PrusaSlicer-NonPlainar/xs/src/admesh/stlinit.cpp

443 lines
16 KiB
C++
Raw Normal View History

2013-06-23 16:18:38 +00:00
/* ADMesh -- process triangulated solid meshes
2014-09-23 12:34:37 +00:00
* Copyright (C) 1995, 1996 Anthony D. Martin <amartin@engr.csulb.edu>
* Copyright (C) 2013, 2014 several contributors, see AUTHORS
2013-06-23 16:18:38 +00:00
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
2014-09-23 12:34:37 +00:00
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
2013-06-23 16:18:38 +00:00
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
2014-09-23 12:34:37 +00:00
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
2013-06-23 16:18:38 +00:00
*
2014-09-23 12:34:37 +00:00
* Questions, comments, suggestions, etc to
* https://github.com/admesh/admesh/issues
2013-06-23 16:18:38 +00:00
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
2017-03-29 17:57:11 +00:00
#include <assert.h>
2013-06-23 16:18:38 +00:00
#include <boost/nowide/cstdio.hpp>
#include <boost/detail/endian.hpp>
2013-06-23 16:18:38 +00:00
#include "stl.h"
#ifndef SEEK_SET
#error "SEEK_SET not defined"
2013-06-23 16:18:38 +00:00
#endif
void
stl_open(stl_file *stl, const char *file) {
2013-07-03 09:38:01 +00:00
stl_initialize(stl);
stl_count_facets(stl, file);
2013-06-23 16:18:38 +00:00
stl_allocate(stl);
stl_read(stl, 0, 1);
2014-09-23 12:34:37 +00:00
if (!stl->error) fclose(stl->fp);
2013-06-23 16:18:38 +00:00
}
2013-07-03 09:38:01 +00:00
void
2014-09-23 12:34:37 +00:00
stl_initialize(stl_file *stl) {
memset(stl, 0, sizeof(stl_file));
2013-06-23 16:18:38 +00:00
stl->stats.volume = -1.0;
2013-07-03 09:38:01 +00:00
}
2013-06-23 16:18:38 +00:00
#ifndef BOOST_LITTLE_ENDIAN
extern void stl_internal_reverse_quads(char *buf, size_t cnt);
#endif /* BOOST_LITTLE_ENDIAN */
2014-09-23 12:34:37 +00:00
void
stl_count_facets(stl_file *stl, const char *file) {
2013-07-03 09:38:01 +00:00
long file_size;
uint32_t header_num_facets;
uint32_t num_facets;
2015-08-23 21:35:11 +00:00
int i;
2014-09-23 12:34:37 +00:00
size_t s;
2013-07-03 09:38:01 +00:00
unsigned char chtest[128];
int num_lines = 1;
char *error_msg;
2014-09-23 12:34:37 +00:00
if (stl->error) return;
/* Open the file in binary mode first */
stl->fp = boost::nowide::fopen(file, "rb");
2014-09-23 12:34:37 +00:00
if(stl->fp == NULL) {
error_msg = (char*)
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_initialize: Couldn't open %s for reading",
file);
perror(error_msg);
free(error_msg);
stl->error = 1;
return;
}
2013-06-23 16:18:38 +00:00
/* Find size of file */
fseek(stl->fp, 0, SEEK_END);
file_size = ftell(stl->fp);
2014-09-23 12:34:37 +00:00
2013-06-23 16:18:38 +00:00
/* Check for binary or ASCII file */
fseek(stl->fp, HEADER_SIZE, SEEK_SET);
2014-09-23 12:34:37 +00:00
if (!fread(chtest, sizeof(chtest), 1, stl->fp)) {
perror("The input is an empty file");
stl->error = 1;
return;
}
2013-06-23 16:18:38 +00:00
stl->stats.type = ascii;
2014-09-23 12:34:37 +00:00
for(s = 0; s < sizeof(chtest); s++) {
if(chtest[s] > 127) {
stl->stats.type = binary;
break;
2013-06-23 16:18:38 +00:00
}
2014-09-23 12:34:37 +00:00
}
2013-06-23 16:18:38 +00:00
rewind(stl->fp);
/* Get the header and the number of facets in the .STL file */
/* If the .STL file is binary, then do the following */
2014-09-23 12:34:37 +00:00
if(stl->stats.type == binary) {
/* Test if the STL file has the right size */
if(((file_size - HEADER_SIZE) % SIZEOF_STL_FACET != 0)
|| (file_size < STL_MIN_FILE_SIZE)) {
fprintf(stderr, "The file %s has the wrong size.\n", file);
stl->error = 1;
return;
}
num_facets = (file_size - HEADER_SIZE) / SIZEOF_STL_FACET;
/* Read the header */
if (fread(stl->stats.header, LABEL_SIZE, 1, stl->fp) > 79) {
2013-06-23 16:18:38 +00:00
stl->stats.header[80] = '\0';
2014-09-23 12:34:37 +00:00
}
2013-06-23 16:18:38 +00:00
2014-09-23 12:34:37 +00:00
/* Read the int following the header. This should contain # of facets */
bool header_num_faces_read = fread(&header_num_facets, sizeof(uint32_t), 1, stl->fp);
#ifndef BOOST_LITTLE_ENDIAN
// Convert from little endian to big endian.
stl_internal_reverse_quads((char*)&header_num_facets, 4);
#endif /* BOOST_LITTLE_ENDIAN */
if (! header_num_faces_read || num_facets != header_num_facets) {
2014-09-23 12:34:37 +00:00
fprintf(stderr,
"Warning: File size doesn't match number of facets in the header\n");
2013-06-23 16:18:38 +00:00
}
2014-09-23 12:34:37 +00:00
}
2013-06-23 16:18:38 +00:00
/* Otherwise, if the .STL file is ASCII, then do the following */
2014-09-23 12:34:37 +00:00
else {
/* Reopen the file in text mode (for getting correct newlines on Windows) */
// fix to silence a warning about unused return value.
// obviously if it fails we have problems....
stl->fp = boost::nowide::freopen(file, "r", stl->fp);
// do another null check to be safe
if(stl->fp == NULL) {
error_msg = (char*)
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_initialize: Couldn't open %s for reading",
file);
perror(error_msg);
free(error_msg);
stl->error = 1;
return;
}
2014-09-23 12:34:37 +00:00
/* Find the number of facets */
char linebuf[100];
while (fgets(linebuf, 100, stl->fp) != NULL) {
/* don't count short lines */
if (strlen(linebuf) <= 4) continue;
/* skip solid/endsolid lines as broken STL file generators may put several of them */
if (strncmp(linebuf, "solid", 5) == 0 || strncmp(linebuf, "endsolid", 8) == 0) continue;
++num_lines;
2013-06-23 16:18:38 +00:00
}
2014-09-23 12:34:37 +00:00
rewind(stl->fp);
2014-09-23 12:34:37 +00:00
/* Get the header */
for(i = 0;
(i < 80) && (stl->stats.header[i] = getc(stl->fp)) != '\n'; i++);
stl->stats.header[i] = '\0'; /* Lose the '\n' */
stl->stats.header[80] = '\0';
num_facets = num_lines / ASCII_LINES_PER_FACET;
}
2013-06-23 16:18:38 +00:00
stl->stats.number_of_facets += num_facets;
stl->stats.original_num_facets = stl->stats.number_of_facets;
}
2013-07-03 09:38:01 +00:00
void
2014-09-23 12:34:37 +00:00
stl_allocate(stl_file *stl) {
if (stl->error) return;
2013-06-23 16:18:38 +00:00
/* Allocate memory for the entire .STL file */
2014-09-23 12:34:37 +00:00
stl->facet_start = (stl_facet*)calloc(stl->stats.number_of_facets,
sizeof(stl_facet));
2013-06-23 16:18:38 +00:00
if(stl->facet_start == NULL) perror("stl_initialize");
stl->stats.facets_malloced = stl->stats.number_of_facets;
/* Allocate memory for the neighbors list */
stl->neighbors_start = (stl_neighbors*)
2014-09-23 12:34:37 +00:00
calloc(stl->stats.number_of_facets, sizeof(stl_neighbors));
2013-06-23 16:18:38 +00:00
if(stl->facet_start == NULL) perror("stl_initialize");
}
void
2014-09-23 12:34:37 +00:00
stl_open_merge(stl_file *stl, char *file_to_merge) {
int num_facets_so_far;
stl_type origStlType;
FILE *origFp;
stl_file stl_to_merge;
if (stl->error) return;
/* Record how many facets we have so far from the first file. We will start putting
facets in the next position. Since we're 0-indexed, it'l be the same position. */
num_facets_so_far = stl->stats.number_of_facets;
/* Record the file type we started with: */
origStlType=stl->stats.type;
/* Record the file pointer too: */
origFp=stl->fp;
/* Initialize the sturucture with zero stats, header info and sizes: */
stl_initialize(&stl_to_merge);
stl_count_facets(&stl_to_merge, file_to_merge);
/* Copy what we need to into stl so that we can read the file_to_merge directly into it
using stl_read: Save the rest of the valuable info: */
stl->stats.type=stl_to_merge.stats.type;
stl->fp=stl_to_merge.fp;
/* Add the number of facets we already have in stl with what we we found in stl_to_merge but
haven't read yet. */
stl->stats.number_of_facets=num_facets_so_far+stl_to_merge.stats.number_of_facets;
/* Allocate enough room for stl->stats.number_of_facets facets and neighbors: */
2013-06-23 16:18:38 +00:00
stl_reallocate(stl);
2014-09-23 12:34:37 +00:00
/* Read the file to merge directly into stl, adding it to what we have already.
Start at num_facets_so_far, the index to the first unused facet. Also say
that this isn't our first time so we should augment stats like min and max
instead of erasing them. */
stl_read(stl, num_facets_so_far, 0);
/* Restore the stl information we overwrote (for stl_read) so that it still accurately
reflects the subject part: */
stl->stats.type=origStlType;
stl->fp=origFp;
2013-06-23 16:18:38 +00:00
}
2013-09-09 20:45:22 +00:00
extern void
2014-09-23 12:34:37 +00:00
stl_reallocate(stl_file *stl) {
if (stl->error) return;
2013-06-23 16:18:38 +00:00
/* Reallocate more memory for the .STL file(s) */
stl->facet_start = (stl_facet*)realloc(stl->facet_start, stl->stats.number_of_facets *
2014-09-23 12:34:37 +00:00
sizeof(stl_facet));
2013-06-23 16:18:38 +00:00
if(stl->facet_start == NULL) perror("stl_initialize");
stl->stats.facets_malloced = stl->stats.number_of_facets;
/* Reallocate more memory for the neighbors list */
stl->neighbors_start = (stl_neighbors*)
2014-09-23 12:34:37 +00:00
realloc(stl->neighbors_start, stl->stats.number_of_facets *
sizeof(stl_neighbors));
2013-06-23 16:18:38 +00:00
if(stl->facet_start == NULL) perror("stl_initialize");
}
2014-09-23 12:34:37 +00:00
/* Reads the contents of the file pointed to by stl->fp into the stl structure,
starting at facet first_facet. The second argument says if it's our first
time running this for the stl and therefore we should reset our max and min stats. */
void
stl_read(stl_file *stl, int first_facet, int first) {
2013-06-23 16:18:38 +00:00
stl_facet facet;
int i;
2014-09-23 12:34:37 +00:00
if (stl->error) return;
if(stl->stats.type == binary) {
fseek(stl->fp, HEADER_SIZE, SEEK_SET);
} else {
rewind(stl->fp);
}
char normal_buf[3][32];
2014-09-23 12:34:37 +00:00
for(i = first_facet; i < stl->stats.number_of_facets; i++) {
if(stl->stats.type == binary)
/* Read a single facet from a binary .STL file */
2013-06-23 16:18:38 +00:00
{
2014-09-23 12:34:37 +00:00
/* we assume little-endian architecture! */
if (fread(&facet, 1, SIZEOF_STL_FACET, stl->fp) != SIZEOF_STL_FACET) {
2014-09-23 12:34:37 +00:00
stl->error = 1;
return;
}
#ifndef BOOST_LITTLE_ENDIAN
// Convert the loaded little endian data to big endian.
stl_internal_reverse_quads((char*)&facet, 48);
#endif /* BOOST_LITTLE_ENDIAN */
2014-09-23 12:34:37 +00:00
} else
/* Read a single facet from an ASCII .STL file */
2013-06-23 16:18:38 +00:00
{
// skip solid/endsolid
// (in this order, otherwise it won't work when they are paired in the middle of a file)
fscanf(stl->fp, "endsolid\n");
fscanf(stl->fp, "solid%*[^\n]\n"); // name might contain spaces so %*s doesn't work and it also can be empty (just "solid")
// Leading space in the fscanf format skips all leading white spaces including numerous new lines and tabs.
int res_normal = fscanf(stl->fp, " facet normal %31s %31s %31s", normal_buf[0], normal_buf[1], normal_buf[2]);
assert(res_normal == 3);
int res_outer_loop = fscanf(stl->fp, " outer loop");
assert(res_outer_loop == 0);
int res_vertex1 = fscanf(stl->fp, " vertex %f %f %f", &facet.vertex[0].x, &facet.vertex[0].y, &facet.vertex[0].z);
assert(res_vertex1 == 3);
int res_vertex2 = fscanf(stl->fp, " vertex %f %f %f", &facet.vertex[1].x, &facet.vertex[1].y, &facet.vertex[1].z);
assert(res_vertex2 == 3);
int res_vertex3 = fscanf(stl->fp, " vertex %f %f %f", &facet.vertex[2].x, &facet.vertex[2].y, &facet.vertex[2].z);
assert(res_vertex3 == 3);
int res_endloop = fscanf(stl->fp, " endloop");
assert(res_endloop == 0);
// There is a leading and trailing white space around endfacet to eat up all leading and trailing white spaces including numerous tabs and new lines.
int res_endfacet = fscanf(stl->fp, " endfacet ");
if (res_normal != 3 || res_outer_loop != 0 || res_vertex1 != 3 || res_vertex2 != 3 || res_vertex3 != 3 || res_endloop != 0 || res_endfacet != 0) {
2014-09-23 12:34:37 +00:00
perror("Something is syntactically very wrong with this ASCII STL!");
stl->error = 1;
return;
}
// The facet normal has been parsed as a single string as to workaround for not a numbers in the normal definition.
if (sscanf(normal_buf[0], "%f", &facet.normal.x) != 1 ||
sscanf(normal_buf[1], "%f", &facet.normal.y) != 1 ||
sscanf(normal_buf[2], "%f", &facet.normal.z) != 1) {
// Normal was mangled. Maybe denormals or "not a number" were stored?
// Just reset the normal and silently ignore it.
memset(&facet.normal, 0, sizeof(facet.normal));
}
2013-06-23 16:18:38 +00:00
}
#if 0
// Report close to zero vertex coordinates. Due to the nature of the floating point numbers,
// close to zero values may be represented with singificantly higher precision than the rest of the vertices.
// It may be worth to round these numbers to zero during loading to reduce the number of errors reported
// during the STL import.
for (size_t j = 0; j < 3; ++ j) {
if (facet.vertex[j].x > -1e-12f && facet.vertex[j].x < 1e-12f)
printf("stl_read: facet %d.x = %e\r\n", j, facet.vertex[j].x);
if (facet.vertex[j].y > -1e-12f && facet.vertex[j].y < 1e-12f)
printf("stl_read: facet %d.y = %e\r\n", j, facet.vertex[j].y);
if (facet.vertex[j].z > -1e-12f && facet.vertex[j].z < 1e-12f)
printf("stl_read: facet %d.z = %e\r\n", j, facet.vertex[j].z);
}
#endif
#if 1
{
// Positive and negative zeros are possible in the floats, which are considered equal by the FP unit.
// When using a memcmp on raw floats, those numbers report to be different.
// Unify all +0 and -0 to +0 to make the floats equal under memcmp.
uint32_t *f = (uint32_t*)&facet;
for (int j = 0; j < 12; ++ j, ++ f) // 3x vertex + normal: 4x3 = 12 floats
if (*f == 0x80000000)
// Negative zero, switch to positive zero.
*f = 0;
}
#else
{
// Due to the nature of the floating point numbers, close to zero values may be represented with singificantly higher precision
// than the rest of the vertices. Round them to zero.
float *f = (float*)&facet;
for (int j = 0; j < 12; ++ j, ++ f) // 3x vertex + normal: 4x3 = 12 floats
if (*f > -1e-12f && *f < 1e-12f)
// Negative zero, switch to positive zero.
*f = 0;
}
#endif
2014-09-23 12:34:37 +00:00
/* Write the facet into memory. */
memcpy(stl->facet_start+i, &facet, SIZEOF_STL_FACET);
2014-09-23 12:34:37 +00:00
stl_facet_stats(stl, facet, first);
first = 0;
}
stl->stats.size.x = stl->stats.max.x - stl->stats.min.x;
stl->stats.size.y = stl->stats.max.y - stl->stats.min.y;
stl->stats.size.z = stl->stats.max.z - stl->stats.min.z;
stl->stats.bounding_diameter = sqrt(
stl->stats.size.x * stl->stats.size.x +
stl->stats.size.y * stl->stats.size.y +
stl->stats.size.z * stl->stats.size.z
);
2013-06-23 16:18:38 +00:00
}
2013-07-03 09:38:01 +00:00
void
2014-09-23 12:34:37 +00:00
stl_facet_stats(stl_file *stl, stl_facet facet, int first) {
float diff_x;
float diff_y;
float diff_z;
float max_diff;
if (stl->error) return;
/* while we are going through all of the facets, let's find the */
/* maximum and minimum values for x, y, and z */
/* Initialize the max and min values the first time through*/
if (first) {
stl->stats.max.x = facet.vertex[0].x;
stl->stats.min.x = facet.vertex[0].x;
stl->stats.max.y = facet.vertex[0].y;
stl->stats.min.y = facet.vertex[0].y;
stl->stats.max.z = facet.vertex[0].z;
stl->stats.min.z = facet.vertex[0].z;
diff_x = ABS(facet.vertex[0].x - facet.vertex[1].x);
diff_y = ABS(facet.vertex[0].y - facet.vertex[1].y);
diff_z = ABS(facet.vertex[0].z - facet.vertex[1].z);
max_diff = STL_MAX(diff_x, diff_y);
max_diff = STL_MAX(diff_z, max_diff);
stl->stats.shortest_edge = max_diff;
first = 0;
}
/* now find the max and min values */
stl->stats.max.x = STL_MAX(stl->stats.max.x, facet.vertex[0].x);
stl->stats.min.x = STL_MIN(stl->stats.min.x, facet.vertex[0].x);
stl->stats.max.y = STL_MAX(stl->stats.max.y, facet.vertex[0].y);
stl->stats.min.y = STL_MIN(stl->stats.min.y, facet.vertex[0].y);
stl->stats.max.z = STL_MAX(stl->stats.max.z, facet.vertex[0].z);
stl->stats.min.z = STL_MIN(stl->stats.min.z, facet.vertex[0].z);
stl->stats.max.x = STL_MAX(stl->stats.max.x, facet.vertex[1].x);
stl->stats.min.x = STL_MIN(stl->stats.min.x, facet.vertex[1].x);
stl->stats.max.y = STL_MAX(stl->stats.max.y, facet.vertex[1].y);
stl->stats.min.y = STL_MIN(stl->stats.min.y, facet.vertex[1].y);
stl->stats.max.z = STL_MAX(stl->stats.max.z, facet.vertex[1].z);
stl->stats.min.z = STL_MIN(stl->stats.min.z, facet.vertex[1].z);
stl->stats.max.x = STL_MAX(stl->stats.max.x, facet.vertex[2].x);
stl->stats.min.x = STL_MIN(stl->stats.min.x, facet.vertex[2].x);
stl->stats.max.y = STL_MAX(stl->stats.max.y, facet.vertex[2].y);
stl->stats.min.y = STL_MIN(stl->stats.min.y, facet.vertex[2].y);
stl->stats.max.z = STL_MAX(stl->stats.max.z, facet.vertex[2].z);
stl->stats.min.z = STL_MIN(stl->stats.min.z, facet.vertex[2].z);
2013-07-03 09:38:01 +00:00
}
2013-06-23 16:18:38 +00:00
void
2014-09-23 12:34:37 +00:00
stl_close(stl_file *stl) {
if (stl->error) return;
if(stl->neighbors_start != NULL)
free(stl->neighbors_start);
if(stl->facet_start != NULL)
free(stl->facet_start);
if(stl->v_indices != NULL)
free(stl->v_indices);
if(stl->v_shared != NULL)
free(stl->v_shared);
2013-06-23 16:18:38 +00:00
}