PrusaSlicer-NonPlainar/xs/src/libslic3r/ExtrusionEntity.hpp

222 lines
10 KiB
C++
Raw Normal View History

#ifndef slic3r_ExtrusionEntity_hpp_
#define slic3r_ExtrusionEntity_hpp_
#include "libslic3r.h"
#include "Polygon.hpp"
#include "Polyline.hpp"
namespace Slic3r {
class ExPolygonCollection;
class ExtrusionEntityCollection;
class Extruder;
/* Each ExtrusionRole value identifies a distinct set of { extruder, speed } */
enum ExtrusionRole {
2015-07-02 12:29:20 +00:00
erNone,
erPerimeter,
erExternalPerimeter,
erOverhangPerimeter,
erInternalInfill,
erSolidInfill,
erTopSolidInfill,
erBridgeInfill,
erGapFill,
erSkirt,
erSupportMaterial,
erSupportMaterialInterface,
};
/* Special flags describing loop */
enum ExtrusionLoopRole {
elrDefault,
elrContourInternalPerimeter,
elrSkirt,
};
class ExtrusionEntity
{
public:
virtual bool is_collection() const { return false; }
virtual bool is_loop() const { return false; }
virtual bool can_reverse() const { return true; }
virtual ExtrusionEntity* clone() const = 0;
2013-07-18 17:09:07 +00:00
virtual ~ExtrusionEntity() {};
virtual void reverse() = 0;
virtual Point first_point() const = 0;
virtual Point last_point() const = 0;
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
virtual void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const = 0;
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
virtual void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const = 0;
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
virtual double min_mm3_per_mm() const = 0;
virtual Polyline as_polyline() const = 0;
virtual double length() const = 0;
};
2013-07-18 17:09:07 +00:00
typedef std::vector<ExtrusionEntity*> ExtrusionEntitiesPtr;
class ExtrusionPath : public ExtrusionEntity
{
public:
Polyline polyline;
ExtrusionRole role;
2016-11-23 14:51:47 +00:00
// Volumetric velocity. mm^3 of plastic per mm of linear head motion. Used by the G-code generator.
double mm3_per_mm;
2016-11-23 14:51:47 +00:00
// Width of the extrusion, used for visualization purposes.
float width;
2016-11-23 14:51:47 +00:00
// Height of the extrusion, used for visualization purposed.
float height;
ExtrusionPath(ExtrusionRole role) : role(role), mm3_per_mm(-1), width(-1), height(-1) {};
ExtrusionPath(ExtrusionRole role, double mm3_per_mm, float width, float height) : role(role), mm3_per_mm(mm3_per_mm), width(width), height(height) {};
// ExtrusionPath(ExtrusionRole role, const Flow &flow) : role(role), mm3_per_mm(flow.mm3_per_mm()), width(flow.width), height(flow.height) {};
ExtrusionPath* clone() const { return new ExtrusionPath (*this); }
void reverse() { this->polyline.reverse(); }
Point first_point() const { return this->polyline.points.front(); }
Point last_point() const { return this->polyline.points.back(); }
// Produce a list of extrusion paths into retval by clipping this path by ExPolygonCollection.
// Currently not used.
void intersect_expolygons(const ExPolygonCollection &collection, ExtrusionEntityCollection* retval) const;
// Produce a list of extrusion paths into retval by removing parts of this path by ExPolygonCollection.
// Currently not used.
void subtract_expolygons(const ExPolygonCollection &collection, ExtrusionEntityCollection* retval) const;
void clip_end(double distance);
void simplify(double tolerance);
2016-03-19 18:40:11 +00:00
virtual double length() const;
bool is_perimeter() const {
return this->role == erPerimeter
|| this->role == erExternalPerimeter
|| this->role == erOverhangPerimeter;
}
bool is_infill() const {
return this->role == erBridgeInfill
|| this->role == erInternalInfill
|| this->role == erSolidInfill
|| this->role == erTopSolidInfill;
}
bool is_solid_infill() const {
return this->role == erBridgeInfill
|| this->role == erSolidInfill
|| this->role == erTopSolidInfill;
}
bool is_bridge() const {
return this->role == erBridgeInfill
|| this->role == erOverhangPerimeter;
}
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const;
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const;
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
double min_mm3_per_mm() const { return this->mm3_per_mm; }
Polyline as_polyline() const { return this->polyline; }
private:
void _inflate_collection(const Polylines &polylines, ExtrusionEntityCollection* collection) const;
};
typedef std::vector<ExtrusionPath> ExtrusionPaths;
class ExtrusionLoop : public ExtrusionEntity
{
public:
ExtrusionPaths paths;
ExtrusionLoopRole role;
ExtrusionLoop(ExtrusionLoopRole role = elrDefault) : role(role) {};
ExtrusionLoop(const ExtrusionPaths &paths, ExtrusionLoopRole role = elrDefault)
: paths(paths), role(role) {};
2016-03-19 14:33:58 +00:00
ExtrusionLoop(const ExtrusionPath &path, ExtrusionLoopRole role = elrDefault)
: role(role) {
this->paths.push_back(path);
};
bool is_loop() const { return true; }
bool can_reverse() const { return false; }
ExtrusionLoop* clone() const { return new ExtrusionLoop (*this); }
bool make_clockwise();
bool make_counter_clockwise();
void reverse();
Point first_point() const { return this->paths.front().polyline.points.front(); }
Point last_point() const { assert(first_point() == this->paths.back().polyline.points.back()); return first_point(); }
Polygon polygon() const;
2016-03-19 18:40:11 +00:00
virtual double length() const;
bool split_at_vertex(const Point &point);
void split_at(const Point &point);
void clip_end(double distance, ExtrusionPaths* paths) const;
// Test, whether the point is extruded by a bridging flow.
// This used to be used to avoid placing seams on overhangs, but now the EdgeGrid is used instead.
bool has_overhang_point(const Point &point) const;
bool is_perimeter() const {
return this->paths.front().role == erPerimeter
|| this->paths.front().role == erExternalPerimeter
|| this->paths.front().role == erOverhangPerimeter;
}
bool is_infill() const {
return this->paths.front().role == erBridgeInfill
|| this->paths.front().role == erInternalInfill
|| this->paths.front().role == erSolidInfill
|| this->paths.front().role == erTopSolidInfill;
}
bool is_solid_infill() const {
return this->paths.front().role == erBridgeInfill
|| this->paths.front().role == erSolidInfill
|| this->paths.front().role == erTopSolidInfill;
}
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const;
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const;
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
double min_mm3_per_mm() const;
Polyline as_polyline() const { return this->polygon().split_at_first_point(); }
};
2016-11-23 14:51:47 +00:00
inline void extrusion_entities_append_paths(ExtrusionEntitiesPtr &dst, Polylines &polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
{
dst.reserve(dst.size() + polylines.size());
for (Polylines::const_iterator it_polyline = polylines.begin(); it_polyline != polylines.end(); ++ it_polyline) {
ExtrusionPath *extrusion_path = new ExtrusionPath(role, mm3_per_mm, width, height);
dst.push_back(extrusion_path);
extrusion_path->polyline = *it_polyline;
}
}
#if SLIC3R_CPPVER >= 11
inline void extrusion_entities_append_paths(ExtrusionEntitiesPtr &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
{
dst.reserve(dst.size() + polylines.size());
for (Polylines::const_iterator it_polyline = polylines.begin(); it_polyline != polylines.end(); ++ it_polyline) {
ExtrusionPath *extrusion_path = new ExtrusionPath(role, mm3_per_mm, width, height);
dst.push_back(extrusion_path);
extrusion_path->polyline = std::move(*it_polyline);
}
}
#endif // SLIC3R_CPPVER >= 11
}
#endif