PrusaSlicer-NonPlainar/tests/libslic3r/test_curve_fitting.cpp

119 lines
3.2 KiB
C++
Raw Normal View History

#include <catch2/catch.hpp>
#include <test_utils.hpp>
#include <libslic3r/Geometry/Curves.hpp>
2022-03-17 14:11:23 +00:00
#include <libslic3r/Utils.hpp>
#include <libslic3r/SVG.hpp>
2022-03-17 14:11:23 +00:00
TEST_CASE("Curves: cubic b spline fit test", "[Curves]") {
using namespace Slic3r;
using namespace Slic3r::Geometry;
2022-03-17 14:11:23 +00:00
auto fx = [&](size_t index) {
return float(index) / 200.0f;
};
2022-03-17 14:11:23 +00:00
auto fy = [&](size_t index) {
return 1.0f;
};
2022-03-17 14:11:23 +00:00
std::vector<Vec<1, float>> observations { };
std::vector<float> observation_points { };
std::vector<float> weights { };
for (size_t index = 0; index < 200; ++index) {
observations.push_back(Vec<1, float> { fy(index) });
observation_points.push_back(fx(index));
weights.push_back(1);
}
Vec2f fmin { fx(0), fy(0) };
Vec2f fmax { fx(200), fy(200) };
auto bspline = fit_cubic_bspline(observations, observation_points, weights, 1);
Approx ap(1.0f);
ap.epsilon(0.1f);
for (int p = 0; p < 200; ++p) {
float fitted_val = bspline.get_fitted_value(fx(p))(0);
float expected = fy(p);
REQUIRE(fitted_val == ap(expected));
}
}
2022-03-17 14:11:23 +00:00
TEST_CASE("Curves: quadratic f cubic b spline fit test", "[Curves]") {
using namespace Slic3r;
using namespace Slic3r::Geometry;
2022-03-17 14:11:23 +00:00
auto fx = [&](size_t index) {
return float(index) / 100.0f;
};
auto fy = [&](size_t index) {
return (fx(index) - 1) * (fx(index) - 1);
};
std::vector<Vec<1, float>> observations { };
std::vector<float> observation_points { };
std::vector<float> weights { };
for (size_t index = 0; index < 200; ++index) {
observations.push_back(Vec<1, float> { fy(index) });
observation_points.push_back(fx(index));
weights.push_back(1);
}
Vec2f fmin { fx(0), fy(0) };
Vec2f fmax { fx(200), fy(200) };
auto bspline = fit_cubic_bspline(observations, observation_points, weights, 10);
2022-03-17 14:11:23 +00:00
for (int p = 0; p < 200; ++p) {
float fitted_val = bspline.get_fitted_value(fx(p))(0);
float expected = fy(p);
auto check = [](float a, float b) {
return abs(a - b) < 0.2f;
};
//Note: checking is problematic, splines will not perfectly align
REQUIRE(check(fitted_val, expected));
}
}
2022-03-17 14:11:23 +00:00
TEST_CASE("Curves: polynomial fit test", "[Curves]") {
using namespace Slic3r;
using namespace Slic3r::Geometry;
2022-03-17 14:11:23 +00:00
auto fx = [&](size_t index) {
return float(index) / 100.0f;
};
auto fy = [&](size_t index) {
return (fx(index) - 1) * (fx(index) - 1);
};
std::vector<Vec<1, float>> observations { };
std::vector<float> observation_points { };
std::vector<float> weights { };
for (size_t index = 0; index < 200; ++index) {
observations.push_back(Vec<1, float> { fy(index) });
observation_points.push_back(fx(index));
weights.push_back(1);
}
Vec2f fmin { fx(0), fy(0) };
Vec2f fmax { fx(200), fy(200) };
Approx ap(1.0f);
ap.epsilon(0.1f);
auto poly = fit_polynomial(observations, observation_points, weights, 2);
REQUIRE(poly.coefficients[0](0) == ap(1));
REQUIRE(poly.coefficients[0](1) == ap(-2));
REQUIRE(poly.coefficients[0](2) == ap(1));
}
2022-03-17 14:11:23 +00:00