? vertex_dist[v1 - &vd.vertices().front()] : std::numeric_limits<double>::max();
if (d0 < offset_distance && offset_distance < d1)
return true;
else if (d1 < offset_distance && offset_distance < d0)
return false;
else {
assert(false);
return false;
}
};
/// \brief starting at e, find the next edge on the face that brackets t
///
/// we can be in one of two modes.
/// if direction==false then we are looking for an edge where src_t < t < trg_t
/// if direction==true we are looning for an edge where trg_t < t < src_t
auto next_offset_edge =
[&vd, &vertex_dist, &edge_dist, offset_distance]
(const VD::edge_type *start_edge, bool direction) -> const VD::edge_type* {
const VD::edge_type *edge = start_edge;
do {
const VD::vertex_type *v0 = edge->vertex0();
const VD::vertex_type *v1 = edge->vertex1();
double d0 = v0 ? vertex_dist[v0 - &vd.vertices().front()] : std::numeric_limits<double>::max();
double d1 = v1 ? vertex_dist[v1 - &vd.vertices().front()] : std::numeric_limits<double>::max();
if (direction ? (d1 < offset_distance && offset_distance < d0) : (d0 < offset_distance && offset_distance < d1))
return edge;
edge = edge->next();
} while (edge != start_edge);
assert(false);
return nullptr;
};
// Track the offset curves.
Polygons out;
double angle_step = 2. * acos((offset_distance - discretization_error) / offset_distance);
double sin_threshold = sin(angle_step) + EPSILON;
for (size_t seed_cell_idx = 0; seed_cell_idx < vd.num_cells(); ++ seed_cell_idx)
if (seed_cells[seed_cell_idx]) {
seed_cells[seed_cell_idx] = false;
// Initial direction should not matter, an offset curve shall intersect a cell at least at two points
// (if it is not just touching the cell at a single vertex), and such two intersection points shall have
// opposite direction.
bool direction = false;
// the first edge on the start-face
const VD::cell_type &cell = vd.cells()[seed_cell_idx];
const VD::edge_type *start_edge = next_offset_edge(cell.incident_edge(), direction);
assert(start_edge->cell() == &cell);
const VD::edge_type *edge = start_edge;
Polygon poly;
do {
direction = edge_dir(edge);
// find the next edge
const VD::edge_type *next_edge = next_offset_edge(edge->next(), direction);
//std::cout << "offset-output: "; print_edge(edge); std::cout << " to "; print_edge(next_edge); std::cout << "\n";
// Interpolate a circular segment or insert a linear segment between edge and next_edge.
const VD::cell_type *cell = edge->cell();
Vec2d p1 = detail::voronoi_edge_offset_point(vd, lines, vertex_dist, edge_dist, *edge, offset_distance);
Vec2d p2 = detail::voronoi_edge_offset_point(vd, lines, vertex_dist, edge_dist, *next_edge, offset_distance);
if (cell->contains_point()) {
// Discretize an arc from p1 to p2 with radius = offset_distance and discretization_error.
// The arc should cover angle < PI.
//FIXME we should be able to produce correctly oriented output curves based on the first edge taken!
const Line &line0 = lines[cell->source_index()];
const Vec2d &center = ((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b).cast<double>();
const Vec2d v1 = p1 - center;
const Vec2d v2 = p2 - center;
double orient = cross2(v1, v2);
double orient_norm = v1.norm() * v2.norm();
bool ccw = orient > 0;
bool obtuse = v1.dot(v2) < 0.;
if (! ccw)
orient = - orient;
assert(orient != 0.);
if (obtuse || orient > orient_norm * sin_threshold) {
// Angle is bigger than the threshold, therefore the arc will be discretized.
double angle = asin(orient / orient_norm);
if (obtuse)
angle = M_PI - angle;
size_t n_steps = size_t(ceil(angle / angle_step));
double astep = angle / n_steps;
if (! ccw)
astep *= -1.;
double a = astep;
for (size_t i = 1; i < n_steps; ++ i, a += astep) {
double c = cos(a);
double s = sin(a);
Vec2d p = center + Vec2d(c * v1.x() - s * v1.y(), s * v1.x() + c * v1.y());
poly.points.emplace_back(Point(coord_t(p.x()), coord_t(p.y())));
}
}
}
poly.points.emplace_back(Point(coord_t(p2.x()), coord_t(p2.y())));
// although we may revisit current_face (if it is non-convex), it seems safe to mark it "done" here.
seed_cells[cell - &vd.cells().front()] = false;
edge = next_edge->twin();
} while (edge != start_edge);
out.emplace_back(std::move(poly));
}
return out;
}
} // namespace Slic3r