PrusaSlicer-NonPlainar/tests/libslic3r/test_mutable_priority_queue.cpp

443 lines
14 KiB
C++
Raw Normal View History

#include <catch2/catch.hpp>
#include <queue>
#include "libslic3r/MutablePriorityQueue.hpp"
// based on https://raw.githubusercontent.com/rollbear/prio_queue/master/self_test.cpp
// original source Copyright Björn Fahller 2015, Boost Software License, Version 1.0, http://www.boost.org/LICENSE_1_0.txt
TEST_CASE("Skip addressing", "[MutableSkipHeapPriorityQueue]") {
using skip_addressing = SkipHeapAddressing<8>;
SECTION("block root") {
REQUIRE(skip_addressing::is_block_root(1));
REQUIRE(skip_addressing::is_block_root(9));
REQUIRE(skip_addressing::is_block_root(17));
REQUIRE(skip_addressing::is_block_root(73));
REQUIRE(! skip_addressing::is_block_root(2));
REQUIRE(! skip_addressing::is_block_root(3));
REQUIRE(! skip_addressing::is_block_root(4));
REQUIRE(! skip_addressing::is_block_root(7));
REQUIRE(! skip_addressing::is_block_root(31));
}
SECTION("block leaf") {
REQUIRE(! skip_addressing::is_block_leaf(1));
REQUIRE(! skip_addressing::is_block_leaf(2));
REQUIRE(! skip_addressing::is_block_leaf(3));
REQUIRE(skip_addressing::is_block_leaf(4));
REQUIRE(skip_addressing::is_block_leaf(5));
REQUIRE(skip_addressing::is_block_leaf(6));
REQUIRE(skip_addressing::is_block_leaf(7));
REQUIRE(skip_addressing::is_block_leaf(28));
REQUIRE(skip_addressing::is_block_leaf(29));
REQUIRE(skip_addressing::is_block_leaf(30));
REQUIRE(! skip_addressing::is_block_leaf(257));
REQUIRE(skip_addressing::is_block_leaf(255));
}
SECTION("Obtaining child") {
REQUIRE(skip_addressing::child_of(1) == 2);
REQUIRE(skip_addressing::child_of(2) == 4);
REQUIRE(skip_addressing::child_of(3) == 6);
REQUIRE(skip_addressing::child_of(4) == 9);
REQUIRE(skip_addressing::child_of(31) == 249);
}
SECTION("Obtaining parent") {
REQUIRE(skip_addressing::parent_of(2) == 1);
REQUIRE(skip_addressing::parent_of(3) == 1);
REQUIRE(skip_addressing::parent_of(6) == 3);
REQUIRE(skip_addressing::parent_of(7) == 3);
REQUIRE(skip_addressing::parent_of(9) == 4);
REQUIRE(skip_addressing::parent_of(17) == 4);
REQUIRE(skip_addressing::parent_of(33) == 5);
REQUIRE(skip_addressing::parent_of(29) == 26);
REQUIRE(skip_addressing::parent_of(1097) == 140);
}
}
struct ValueIndexPair
{
int value;
size_t idx = 0;
};
template<size_t block_size = 16>
static auto make_test_priority_queue()
{
return make_miniheap_mutable_priority_queue<ValueIndexPair, block_size, false>(
[](ValueIndexPair &v, size_t idx){ v.idx = idx; },
[](ValueIndexPair &l, ValueIndexPair &r){ return l.value < r.value; });
}
TEST_CASE("Mutable priority queue - basic tests", "[MutableSkipHeapPriorityQueue]") {
SECTION("a default constructed queue is empty") {
auto q = make_test_priority_queue();
REQUIRE(q.empty());
REQUIRE(q.size() == 0);
}
SECTION("an empty queue is not empty when one element is inserted") {
auto q = make_test_priority_queue();
q.push({ 1 });
REQUIRE(!q.empty());
REQUIRE(q.size() == 1);
}
SECTION("a queue with one element has it on top") {
auto q = make_test_priority_queue();
q.push({ 8 });
REQUIRE(q.top().value == 8);
}
SECTION("a queue with one element becomes empty when popped") {
auto q = make_test_priority_queue();
q.push({ 9 });
q.pop();
REQUIRE(q.empty());
REQUIRE(q.size() == 0);
}
SECTION("insert sorted stays sorted") {
auto q = make_test_priority_queue();
for (auto i : { 1, 2, 3, 4, 5, 6, 7, 8 })
q.push({ i });
REQUIRE(q.top().value == 1);
q.pop();
REQUIRE(q.top().value == 2);
q.pop();
REQUIRE(q.top().value == 3);
q.pop();
REQUIRE(q.top().value == 4);
q.pop();
REQUIRE(q.top().value == 5);
q.pop();
REQUIRE(q.top().value == 6);
q.pop();
REQUIRE(q.top().value == 7);
q.pop();
REQUIRE(q.top().value == 8);
q.pop();
REQUIRE(q.empty());
}
SECTION("randomly inserted elements are popped sorted") {
auto q = make_test_priority_queue();
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<> dist(1, 100000);
int n[36000];
for (auto& i : n) {
i = dist(gen);
q.push({ i });
}
REQUIRE(!q.empty());
REQUIRE(q.size() == 36000);
std::sort(std::begin(n), std::end(n));
for (auto i : n) {
REQUIRE(q.top().value == i);
q.pop();
}
REQUIRE(q.empty());
}
}
TEST_CASE("Mutable priority queue - reshedule first", "[MutableSkipHeapPriorityQueue]") {
struct MyValue {
int value;
int *ptr;
size_t idx;
};
SECTION("reschedule top with highest prio leaves order unchanged") {
auto q = make_miniheap_mutable_priority_queue<MyValue, 4, false>(
[](MyValue& v, size_t idx) { v.idx = idx; },
[](MyValue& l, MyValue& r) { return l.value < r.value; });
// 0 1 2 3 4 5 6 7 8
int nums[] = { 32, 1, 88, 16, 9, 11, 3, 22, 23 };
for (auto &i : nums)
q.push({ i, &i, 0U });
REQUIRE(q.top().value == 1);
REQUIRE(q.top().ptr == &nums[1]);
REQUIRE(*q.top().ptr == 1);
// Update the top element.
q.top().value = 2;
q.update(1);
REQUIRE(q.top().value == 2);
REQUIRE(q.top().ptr == &nums[1]);
q.pop();
REQUIRE(q.top().value == 3);
REQUIRE(q.top().ptr == &nums[6]);
q.pop();
REQUIRE(q.top().value == 9);
REQUIRE(q.top().ptr == &nums[4]);
q.pop();
REQUIRE(q.top().value == 11);
REQUIRE(q.top().ptr == &nums[5]);
q.pop();
REQUIRE(q.top().value == 16);
REQUIRE(q.top().ptr == &nums[3]);
q.pop();
REQUIRE(q.top().value == 22);
REQUIRE(q.top().ptr == &nums[7]);
q.pop();
REQUIRE(q.top().value == 23);
REQUIRE(q.top().ptr == &nums[8]);
q.pop();
REQUIRE(q.top().value == 32);
REQUIRE(q.top().ptr == &nums[0]);
q.pop();
REQUIRE(q.top().value == 88);
REQUIRE(q.top().ptr == &nums[2]);
q.pop();
REQUIRE(q.empty());
}
SECTION("reschedule to mid range moves element to correct place") {
auto q = make_miniheap_mutable_priority_queue<MyValue, 4, false>(
[](MyValue& v, size_t idx) { v.idx = idx; },
[](MyValue& l, MyValue& r) { return l.value < r.value; });
// 0 1 2 3 4 5 6 7 8
int nums[] = { 32, 1, 88, 16, 9, 11, 3, 22, 23 };
for (auto& i : nums)
q.push({ i, &i, 0U });
REQUIRE(q.top().value == 1);
REQUIRE(q.top().ptr == &nums[1]);
REQUIRE(*q.top().ptr == 1);
// Update the top element.
q.top().value = 12;
q.update(1);
REQUIRE(q.top().value == 3);
REQUIRE(q.top().ptr == &nums[6]);
q.pop();
REQUIRE(q.top().value == 9);
REQUIRE(q.top().ptr == &nums[4]);
q.pop();
REQUIRE(q.top().value == 11);
REQUIRE(q.top().ptr == &nums[5]);
q.pop();
REQUIRE(q.top().value == 12);
REQUIRE(q.top().ptr == &nums[1]);
q.pop();
REQUIRE(q.top().value == 16);
REQUIRE(q.top().ptr == &nums[3]);
q.pop();
REQUIRE(q.top().value == 22);
REQUIRE(q.top().ptr == &nums[7]);
q.pop();
REQUIRE(q.top().value == 23);
REQUIRE(q.top().ptr == &nums[8]);
q.pop();
REQUIRE(q.top().value == 32);
REQUIRE(q.top().ptr == &nums[0]);
q.pop();
REQUIRE(q.top().value == 88);
REQUIRE(q.top().ptr == &nums[2]);
q.pop();
REQUIRE(q.empty());
}
SECTION("reschedule to last moves element to correct place", "heap")
{
auto q = make_miniheap_mutable_priority_queue<MyValue, 4, false>(
[](MyValue& v, size_t idx) { v.idx = idx; },
[](MyValue& l, MyValue& r) { return l.value < r.value; });
// 0 1 2 3 4 5 6 7 8
int nums[] = { 32, 1, 88, 16, 9, 11, 3, 22, 23 };
for (auto& i : nums)
q.push({ i, &i, 0U });
REQUIRE(q.top().value == 1);
REQUIRE(q.top().ptr == &nums[1]);
REQUIRE(*q.top().ptr == 1);
// Update the top element.
q.top().value = 89;
q.update(1);
REQUIRE(q.top().value == 3);
REQUIRE(q.top().ptr == &nums[6]);
q.pop();
REQUIRE(q.top().value == 9);
REQUIRE(q.top().ptr == &nums[4]);
q.pop();
REQUIRE(q.top().value == 11);
REQUIRE(q.top().ptr == &nums[5]);
q.pop();
REQUIRE(q.top().value == 16);
REQUIRE(q.top().ptr == &nums[3]);
q.pop();
REQUIRE(q.top().value == 22);
REQUIRE(q.top().ptr == &nums[7]);
q.pop();
REQUIRE(q.top().value == 23);
REQUIRE(q.top().ptr == &nums[8]);
q.pop();
REQUIRE(q.top().value == 32);
REQUIRE(q.top().ptr == &nums[0]);
q.pop();
REQUIRE(q.top().value == 88);
REQUIRE(q.top().ptr == &nums[2]);
q.pop();
REQUIRE(q.top().value == 89);
REQUIRE(q.top().ptr == &nums[1]);
q.pop();
REQUIRE(q.empty());
}
SECTION("reschedule top of 2 elements to last") {
auto q = make_test_priority_queue<8>();
q.push({ 1 });
q.push({ 2 });
REQUIRE(q.top().value == 1);
// Update the top element.
q.top().value = 3;
q.update(1);
REQUIRE(q.top().value == 2);
}
SECTION("reschedule top of 3 elements left to 2nd") {
auto q = make_test_priority_queue<8>();
q.push({ 1 });
q.push({ 2 });
q.push({ 4 });
REQUIRE(q.top().value == 1);
// Update the top element.
q.top().value = 3;
q.update(1);
REQUIRE(q.top().value == 2);
}
SECTION("reschedule top of 3 elements right to 2nd") {
auto q = make_test_priority_queue<8>();
q.push({ 1 });
q.push({ 4 });
q.push({ 2 });
REQUIRE(q.top().value == 1);
// Update the top element.
q.top().value = 3;
q.update(1);
REQUIRE(q.top().value == 2);
}
SECTION("reschedule top random gives same resultas pop/push") {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<unsigned> dist(1, 100000);
auto pq = make_test_priority_queue<8>();
std::priority_queue<int, std::vector<int>, std::greater<>> stdq;
for (size_t outer = 0; outer < 100; ++ outer) {
int num = gen();
pq.push({ num });
stdq.push({ num });
for (size_t inner = 0; inner < 100; ++ inner) {
int newval = gen();
// Update the top element.
pq.top().value = newval;
pq.update(1);
stdq.pop();
stdq.push({ newval });
auto n = pq.top().value;
auto sn = stdq.top();
REQUIRE(sn == n);
}
}
}
}
2021-07-19 07:17:50 +00:00
TEST_CASE("Mutable priority queue - first pop", "[MutableSkipHeapPriorityQueue]")
{
struct MyValue{
int id;
float val;
};
size_t count = 50000;
std::vector<size_t> idxs(count, {0});
std::vector<bool> dels(count, false);
auto q = make_miniheap_mutable_priority_queue<MyValue, 16, true>(
[&](MyValue &v, size_t idx) {
idxs[v.id] = idx;
},
[](MyValue &l, MyValue &r) { return l.val < r.val; });
q.reserve(count);
for (size_t id = 0; id < count; id++) {
MyValue mv;
mv.id = id;
mv.val = rand();
q.push(mv);
}
MyValue it = q.top(); // copy
q.pop();
bool valid = (it.id != 0) && (idxs[0] < 3 * count);
CHECK(valid);
}
TEST_CASE("Mutable priority queue complex", "[MutableSkipHeapPriorityQueue]")
{
struct MyValue {
size_t id;
2021-07-19 07:17:50 +00:00
float val;
};
size_t count = 5000;
std::vector<size_t> idxs(count, {0});
std::vector<bool> dels(count, false);
auto q = make_miniheap_mutable_priority_queue<MyValue, 16, true>(
[&](MyValue &v, size_t idx) { idxs[v.id] = idx; },
[](MyValue &l, MyValue &r) { return l.val < r.val; });
q.reserve(count);
auto rand_val = [&]()->float { return (rand() % 53) / 10.f; };
size_t ord = 0;
2021-07-19 07:17:50 +00:00
for (size_t id = 0; id < count; id++) {
MyValue mv;
mv.id = ord++;
mv.val = rand_val();
q.push(mv);
}
auto check = [&]()->bool{
for (size_t i = 0; i < idxs.size(); ++i) {
if (dels[i]) continue;
size_t qid = idxs[i];
if (qid > 3*count) {
return false;
}
MyValue &mv = q[qid];
if (mv.id != i) {
return false; // ERROR
}
}
return true;
};
CHECK(check()); // initial check
auto get_valid_id = [&]()->int {
int id = 0;
do {
id = rand() % count;
} while (dels[id]);
return id;
};
for (size_t i = 0; i < 100; i++) {
MyValue it = q.top(); // copy
q.pop();
dels[it.id] = true;
CHECK(check());
if (i % 20 == 0) {
it.val = rand_val();
q.push(it);
dels[it.id] = false;
CHECK(check());
continue;
}
int id = get_valid_id();
q.remove(idxs[id]);
dels[id] = true;
CHECK(check());
for (size_t j = 0; j < 5; j++) {
int id = get_valid_id();
size_t qid = idxs[id];
MyValue &mv = q[qid];
mv.val = rand_val();
q.update(qid);
CHECK(check());
}
}
}