WIP Organic supports intefaces:

Further refactor of FDM support code - extracted interface routine to common.
Implemented support for soluble interfaces & half soluble / half non-soluble
interfaces.
This commit is contained in:
Vojtech Bubnik 2023-05-08 09:19:31 +02:00
parent 89f0895dd6
commit 1e7a3216ca
8 changed files with 507 additions and 339 deletions

View File

@ -3,6 +3,7 @@
#include "../Layer.hpp" #include "../Layer.hpp"
#include "../Print.hpp" #include "../Print.hpp"
#include "../Fill/FillBase.hpp" #include "../Fill/FillBase.hpp"
#include "../MutablePolygon.hpp"
#include "../Geometry.hpp" #include "../Geometry.hpp"
#include "../Point.hpp" #include "../Point.hpp"
@ -118,6 +119,194 @@ void remove_bridges_from_contacts(
#endif /* SLIC3R_DEBUG */ #endif /* SLIC3R_DEBUG */
} }
// Convert some of the intermediate layers into top/bottom interface layers as well as base interface layers.
std::pair<SupportGeneratorLayersPtr, SupportGeneratorLayersPtr> generate_interface_layers(
const PrintObjectConfig &config,
const SupportParameters &support_params,
const SupportGeneratorLayersPtr &bottom_contacts,
const SupportGeneratorLayersPtr &top_contacts,
// Input / output, will be merged with output. Only provided for Organic supports.
SupportGeneratorLayersPtr &top_interface_layers,
SupportGeneratorLayersPtr &top_base_interface_layers,
// Input, will be trimmed with the newly created interface layers.
SupportGeneratorLayersPtr &intermediate_layers,
SupportGeneratorLayerStorage &layer_storage)
{
std::pair<SupportGeneratorLayersPtr, SupportGeneratorLayersPtr> base_and_interface_layers;
if (! intermediate_layers.empty() && support_params.has_interfaces()) {
// For all intermediate layers, collect top contact surfaces, which are not further than support_material_interface_layers.
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::generate_interface_layers() in parallel - start";
const bool snug_supports = config.support_material_style.value != smsGrid;
SupportGeneratorLayersPtr &interface_layers = base_and_interface_layers.first;
SupportGeneratorLayersPtr &base_interface_layers = base_and_interface_layers.second;
interface_layers.assign(intermediate_layers.size(), nullptr);
if (support_params.has_base_interfaces())
base_interface_layers.assign(intermediate_layers.size(), nullptr);
const auto smoothing_distance = support_params.support_material_interface_flow.scaled_spacing() * 1.5;
const auto minimum_island_radius = support_params.support_material_interface_flow.scaled_spacing() / support_params.interface_density;
const auto closing_distance = smoothing_distance; // scaled<float>(config.support_material_closing_radius.value);
// Insert a new layer into base_interface_layers, if intersection with base exists.
auto insert_layer = [&layer_storage, snug_supports, closing_distance, smoothing_distance, minimum_island_radius](
SupportGeneratorLayer &intermediate_layer, Polygons &bottom, Polygons &&top, SupportGeneratorLayer *top_interface_layer,
const Polygons *subtract, SupporLayerType type) -> SupportGeneratorLayer* {
bool has_top_interface = top_interface_layer && ! top_interface_layer->polygons.empty();
assert(! bottom.empty() || ! top.empty() || has_top_interface);
// Merge top into bottom, unite them with a safety offset.
append(bottom, std::move(top));
// Merge top / bottom interfaces. For snug supports, merge using closing distance and regularize (close concave corners).
bottom = intersection(
snug_supports ?
smooth_outward(closing(std::move(bottom), closing_distance + minimum_island_radius, closing_distance, SUPPORT_SURFACES_OFFSET_PARAMETERS), smoothing_distance) :
union_safety_offset(std::move(bottom)),
intermediate_layer.polygons);
if (has_top_interface)
// Don't trim the precomputed Organic supports top interface with base layer
// as the precomputed top interface likely expands over multiple tree tips.
bottom = union_(std::move(top_interface_layer->polygons), bottom);
if (! bottom.empty()) {
//FIXME Remove non-printable tiny islands, let them be printed using the base support.
//bottom = opening(std::move(bottom), minimum_island_radius);
if (! bottom.empty()) {
SupportGeneratorLayer &layer_new = top_interface_layer ? *top_interface_layer : layer_storage.allocate(type);
layer_new.polygons = std::move(bottom);
layer_new.print_z = intermediate_layer.print_z;
layer_new.bottom_z = intermediate_layer.bottom_z;
layer_new.height = intermediate_layer.height;
layer_new.bridging = intermediate_layer.bridging;
// Subtract the interface from the base regions.
intermediate_layer.polygons = diff(intermediate_layer.polygons, layer_new.polygons);
if (subtract)
// Trim the base interface layer with the interface layer.
layer_new.polygons = diff(std::move(layer_new.polygons), *subtract);
//FIXME filter layer_new.polygons islands by a minimum area?
// $interface_area = [ grep abs($_->area) >= $area_threshold, @$interface_area ];
return &layer_new;
}
}
return nullptr;
};
tbb::parallel_for(tbb::blocked_range<int>(0, int(intermediate_layers.size())),
[&bottom_contacts, &top_contacts, &top_interface_layers, &top_base_interface_layers, &intermediate_layers, &insert_layer, &support_params,
snug_supports, &interface_layers, &base_interface_layers](const tbb::blocked_range<int>& range) {
// Gather the top / bottom contact layers intersecting with num_interface_layers resp. num_interface_layers_only intermediate layers above / below
// this intermediate layer.
// Index of the first top contact layer intersecting the current intermediate layer.
auto idx_top_contact_first = -1;
// Index of the first bottom contact layer intersecting the current intermediate layer.
auto idx_bottom_contact_first = -1;
// Index of the first top interface layer intersecting the current intermediate layer.
auto idx_top_interface_first = -1;
// Index of the first top contact interface layer intersecting the current intermediate layer.
auto idx_top_base_interface_first = -1;
auto num_intermediate = int(intermediate_layers.size());
for (int idx_intermediate_layer = range.begin(); idx_intermediate_layer < range.end(); ++ idx_intermediate_layer) {
SupportGeneratorLayer &intermediate_layer = *intermediate_layers[idx_intermediate_layer];
Polygons polygons_top_contact_projected_interface;
Polygons polygons_top_contact_projected_base;
Polygons polygons_bottom_contact_projected_interface;
Polygons polygons_bottom_contact_projected_base;
if (support_params.num_top_interface_layers > 0) {
// Top Z coordinate of a slab, over which we are collecting the top / bottom contact surfaces
coordf_t top_z = intermediate_layers[std::min(num_intermediate - 1, idx_intermediate_layer + int(support_params.num_top_interface_layers) - 1)]->print_z;
coordf_t top_inteface_z = std::numeric_limits<coordf_t>::max();
if (support_params.num_top_base_interface_layers > 0)
// Some top base interface layers will be generated.
top_inteface_z = support_params.num_top_interface_layers_only() == 0 ?
// Only base interface layers to generate.
- std::numeric_limits<coordf_t>::max() :
intermediate_layers[std::min(num_intermediate - 1, idx_intermediate_layer + int(support_params.num_top_interface_layers_only()) - 1)]->print_z;
// Move idx_top_contact_first up until above the current print_z.
idx_top_contact_first = idx_higher_or_equal(top_contacts, idx_top_contact_first, [&intermediate_layer](const SupportGeneratorLayer *layer){ return layer->print_z >= intermediate_layer.print_z; }); // - EPSILON
// Collect the top contact areas above this intermediate layer, below top_z.
for (int idx_top_contact = idx_top_contact_first; idx_top_contact < int(top_contacts.size()); ++ idx_top_contact) {
const SupportGeneratorLayer &top_contact_layer = *top_contacts[idx_top_contact];
//FIXME maybe this adds one interface layer in excess?
if (top_contact_layer.bottom_z - EPSILON > top_z)
break;
polygons_append(top_contact_layer.bottom_z - EPSILON > top_inteface_z ? polygons_top_contact_projected_base : polygons_top_contact_projected_interface,
// For snug supports, project the overhang polygons covering the whole overhang, so that they will merge without a gap with support polygons of the other layers.
// For grid supports, merging of support regions will be performed by the projection into grid.
snug_supports ? *top_contact_layer.overhang_polygons : top_contact_layer.polygons);
}
}
if (support_params.num_bottom_interface_layers > 0) {
// Bottom Z coordinate of a slab, over which we are collecting the top / bottom contact surfaces
coordf_t bottom_z = intermediate_layers[std::max(0, idx_intermediate_layer - int(support_params.num_bottom_interface_layers) + 1)]->bottom_z;
coordf_t bottom_interface_z = - std::numeric_limits<coordf_t>::max();
if (support_params.num_bottom_base_interface_layers > 0)
// Some bottom base interface layers will be generated.
bottom_interface_z = support_params.num_bottom_interface_layers_only() == 0 ?
// Only base interface layers to generate.
std::numeric_limits<coordf_t>::max() :
intermediate_layers[std::max(0, idx_intermediate_layer - int(support_params.num_bottom_interface_layers_only()))]->bottom_z;
// Move idx_bottom_contact_first up until touching bottom_z.
idx_bottom_contact_first = idx_higher_or_equal(bottom_contacts, idx_bottom_contact_first, [bottom_z](const SupportGeneratorLayer *layer){ return layer->print_z >= bottom_z - EPSILON; });
// Collect the top contact areas above this intermediate layer, below top_z.
for (int idx_bottom_contact = idx_bottom_contact_first; idx_bottom_contact < int(bottom_contacts.size()); ++ idx_bottom_contact) {
const SupportGeneratorLayer &bottom_contact_layer = *bottom_contacts[idx_bottom_contact];
if (bottom_contact_layer.print_z - EPSILON > intermediate_layer.bottom_z)
break;
polygons_append(bottom_contact_layer.print_z - EPSILON > bottom_interface_z ? polygons_bottom_contact_projected_interface : polygons_bottom_contact_projected_base, bottom_contact_layer.polygons);
}
}
auto resolve_same_layer = [](SupportGeneratorLayersPtr &layers, int &idx, coordf_t print_z) -> SupportGeneratorLayer* {
if (! layers.empty()) {
idx = idx_higher_or_equal(layers, idx, [print_z](const SupportGeneratorLayer *layer) { return layer->print_z > print_z - EPSILON; });
if (idx < int(layers.size()) && layers[idx]->print_z < print_z + EPSILON) {
SupportGeneratorLayer *l = layers[idx];
// Remove the layer from the source container, as it will be consumed here: It will be merged
// with the newly produced interfaces.
layers[idx] = nullptr;
return l;
}
}
return nullptr;
};
SupportGeneratorLayer *top_interface_layer = resolve_same_layer(top_interface_layers, idx_top_interface_first, intermediate_layer.print_z);
SupportGeneratorLayer *top_base_interface_layer = resolve_same_layer(top_base_interface_layers, idx_top_base_interface_first, intermediate_layer.print_z);
SupportGeneratorLayer *interface_layer = nullptr;
if (! polygons_bottom_contact_projected_interface.empty() || ! polygons_top_contact_projected_interface.empty() ||
(top_interface_layer && ! top_interface_layer->polygons.empty())) {
interface_layer = insert_layer(
intermediate_layer, polygons_bottom_contact_projected_interface, std::move(polygons_top_contact_projected_interface), top_interface_layer,
nullptr, polygons_top_contact_projected_interface.empty() ? SupporLayerType::BottomInterface : SupporLayerType::TopInterface);
interface_layers[idx_intermediate_layer] = interface_layer;
}
if (! polygons_bottom_contact_projected_base.empty() || ! polygons_top_contact_projected_base.empty() ||
(top_base_interface_layer && ! top_base_interface_layer->polygons.empty()))
base_interface_layers[idx_intermediate_layer] = insert_layer(
intermediate_layer, polygons_bottom_contact_projected_base, std::move(polygons_top_contact_projected_base), top_base_interface_layer,
interface_layer ? &interface_layer->polygons : nullptr, SupporLayerType::Base);
}
});
// Compress contact_out, remove the nullptr items.
// The parallel_for above may not have merged all the interface and base_interface layers
// generated by the Organic supports code, do it here.
auto merge_remove_nulls = [](SupportGeneratorLayersPtr &in1, SupportGeneratorLayersPtr &in2) {
size_t nonzeros = std::count_if(in1.begin(), in1.end(), [](auto *l) { return l != nullptr; }) +
std::count_if(in2.begin(), in2.end(), [](auto *l) { return l != nullptr; });
remove_nulls(in1);
remove_nulls(in2);
if (in2.empty())
return std::move(in1);
else if (in1.empty())
return std::move(in2);
else {
SupportGeneratorLayersPtr out(in1.size() + in2.size(), nullptr);
std::merge(in1.begin(), in1.end(), in2.begin(), in2.end(), out.begin(), [](auto* l, auto* r) { return l->print_z < r->print_z; });
return std::move(out);
}
};
interface_layers = merge_remove_nulls(interface_layers, top_interface_layers);
base_interface_layers = merge_remove_nulls(base_interface_layers, top_base_interface_layers);
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::generate_interface_layers() in parallel - end";
}
return base_and_interface_layers;
}
SupportGeneratorLayersPtr generate_raft_base( SupportGeneratorLayersPtr generate_raft_base(
const PrintObject &object, const PrintObject &object,
const SupportParameters &support_params, const SupportParameters &support_params,

View File

@ -21,6 +21,23 @@ void remove_bridges_from_contacts(
float fw, float fw,
Polygons &contact_polygons); Polygons &contact_polygons);
// Turn some of the base layers into base interface layers.
// For soluble interfaces with non-soluble bases, print maximum two first interface layers with the base
// extruder to improve adhesion of the soluble filament to the base.
// For Organic supports, merge top_interface_layers & top_base_interface_layers with the interfaces
// produced by this function.
std::pair<SupportGeneratorLayersPtr, SupportGeneratorLayersPtr> generate_interface_layers(
const PrintObjectConfig &config,
const SupportParameters &support_params,
const SupportGeneratorLayersPtr &bottom_contacts,
const SupportGeneratorLayersPtr &top_contacts,
// Input / output, will be merged with output
SupportGeneratorLayersPtr &top_interface_layers,
SupportGeneratorLayersPtr &top_base_interface_layers,
// Input, will be trimmed with the newly created interface layers.
SupportGeneratorLayersPtr &intermediate_layers,
SupportGeneratorLayerStorage &layer_storage);
// Generate raft layers, also expand the 1st support layer // Generate raft layers, also expand the 1st support layer
// in case there is no raft layer to improve support adhesion. // in case there is no raft layer to improve support adhesion.
SupportGeneratorLayersPtr generate_raft_base( SupportGeneratorLayersPtr generate_raft_base(

View File

@ -335,14 +335,16 @@ void PrintObjectSupportMaterial::generate(PrintObject &object)
// Propagate top / bottom contact layers to generate interface layers // Propagate top / bottom contact layers to generate interface layers
// and base interface layers (for soluble interface / non souble base only) // and base interface layers (for soluble interface / non souble base only)
auto [interface_layers, base_interface_layers] = this->generate_interface_layers(bottom_contacts, top_contacts, intermediate_layers, layer_storage); SupportGeneratorLayersPtr empty_layers;
auto [interface_layers, base_interface_layers] = FFFSupport::generate_interface_layers(
*m_object_config, m_support_params, bottom_contacts, top_contacts, empty_layers, empty_layers, intermediate_layers, layer_storage);
BOOST_LOG_TRIVIAL(info) << "Support generator - Creating raft"; BOOST_LOG_TRIVIAL(info) << "Support generator - Creating raft";
// If raft is to be generated, the 1st top_contact layer will contain the 1st object layer silhouette with holes filled. // If raft is to be generated, the 1st top_contact layer will contain the 1st object layer silhouette with holes filled.
// There is also a 1st intermediate layer containing bases of support columns. // There is also a 1st intermediate layer containing bases of support columns.
// Inflate the bases of the support columns and create the raft base under the object. // Inflate the bases of the support columns and create the raft base under the object.
SupportGeneratorLayersPtr raft_layers = generate_raft_base(object, m_support_params, m_slicing_params, top_contacts, interface_layers, base_interface_layers, intermediate_layers, layer_storage); SupportGeneratorLayersPtr raft_layers = FFFSupport::generate_raft_base(object, m_support_params, m_slicing_params, top_contacts, interface_layers, base_interface_layers, intermediate_layers, layer_storage);
#ifdef SLIC3R_DEBUG #ifdef SLIC3R_DEBUG
for (const SupportGeneratorLayer *l : interface_layers) for (const SupportGeneratorLayer *l : interface_layers)
@ -2514,169 +2516,6 @@ void PrintObjectSupportMaterial::trim_support_layers_by_object(
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::trim_support_layers_by_object() in parallel - end"; BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::trim_support_layers_by_object() in parallel - end";
} }
// Convert some of the intermediate layers into top/bottom interface layers as well as base interface layers.
std::pair<SupportGeneratorLayersPtr, SupportGeneratorLayersPtr> PrintObjectSupportMaterial::generate_interface_layers(
const SupportGeneratorLayersPtr &bottom_contacts,
const SupportGeneratorLayersPtr &top_contacts,
SupportGeneratorLayersPtr &intermediate_layers,
SupportGeneratorLayerStorage &layer_storage) const
{
// my $area_threshold = $self->interface_flow->scaled_spacing ** 2;
std::pair<SupportGeneratorLayersPtr, SupportGeneratorLayersPtr> base_and_interface_layers;
SupportGeneratorLayersPtr &interface_layers = base_and_interface_layers.first;
SupportGeneratorLayersPtr &base_interface_layers = base_and_interface_layers.second;
// distinguish between interface and base interface layers
// Contact layer is considered an interface layer, therefore run the following block only if support_material_interface_layers > 1.
// Contact layer needs a base_interface layer, therefore run the following block if support_material_interface_layers > 0, has soluble support and extruders are different.
bool soluble_interface_non_soluble_base =
// Zero z-gap between the overhangs and the support interface.
m_slicing_params.soluble_interface &&
// Interface extruder soluble.
m_object_config->support_material_interface_extruder.value > 0 && m_print_config->filament_soluble.get_at(m_object_config->support_material_interface_extruder.value - 1) &&
// Base extruder: Either "print with active extruder" not soluble.
(m_object_config->support_material_extruder.value == 0 || ! m_print_config->filament_soluble.get_at(m_object_config->support_material_extruder.value - 1));
bool snug_supports = m_object_config->support_material_style.value != smsGrid;
int num_interface_layers_top = m_object_config->support_material_interface_layers;
int num_interface_layers_bottom = m_object_config->support_material_bottom_interface_layers;
if (num_interface_layers_bottom < 0)
num_interface_layers_bottom = num_interface_layers_top;
int num_base_interface_layers_top = soluble_interface_non_soluble_base ? std::min(num_interface_layers_top / 2, 2) : 0;
int num_base_interface_layers_bottom = soluble_interface_non_soluble_base ? std::min(num_interface_layers_bottom / 2, 2) : 0;
if (! intermediate_layers.empty() && (num_interface_layers_top > 1 || num_interface_layers_bottom > 1)) {
// For all intermediate layers, collect top contact surfaces, which are not further than support_material_interface_layers.
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::generate_interface_layers() in parallel - start";
// Since the intermediate layer index starts at zero the number of interface layer needs to be reduced by 1.
-- num_interface_layers_top;
-- num_interface_layers_bottom;
int num_interface_layers_only_top = num_interface_layers_top - num_base_interface_layers_top;
int num_interface_layers_only_bottom = num_interface_layers_bottom - num_base_interface_layers_bottom;
interface_layers.assign(intermediate_layers.size(), nullptr);
if (num_base_interface_layers_top || num_base_interface_layers_bottom)
base_interface_layers.assign(intermediate_layers.size(), nullptr);
auto smoothing_distance = m_support_params.support_material_interface_flow.scaled_spacing() * 1.5;
auto minimum_island_radius = m_support_params.support_material_interface_flow.scaled_spacing() / m_support_params.interface_density;
auto closing_distance = smoothing_distance; // scaled<float>(m_object_config->support_material_closing_radius.value);
// Insert a new layer into base_interface_layers, if intersection with base exists.
auto insert_layer = [&layer_storage, snug_supports, closing_distance, smoothing_distance, minimum_island_radius](
SupportGeneratorLayer &intermediate_layer, Polygons &bottom, Polygons &&top, const Polygons *subtract, SupporLayerType type) -> SupportGeneratorLayer* {
assert(! bottom.empty() || ! top.empty());
// Merge top into bottom, unite them with a safety offset.
append(bottom, std::move(top));
// Merge top / bottom interfaces. For snug supports, merge using closing distance and regularize (close concave corners).
bottom = intersection(
snug_supports ?
smooth_outward(closing(std::move(bottom), closing_distance + minimum_island_radius, closing_distance, SUPPORT_SURFACES_OFFSET_PARAMETERS), smoothing_distance) :
union_safety_offset(std::move(bottom)),
intermediate_layer.polygons);
if (! bottom.empty()) {
//FIXME Remove non-printable tiny islands, let them be printed using the base support.
//bottom = opening(std::move(bottom), minimum_island_radius);
if (! bottom.empty()) {
SupportGeneratorLayer &layer_new = layer_storage.allocate(type);
layer_new.polygons = std::move(bottom);
layer_new.print_z = intermediate_layer.print_z;
layer_new.bottom_z = intermediate_layer.bottom_z;
layer_new.height = intermediate_layer.height;
layer_new.bridging = intermediate_layer.bridging;
// Subtract the interface from the base regions.
intermediate_layer.polygons = diff(intermediate_layer.polygons, layer_new.polygons);
if (subtract)
// Trim the base interface layer with the interface layer.
layer_new.polygons = diff(std::move(layer_new.polygons), *subtract);
//FIXME filter layer_new.polygons islands by a minimum area?
// $interface_area = [ grep abs($_->area) >= $area_threshold, @$interface_area ];
return &layer_new;
}
}
return nullptr;
};
tbb::parallel_for(tbb::blocked_range<int>(0, int(intermediate_layers.size())),
[&bottom_contacts, &top_contacts, &intermediate_layers, &insert_layer,
num_interface_layers_top, num_interface_layers_bottom, num_base_interface_layers_top, num_base_interface_layers_bottom, num_interface_layers_only_top, num_interface_layers_only_bottom,
snug_supports, &interface_layers, &base_interface_layers](const tbb::blocked_range<int>& range) {
// Gather the top / bottom contact layers intersecting with num_interface_layers resp. num_interface_layers_only intermediate layers above / below
// this intermediate layer.
// Index of the first top contact layer intersecting the current intermediate layer.
auto idx_top_contact_first = -1;
// Index of the first bottom contact layer intersecting the current intermediate layer.
auto idx_bottom_contact_first = -1;
auto num_intermediate = int(intermediate_layers.size());
for (int idx_intermediate_layer = range.begin(); idx_intermediate_layer < range.end(); ++ idx_intermediate_layer) {
SupportGeneratorLayer &intermediate_layer = *intermediate_layers[idx_intermediate_layer];
Polygons polygons_top_contact_projected_interface;
Polygons polygons_top_contact_projected_base;
Polygons polygons_bottom_contact_projected_interface;
Polygons polygons_bottom_contact_projected_base;
if (num_interface_layers_top > 0) {
// Top Z coordinate of a slab, over which we are collecting the top / bottom contact surfaces
coordf_t top_z = intermediate_layers[std::min(num_intermediate - 1, idx_intermediate_layer + num_interface_layers_top - 1)]->print_z;
coordf_t top_inteface_z = std::numeric_limits<coordf_t>::max();
if (num_base_interface_layers_top > 0)
// Some top base interface layers will be generated.
top_inteface_z = num_interface_layers_only_top == 0 ?
// Only base interface layers to generate.
- std::numeric_limits<coordf_t>::max() :
intermediate_layers[std::min(num_intermediate - 1, idx_intermediate_layer + num_interface_layers_only_top - 1)]->print_z;
// Move idx_top_contact_first up until above the current print_z.
idx_top_contact_first = idx_higher_or_equal(top_contacts, idx_top_contact_first, [&intermediate_layer](const SupportGeneratorLayer *layer){ return layer->print_z >= intermediate_layer.print_z; }); // - EPSILON
// Collect the top contact areas above this intermediate layer, below top_z.
for (int idx_top_contact = idx_top_contact_first; idx_top_contact < int(top_contacts.size()); ++ idx_top_contact) {
const SupportGeneratorLayer &top_contact_layer = *top_contacts[idx_top_contact];
//FIXME maybe this adds one interface layer in excess?
if (top_contact_layer.bottom_z - EPSILON > top_z)
break;
polygons_append(top_contact_layer.bottom_z - EPSILON > top_inteface_z ? polygons_top_contact_projected_base : polygons_top_contact_projected_interface,
// For snug supports, project the overhang polygons covering the whole overhang, so that they will merge without a gap with support polygons of the other layers.
// For grid supports, merging of support regions will be performed by the projection into grid.
snug_supports ? *top_contact_layer.overhang_polygons : top_contact_layer.polygons);
}
}
if (num_interface_layers_bottom > 0) {
// Bottom Z coordinate of a slab, over which we are collecting the top / bottom contact surfaces
coordf_t bottom_z = intermediate_layers[std::max(0, idx_intermediate_layer - num_interface_layers_bottom + 1)]->bottom_z;
coordf_t bottom_interface_z = - std::numeric_limits<coordf_t>::max();
if (num_base_interface_layers_bottom > 0)
// Some bottom base interface layers will be generated.
bottom_interface_z = num_interface_layers_only_bottom == 0 ?
// Only base interface layers to generate.
std::numeric_limits<coordf_t>::max() :
intermediate_layers[std::max(0, idx_intermediate_layer - num_interface_layers_only_bottom)]->bottom_z;
// Move idx_bottom_contact_first up until touching bottom_z.
idx_bottom_contact_first = idx_higher_or_equal(bottom_contacts, idx_bottom_contact_first, [bottom_z](const SupportGeneratorLayer *layer){ return layer->print_z >= bottom_z - EPSILON; });
// Collect the top contact areas above this intermediate layer, below top_z.
for (int idx_bottom_contact = idx_bottom_contact_first; idx_bottom_contact < int(bottom_contacts.size()); ++ idx_bottom_contact) {
const SupportGeneratorLayer &bottom_contact_layer = *bottom_contacts[idx_bottom_contact];
if (bottom_contact_layer.print_z - EPSILON > intermediate_layer.bottom_z)
break;
polygons_append(bottom_contact_layer.print_z - EPSILON > bottom_interface_z ? polygons_bottom_contact_projected_interface : polygons_bottom_contact_projected_base, bottom_contact_layer.polygons);
}
}
SupportGeneratorLayer *interface_layer = nullptr;
if (! polygons_bottom_contact_projected_interface.empty() || ! polygons_top_contact_projected_interface.empty()) {
interface_layer = insert_layer(
intermediate_layer, polygons_bottom_contact_projected_interface, std::move(polygons_top_contact_projected_interface), nullptr,
polygons_top_contact_projected_interface.empty() ? SupporLayerType::BottomInterface : SupporLayerType::TopInterface);
interface_layers[idx_intermediate_layer] = interface_layer;
}
if (! polygons_bottom_contact_projected_base.empty() || ! polygons_top_contact_projected_base.empty())
base_interface_layers[idx_intermediate_layer] = insert_layer(
intermediate_layer, polygons_bottom_contact_projected_base, std::move(polygons_top_contact_projected_base),
interface_layer ? &interface_layer->polygons : nullptr, SupporLayerType::Base);
}
});
// Compress contact_out, remove the nullptr items.
remove_nulls(interface_layers);
remove_nulls(base_interface_layers);
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::generate_interface_layers() in parallel - end";
}
return base_and_interface_layers;
}
/* /*
void PrintObjectSupportMaterial::clip_by_pillars( void PrintObjectSupportMaterial::clip_by_pillars(
const PrintObject &object, const PrintObject &object,

View File

@ -72,16 +72,6 @@ private:
SupportGeneratorLayersPtr &intermediate_layers, SupportGeneratorLayersPtr &intermediate_layers,
const std::vector<Polygons> &layer_support_areas) const; const std::vector<Polygons> &layer_support_areas) const;
// Turn some of the base layers into base interface layers.
// For soluble interfaces with non-soluble bases, print maximum two first interface layers with the base
// extruder to improve adhesion of the soluble filament to the base.
std::pair<SupportGeneratorLayersPtr, SupportGeneratorLayersPtr> generate_interface_layers(
const SupportGeneratorLayersPtr &bottom_contacts,
const SupportGeneratorLayersPtr &top_contacts,
SupportGeneratorLayersPtr &intermediate_layers,
SupportGeneratorLayerStorage &layer_storage) const;
// Trim support layers by an object to leave a defined gap between // Trim support layers by an object to leave a defined gap between
// the support volume and the object. // the support volume and the object.
void trim_support_layers_by_object( void trim_support_layers_by_object(

View File

@ -11,6 +11,33 @@ SupportParameters::SupportParameters(const PrintObject &object)
const PrintObjectConfig &object_config = object.config(); const PrintObjectConfig &object_config = object.config();
const SlicingParameters &slicing_params = object.slicing_parameters(); const SlicingParameters &slicing_params = object.slicing_parameters();
this->soluble_interface = slicing_params.soluble_interface;
this->soluble_interface_non_soluble_base =
// Zero z-gap between the overhangs and the support interface.
slicing_params.soluble_interface &&
// Interface extruder soluble.
object_config.support_material_interface_extruder.value > 0 && print_config.filament_soluble.get_at(object_config.support_material_interface_extruder.value - 1) &&
// Base extruder: Either "print with active extruder" not soluble.
(object_config.support_material_extruder.value == 0 || ! print_config.filament_soluble.get_at(object_config.support_material_extruder.value - 1));
{
int num_top_interface_layers = std::max(0, object_config.support_material_interface_layers.value);
int num_bottom_interface_layers = object_config.support_material_bottom_interface_layers < 0 ?
num_top_interface_layers : object_config.support_material_bottom_interface_layers;
this->has_top_contacts = num_top_interface_layers > 0;
this->has_bottom_contacts = num_bottom_interface_layers > 0;
this->num_top_interface_layers = this->has_top_contacts ? size_t(num_top_interface_layers - 1) : 0;
this->num_bottom_interface_layers = this->has_bottom_contacts ? size_t(num_bottom_interface_layers - 1) : 0;
if (this->soluble_interface_non_soluble_base) {
// Try to support soluble dense interfaces with non-soluble dense interfaces.
this->num_top_base_interface_layers = size_t(std::min(num_top_interface_layers / 2, 2));
this->num_bottom_base_interface_layers = size_t(std::min(num_bottom_interface_layers / 2, 2));
} else {
this->num_top_base_interface_layers = 0;
this->num_bottom_base_interface_layers = 0;
}
}
this->first_layer_flow = Slic3r::support_material_1st_layer_flow(&object, float(slicing_params.first_print_layer_height)); this->first_layer_flow = Slic3r::support_material_1st_layer_flow(&object, float(slicing_params.first_print_layer_height));
this->support_material_flow = Slic3r::support_material_flow(&object, float(slicing_params.layer_height)); this->support_material_flow = Slic3r::support_material_flow(&object, float(slicing_params.layer_height));
this->support_material_interface_flow = Slic3r::support_material_interface_flow(&object, float(slicing_params.layer_height)); this->support_material_interface_flow = Slic3r::support_material_interface_flow(&object, float(slicing_params.layer_height));
@ -54,7 +81,6 @@ SupportParameters::SupportParameters(const PrintObject &object)
this->can_merge_support_regions = true; this->can_merge_support_regions = true;
} }
double interface_spacing = object_config.support_material_interface_spacing.value + this->support_material_interface_flow.spacing(); double interface_spacing = object_config.support_material_interface_spacing.value + this->support_material_interface_flow.spacing();
this->interface_density = std::min(1., this->support_material_interface_flow.spacing() / interface_spacing); this->interface_density = std::min(1., this->support_material_interface_flow.spacing() / interface_spacing);
double raft_interface_spacing = object_config.support_material_interface_spacing.value + this->raft_interface_flow.spacing(); double raft_interface_spacing = object_config.support_material_interface_spacing.value + this->raft_interface_flow.spacing();

View File

@ -14,6 +14,30 @@ namespace FFFSupport {
struct SupportParameters { struct SupportParameters {
SupportParameters(const PrintObject &object); SupportParameters(const PrintObject &object);
// Both top / bottom contacts and interfaces are soluble.
bool soluble_interface;
// Support contact & interface are soluble, but support base is non-soluble.
bool soluble_interface_non_soluble_base;
// Is there at least a top contact layer extruded above support base?
bool has_top_contacts;
// Is there at least a bottom contact layer extruded below support base?
bool has_bottom_contacts;
// Number of top interface layers without counting the contact layer.
size_t num_top_interface_layers;
// Number of bottom interface layers without counting the contact layer.
size_t num_bottom_interface_layers;
// Number of top base interface layers. Zero if not soluble_interface_non_soluble_base.
size_t num_top_base_interface_layers;
// Number of bottom base interface layers. Zero if not soluble_interface_non_soluble_base.
size_t num_bottom_base_interface_layers;
bool has_contacts() const { return this->has_top_contacts || this->has_bottom_contacts; }
bool has_interfaces() const { return this->num_top_interface_layers + this->num_bottom_interface_layers > 0; }
bool has_base_interfaces() const { return this->num_top_base_interface_layers + this->num_bottom_base_interface_layers > 0; }
size_t num_top_interface_layers_only() const { return this->num_top_interface_layers - this->num_top_base_interface_layers; }
size_t num_bottom_interface_layers_only() const { return this->num_bottom_interface_layers - this->num_bottom_base_interface_layers; }
// Flow at the 1st print layer. // Flow at the 1st print layer.
Flow first_layer_flow; Flow first_layer_flow;
// Flow at the support base (neither top, nor bottom interface). // Flow at the support base (neither top, nor bottom interface).

View File

@ -87,7 +87,6 @@ TreeSupportSettings::TreeSupportSettings(const TreeSupportMeshGroupSettings& mes
bp_radius_increase_per_layer(std::min(tan(0.7) * layer_height, 0.5 * support_line_width)), bp_radius_increase_per_layer(std::min(tan(0.7) * layer_height, 0.5 * support_line_width)),
z_distance_bottom_layers(size_t(round(double(mesh_group_settings.support_bottom_distance) / double(layer_height)))), z_distance_bottom_layers(size_t(round(double(mesh_group_settings.support_bottom_distance) / double(layer_height)))),
z_distance_top_layers(size_t(round(double(mesh_group_settings.support_top_distance) / double(layer_height)))), z_distance_top_layers(size_t(round(double(mesh_group_settings.support_top_distance) / double(layer_height)))),
performance_interface_skip_layers(round_up_divide(mesh_group_settings.support_interface_skip_height, layer_height)),
// support_infill_angles(mesh_group_settings.support_infill_angles), // support_infill_angles(mesh_group_settings.support_infill_angles),
support_roof_angles(mesh_group_settings.support_roof_angles), support_roof_angles(mesh_group_settings.support_roof_angles),
roof_pattern(mesh_group_settings.support_roof_pattern), roof_pattern(mesh_group_settings.support_roof_pattern),
@ -1077,71 +1076,53 @@ void finalize_raft_contact(
} }
} }
// Used by generate_initial_areas() in parallel by multiple layers.
class InterfacePlacer { class InterfacePlacer {
public: public:
InterfacePlacer(const SlicingParameters &slicing_parameters, const TreeModelVolumes &volumes, const TreeSupportSettings &config, bool force_tip_to_roof, size_t num_support_layers, InterfacePlacer(
std::vector<SupportElements> &move_bounds, SupportGeneratorLayerStorage &layer_storage, SupportGeneratorLayersPtr &top_contacts) : const SlicingParameters &slicing_parameters,
slicing_parameters(slicing_parameters), volumes(volumes), config(config), force_tip_to_roof(force_tip_to_roof), const SupportParameters &support_parameters,
move_bounds(move_bounds), layer_storage(layer_storage), top_contacts(top_contacts) { const TreeModelVolumes &volumes, const TreeSupportSettings &config,
bool force_tip_to_roof, size_t num_support_layers,
std::vector<SupportElements> &move_bounds,
SupportGeneratorLayerStorage &layer_storage,
SupportGeneratorLayersPtr &top_contacts, SupportGeneratorLayersPtr &top_interfaces, SupportGeneratorLayersPtr &top_base_interfaces)
:
slicing_parameters(slicing_parameters), support_parameters(support_parameters), volumes(volumes), config(config), force_tip_to_roof(force_tip_to_roof),
move_bounds(move_bounds),
layer_storage(layer_storage), top_contacts(top_contacts), top_interfaces(top_interfaces), top_base_interfaces(top_base_interfaces) {
m_already_inserted.assign(num_support_layers, {}); m_already_inserted.assign(num_support_layers, {});
this->min_xy_dist = config.xy_distance > config.xy_min_distance; this->min_xy_dist = config.xy_distance > config.xy_min_distance;
} }
const SlicingParameters &slicing_parameters; const SlicingParameters &slicing_parameters;
const SupportParameters &support_parameters;
const TreeModelVolumes &volumes; const TreeModelVolumes &volumes;
const TreeSupportSettings &config; const TreeSupportSettings &config;
bool force_tip_to_roof; // Radius of the tree tip is large enough to be covered by an interface.
const bool force_tip_to_roof;
bool min_xy_dist; bool min_xy_dist;
// Outputs
std::vector<SupportElements> &move_bounds;
SupportGeneratorLayerStorage &layer_storage;
SupportGeneratorLayersPtr &top_contacts;
private:
// Temps
static constexpr const auto m_base_radius = scaled<int>(0.01);
const Polygon m_base_circle { make_circle(m_base_radius, SUPPORT_TREE_CIRCLE_RESOLUTION) };
// Mutexes, guards
std::mutex m_mutex_movebounds;
std::mutex m_mutex_layer_storage;
std::vector<std::unordered_set<Point, PointHash>> m_already_inserted;
public: public:
void add_roof_unguarded(Polygons &&new_roofs, const size_t insert_layer_idx) // called by sample_overhang_area()
{ // Insert the contact layer and some of the inteface and base interface layers below.
SupportGeneratorLayer*& l = top_contacts[insert_layer_idx]; void add_roofs(std::vector<Polygons> &&new_roofs, const size_t insert_layer_idx)
if (l == nullptr)
l = &layer_allocate_unguarded(layer_storage, SupporLayerType::TopContact, slicing_parameters, config, insert_layer_idx);
// will be unioned in finalize_interface_and_support_areas()
append(l->polygons, std::move(new_roofs));
}
void add_roof(Polygons &&new_roofs, const size_t insert_layer_idx)
{
std::lock_guard<std::mutex> lock(m_mutex_layer_storage);
add_roof_unguarded(std::move(new_roofs), insert_layer_idx);
}
void add_roofs(std::vector<Polygons> &&new_roofs, const size_t insert_layer_idx, const size_t dtt_roof)
{ {
if (! new_roofs.empty()) { if (! new_roofs.empty()) {
std::lock_guard<std::mutex> lock(m_mutex_layer_storage); std::lock_guard<std::mutex> lock(m_mutex_layer_storage);
for (size_t idx = 0; idx < dtt_roof; ++ idx) for (size_t idx = 0; idx < new_roofs.size(); ++ idx)
if (! new_roofs[idx].empty()) if (! new_roofs[idx].empty())
add_roof_unguarded(std::move(new_roofs[idx]), insert_layer_idx - idx); add_roof_unguarded(std::move(new_roofs[idx]), insert_layer_idx - idx, idx);
} }
} }
void add_roof_build_plate(Polygons &&overhang_areas) // called by sample_overhang_area()
void add_roof_build_plate(Polygons &&overhang_areas, size_t dtt_roof)
{ {
std::lock_guard<std::mutex> lock(m_mutex_layer_storage); std::lock_guard<std::mutex> lock(m_mutex_layer_storage);
SupportGeneratorLayer*& l = top_contacts[0]; this->add_roof_unguarded(std::move(overhang_areas), 0, dtt_roof);
if (l == nullptr)
l = &layer_allocate_unguarded(layer_storage, SupporLayerType::TopContact, slicing_parameters, config, 0);
append(l->polygons, std::move(overhang_areas));
} }
// called by sample_overhang_area()
void add_points_along_lines( void add_points_along_lines(
// Insert points (tree tips or top contact interfaces) along these lines. // Insert points (tree tips or top contact interfaces) along these lines.
LineInformations lines, LineInformations lines,
@ -1150,7 +1131,7 @@ public:
// Insert this number of interface layers. // Insert this number of interface layers.
size_t roof_tip_layers, size_t roof_tip_layers,
// True if an interface is already generated above these lines. // True if an interface is already generated above these lines.
bool supports_roof, size_t supports_roof_layers,
// The element tries to not move until this dtt is reached. // The element tries to not move until this dtt is reached.
size_t dont_move_until) size_t dont_move_until)
{ {
@ -1203,7 +1184,7 @@ public:
roof_circle.translate(p.first); roof_circle.translate(p.first);
new_roofs.emplace_back(std::move(roof_circle)); new_roofs.emplace_back(std::move(roof_circle));
} }
this->add_roof(std::move(new_roofs), this_layer_idx); this->add_roof(std::move(new_roofs), this_layer_idx, dtt_roof_tip + supports_roof_layers);
} }
for (const LineInformation &line : lines) { for (const LineInformation &line : lines) {
@ -1215,11 +1196,33 @@ public:
// don't move until // don't move until
dont_move_until > dtt_roof_tip ? dont_move_until - dtt_roof_tip : 0, dont_move_until > dtt_roof_tip ? dont_move_until - dtt_roof_tip : 0,
// supports roof // supports roof
dtt_roof_tip > 0 || supports_roof, dtt_roof_tip + supports_roof_layers > 0,
disable_ovalistation); disable_ovalistation);
} }
} }
private:
void add_roof_unguarded(Polygons &&new_roofs, const size_t insert_layer_idx, const size_t dtt_roof)
{
SupportGeneratorLayersPtr &layers =
dtt_roof == 0 ? this->top_contacts :
dtt_roof <= support_parameters.num_top_interface_layers_only() ? this->top_interfaces : this->top_base_interfaces;
SupportGeneratorLayer*& l = layers[insert_layer_idx];
if (l == nullptr)
l = &layer_allocate_unguarded(layer_storage, dtt_roof == 0 ? SupporLayerType::TopContact : SupporLayerType::TopInterface,
slicing_parameters, config, insert_layer_idx);
// will be unioned in finalize_interface_and_support_areas()
append(l->polygons, std::move(new_roofs));
}
// called by this->add_points_along_lines()
void add_roof(Polygons &&new_roof, const size_t insert_layer_idx, const size_t dtt_tip)
{
std::lock_guard<std::mutex> lock(m_mutex_layer_storage);
add_roof_unguarded(std::move(new_roof), insert_layer_idx, dtt_tip);
}
// called by this->add_points_along_lines()
void add_point_as_influence_area(std::pair<Point, LineStatus> p, LayerIndex insert_layer, size_t dont_move_until, bool roof, bool skip_ovalisation) void add_point_as_influence_area(std::pair<Point, LineStatus> p, LayerIndex insert_layer, size_t dont_move_until, bool roof, bool skip_ovalisation)
{ {
bool to_bp = p.second == LineStatus::TO_BP || p.second == LineStatus::TO_BP_SAFE; bool to_bp = p.second == LineStatus::TO_BP || p.second == LineStatus::TO_BP_SAFE;
@ -1233,8 +1236,8 @@ public:
Polygons circle{ m_base_circle }; Polygons circle{ m_base_circle };
circle.front().translate(p.first); circle.front().translate(p.first);
{ {
std::lock_guard<std::mutex> critical_section_movebounds(m_mutex_movebounds);
Point hash_pos = p.first / ((config.min_radius + 1) / 10); Point hash_pos = p.first / ((config.min_radius + 1) / 10);
std::lock_guard<std::mutex> critical_section_movebounds(m_mutex_movebounds);
if (!m_already_inserted[insert_layer].count(hash_pos)) { if (!m_already_inserted[insert_layer].count(hash_pos)) {
// normalize the point a bit to also catch points which are so close that inserting it would achieve nothing // normalize the point a bit to also catch points which are so close that inserting it would achieve nothing
m_already_inserted[insert_layer].emplace(hash_pos); m_already_inserted[insert_layer].emplace(hash_pos);
@ -1261,9 +1264,26 @@ public:
move_bounds[insert_layer].emplace_back(state, std::move(circle)); move_bounds[insert_layer].emplace_back(state, std::move(circle));
} }
} }
}; }
// Outputs
std::vector<SupportElements> &move_bounds;
SupportGeneratorLayerStorage &layer_storage;
SupportGeneratorLayersPtr &top_contacts;
SupportGeneratorLayersPtr &top_interfaces;
SupportGeneratorLayersPtr &top_base_interfaces;
// Temps
static constexpr const auto m_base_radius = scaled<int>(0.01);
const Polygon m_base_circle { make_circle(m_base_radius, SUPPORT_TREE_CIRCLE_RESOLUTION) };
// Mutexes, guards
std::mutex m_mutex_movebounds;
std::mutex m_mutex_layer_storage;
std::vector<std::unordered_set<Point, PointHash>> m_already_inserted;
}; };
// Called by generate_initial_areas(), used in parallel by multiple layers.
// Produce // Produce
// 1) Maximum num_support_roof_layers roof (top interface & contact) layers. // 1) Maximum num_support_roof_layers roof (top interface & contact) layers.
// 2) Tree tips supporting either the roof layers or the object itself. // 2) Tree tips supporting either the roof layers or the object itself.
@ -1280,13 +1300,12 @@ void sample_overhang_area(
const bool large_horizontal_roof, const bool large_horizontal_roof,
// Index of the top suport layer generated by this function. // Index of the top suport layer generated by this function.
const size_t layer_idx, const size_t layer_idx,
// Number of roof (contact, interface) layers between the overhang and tree tips. // Maximum number of roof (contact, interface) layers between the overhang and tree tips to be generated.
const size_t num_support_roof_layers, const size_t num_support_roof_layers,
// //
const coord_t connect_length, const coord_t connect_length,
// Configuration classes // Configuration classes
const TreeSupportMeshGroupSettings &mesh_group_settings, const TreeSupportMeshGroupSettings &mesh_group_settings,
const SupportParameters &support_params,
// Configuration & Output // Configuration & Output
InterfacePlacer &interface_placer) InterfacePlacer &interface_placer)
{ {
@ -1297,11 +1316,12 @@ void sample_overhang_area(
// as the pattern may be different one layer below. Same with calculating which points are now no longer being generated as result from // as the pattern may be different one layer below. Same with calculating which points are now no longer being generated as result from
// a decreasing roof, as there is no guarantee that a line will be above these points. Implementing a separate roof support behavior // a decreasing roof, as there is no guarantee that a line will be above these points. Implementing a separate roof support behavior
// for each pattern harms maintainability as it very well could be >100 LOC // for each pattern harms maintainability as it very well could be >100 LOC
auto generate_roof_lines = [&support_params, &mesh_group_settings](const Polygons &area, LayerIndex layer_idx) -> Polylines { auto generate_roof_lines = [&interface_placer, &mesh_group_settings](const Polygons &area, LayerIndex layer_idx) -> Polylines {
return generate_support_infill_lines(area, support_params, true, layer_idx, mesh_group_settings.support_roof_line_distance); return generate_support_infill_lines(area, interface_placer.support_parameters, true, layer_idx, mesh_group_settings.support_roof_line_distance);
}; };
LineInformations overhang_lines; LineInformations overhang_lines;
// Track how many top contact / interface layers were already generated.
size_t dtt_roof = 0; size_t dtt_roof = 0;
size_t layer_generation_dtt = 0; size_t layer_generation_dtt = 0;
@ -1325,9 +1345,9 @@ void sample_overhang_area(
} }
Polygons overhang_area_next = diff(overhang_area, forbidden_next); Polygons overhang_area_next = diff(overhang_area, forbidden_next);
if (area(overhang_area_next) < mesh_group_settings.minimum_roof_area) { if (area(overhang_area_next) < mesh_group_settings.minimum_roof_area) {
// next layer down the roof area would be to small so we have to insert our roof support here. Also convert squaremicrons to squaremilimeter // Next layer down the roof area would be to small so we have to insert our roof support here.
if (dtt_roof != 0) { if (dtt_roof > 0) {
size_t dtt_before = dtt_roof > 0 ? dtt_roof - 1 : 0; size_t dtt_before = dtt_roof - 1;
// Produce support head points supporting an interface layer: First produce the interface lines, then sample them. // Produce support head points supporting an interface layer: First produce the interface lines, then sample them.
overhang_lines = split_lines( overhang_lines = split_lines(
convert_lines_to_internal(interface_placer.volumes, interface_placer.config, convert_lines_to_internal(interface_placer.volumes, interface_placer.config,
@ -1354,7 +1374,8 @@ void sample_overhang_area(
break; break;
} }
} }
interface_placer.add_roofs(std::move(added_roofs), layer_idx, dtt_roof); added_roofs.erase(added_roofs.begin() + dtt_roof, added_roofs.end());
interface_placer.add_roofs(std::move(added_roofs), layer_idx);
} }
if (overhang_lines.empty()) { if (overhang_lines.empty()) {
@ -1364,7 +1385,7 @@ void sample_overhang_area(
bool supports_roof = dtt_roof > 0; bool supports_roof = dtt_roof > 0;
bool continuous_tips = ! supports_roof && large_horizontal_roof; bool continuous_tips = ! supports_roof && large_horizontal_roof;
Polylines polylines = ensure_maximum_distance_polyline( Polylines polylines = ensure_maximum_distance_polyline(
generate_support_infill_lines(overhang_area, support_params, supports_roof, layer_idx - layer_generation_dtt, generate_support_infill_lines(overhang_area, interface_placer.support_parameters, supports_roof, layer_idx - layer_generation_dtt,
supports_roof ? mesh_group_settings.support_roof_line_distance : mesh_group_settings.support_tree_branch_distance), supports_roof ? mesh_group_settings.support_roof_line_distance : mesh_group_settings.support_tree_branch_distance),
continuous_tips ? interface_placer.config.min_radius / 2 : connect_length, 1); continuous_tips ? interface_placer.config.min_radius / 2 : connect_length, 1);
size_t point_count = 0; size_t point_count = 0;
@ -1388,9 +1409,10 @@ void sample_overhang_area(
overhang_lines = convert_lines_to_internal(interface_placer.volumes, interface_placer.config, polylines, layer_idx - dtt_roof); overhang_lines = convert_lines_to_internal(interface_placer.volumes, interface_placer.config, polylines, layer_idx - dtt_roof);
} }
assert(dtt_roof <= layer_idx);
if (int(dtt_roof) >= layer_idx && large_horizontal_roof) if (int(dtt_roof) >= layer_idx && large_horizontal_roof)
// reached buildplate // Reached buildplate when generating contact, interface and base interface layers.
interface_placer.add_roof_build_plate(std::move(overhang_area)); interface_placer.add_roof_build_plate(std::move(overhang_area), dtt_roof);
else { else {
// normal trees have to be generated // normal trees have to be generated
const bool roof_enabled = num_support_roof_layers > 0; const bool roof_enabled = num_support_roof_layers > 0;
@ -1401,8 +1423,8 @@ void sample_overhang_area(
layer_idx - dtt_roof, layer_idx - dtt_roof,
// Remaining roof tip layers. // Remaining roof tip layers.
interface_placer.force_tip_to_roof ? num_support_roof_layers - dtt_roof : 0, interface_placer.force_tip_to_roof ? num_support_roof_layers - dtt_roof : 0,
// Supports roof already? // Supports roof already? How many roof layers were already produced above these tips?
dtt_roof > 0, dtt_roof,
// Don't move until the following distance to top is reached. // Don't move until the following distance to top is reached.
roof_enabled ? num_support_roof_layers - dtt_roof : 0); roof_enabled ? num_support_roof_layers - dtt_roof : 0);
} }
@ -1424,7 +1446,8 @@ static void generate_initial_areas(
const std::vector<Polygons> &overhangs, const std::vector<Polygons> &overhangs,
std::vector<SupportElements> &move_bounds, std::vector<SupportElements> &move_bounds,
SupportGeneratorLayersPtr &top_contacts, SupportGeneratorLayersPtr &top_contacts,
SupportGeneratorLayersPtr &top_interface_layers, SupportGeneratorLayersPtr &top_interfaces,
SupportGeneratorLayersPtr &top_base_interfaces,
SupportGeneratorLayerStorage &layer_storage, SupportGeneratorLayerStorage &layer_storage,
std::function<void()> throw_on_cancel) std::function<void()> throw_on_cancel)
{ {
@ -1462,7 +1485,7 @@ static void generate_initial_areas(
; ;
const size_t num_support_roof_layers = mesh_group_settings.support_roof_layers; const size_t num_support_roof_layers = mesh_group_settings.support_roof_layers;
const bool roof_enabled = num_support_roof_layers > 0; const bool roof_enabled = num_support_roof_layers > 0;
const bool force_tip_to_roof = sqr<double>(config.min_radius) * M_PI > mesh_group_settings.minimum_roof_area && roof_enabled; const bool force_tip_to_roof = roof_enabled && sqr<double>(config.min_radius) * M_PI > mesh_group_settings.minimum_roof_area;
// cap for how much layer below the overhang a new support point may be added, as other than with regular support every new inserted point // cap for how much layer below the overhang a new support point may be added, as other than with regular support every new inserted point
// may cause extra material and time cost. Could also be an user setting or differently calculated. Idea is that if an overhang // may cause extra material and time cost. Could also be an user setting or differently calculated. Idea is that if an overhang
// does not turn valid in double the amount of layers a slope of support angle would take to travel xy_distance, nothing reasonable will come from it. // does not turn valid in double the amount of layers a slope of support angle would take to travel xy_distance, nothing reasonable will come from it.
@ -1496,9 +1519,9 @@ static void generate_initial_areas(
raw_overhangs.push_back({ layer_idx, &overhangs[overhang_idx] }); raw_overhangs.push_back({ layer_idx, &overhangs[overhang_idx] });
} }
InterfacePlacer interface_placer{ print_object.slicing_parameters(), volumes, config, force_tip_to_roof, num_support_layers, InterfacePlacer interface_placer{ print_object.slicing_parameters(), support_params, volumes, config, force_tip_to_roof, num_support_layers,
// Outputs // Outputs
move_bounds, layer_storage, top_contacts }; move_bounds, layer_storage, top_contacts, top_interfaces, top_base_interfaces };
tbb::parallel_for(tbb::blocked_range<size_t>(0, raw_overhangs.size()), tbb::parallel_for(tbb::blocked_range<size_t>(0, raw_overhangs.size()),
[&volumes, &config, &raw_overhangs, &mesh_group_settings, &support_params, [&volumes, &config, &raw_overhangs, &mesh_group_settings, &support_params,
@ -1613,7 +1636,7 @@ static void generate_initial_areas(
//check_self_intersections(overhang_regular, "overhang_regular3"); //check_self_intersections(overhang_regular, "overhang_regular3");
for (ExPolygon &roof_part : union_ex(overhang_roofs)) { for (ExPolygon &roof_part : union_ex(overhang_roofs)) {
sample_overhang_area(to_polygons(std::move(roof_part)), true, layer_idx, num_support_roof_layers, connect_length, sample_overhang_area(to_polygons(std::move(roof_part)), true, layer_idx, num_support_roof_layers, connect_length,
mesh_group_settings, support_params, interface_placer); mesh_group_settings, interface_placer);
throw_on_cancel(); throw_on_cancel();
} }
} }
@ -1623,9 +1646,8 @@ static void generate_initial_areas(
remove_small(overhang_regular, mesh_group_settings.minimum_support_area); remove_small(overhang_regular, mesh_group_settings.minimum_support_area);
for (ExPolygon &support_part : union_ex(overhang_regular)) { for (ExPolygon &support_part : union_ex(overhang_regular)) {
sample_overhang_area(to_polygons(std::move(support_part)), sample_overhang_area(to_polygons(std::move(support_part)),
// Don't
false, layer_idx, num_support_roof_layers, connect_length, false, layer_idx, num_support_roof_layers, connect_length,
mesh_group_settings, support_params, interface_placer); mesh_group_settings, interface_placer);
throw_on_cancel(); throw_on_cancel();
} }
} }
@ -3392,7 +3414,7 @@ static void finalize_interface_and_support_areas(
//FIXME subtract the wipe tower //FIXME subtract the wipe tower
append(floor_layer, intersection(layer_outset, overhangs[sample_layer])); append(floor_layer, intersection(layer_outset, overhangs[sample_layer]));
if (layers_below < config.support_bottom_layers) if (layers_below < config.support_bottom_layers)
layers_below = std::min(layers_below + config.performance_interface_skip_layers, config.support_bottom_layers); layers_below = std::min(layers_below + 1, config.support_bottom_layers);
else else
break; break;
} }
@ -4139,11 +4161,20 @@ static void organic_smooth_branches_avoid_collisions(
#endif // TREE_SUPPORT_ORGANIC_NUDGE_NEW #endif // TREE_SUPPORT_ORGANIC_NUDGE_NEW
// Organic specific: Smooth branches and produce one cummulative mesh to be sliced. // Organic specific: Smooth branches and produce one cummulative mesh to be sliced.
static std::vector<Polygons> draw_branches( static void draw_branches(
PrintObject &print_object, PrintObject &print_object,
TreeModelVolumes &volumes, TreeModelVolumes &volumes,
const TreeSupportSettings &config, const TreeSupportSettings &config,
std::vector<SupportElements> &move_bounds, std::vector<SupportElements> &move_bounds,
// I/O:
SupportGeneratorLayersPtr &bottom_contacts,
SupportGeneratorLayersPtr &top_contacts,
// Output:
SupportGeneratorLayersPtr &intermediate_layers,
SupportGeneratorLayerStorage &layer_storage,
std::function<void()> throw_on_cancel) std::function<void()> throw_on_cancel)
{ {
// All SupportElements are put into a layer independent storage to improve parallelization. // All SupportElements are put into a layer independent storage to improve parallelization.
@ -4211,7 +4242,7 @@ static std::vector<Polygons> draw_branches(
struct Slice { struct Slice {
Polygons polygons; Polygons polygons;
Polygons bottom_interfaces; Polygons bottom_contacts;
size_t num_branches{ 0 }; size_t num_branches{ 0 };
}; };
@ -4316,6 +4347,7 @@ static std::vector<Polygons> draw_branches(
[&trees, &volumes, &config, &slicing_params, &move_bounds, &mesh_slicing_params, &throw_on_cancel](const tbb::blocked_range<size_t> &range) { [&trees, &volumes, &config, &slicing_params, &move_bounds, &mesh_slicing_params, &throw_on_cancel](const tbb::blocked_range<size_t> &range) {
indexed_triangle_set partial_mesh; indexed_triangle_set partial_mesh;
std::vector<float> slice_z; std::vector<float> slice_z;
std::vector<Polygons> bottom_contacts;
for (size_t tree_id = range.begin(); tree_id < range.end(); ++ tree_id) { for (size_t tree_id = range.begin(); tree_id < range.end(); ++ tree_id) {
Tree &tree = trees[tree_id]; Tree &tree = trees[tree_id];
for (const Branch &branch : tree.branches) { for (const Branch &branch : tree.branches) {
@ -4335,63 +4367,71 @@ static std::vector<Polygons> draw_branches(
slice_z.emplace_back(float(0.5 * (bottom_z + print_z))); slice_z.emplace_back(float(0.5 * (bottom_z + print_z)));
} }
std::vector<Polygons> slices = slice_mesh(partial_mesh, slice_z, mesh_slicing_params, throw_on_cancel); std::vector<Polygons> slices = slice_mesh(partial_mesh, slice_z, mesh_slicing_params, throw_on_cancel);
bottom_contacts.clear();
//FIXME parallelize? //FIXME parallelize?
for (LayerIndex i = 0; i < LayerIndex(slices.size()); ++ i) for (LayerIndex i = 0; i < LayerIndex(slices.size()); ++ i)
slices[i] = diff_clipped(slices[i], volumes.getCollision(0, layer_begin + i, true)); //FIXME parent_uses_min || draw_area.element->state.use_min_xy_dist); slices[i] = diff_clipped(slices[i], volumes.getCollision(0, layer_begin + i, true)); //FIXME parent_uses_min || draw_area.element->state.use_min_xy_dist);
size_t num_empty = 0; size_t num_empty = 0;
if (layer_begin > 0 && branch.has_root && ! branch.path.front()->state.to_model_gracious && ! slices.front().empty()) { if (slices.front().empty()) {
// Drop down areas that do rest non - gracefully on the model to ensure the branch actually rests on something. // Some of the initial layers are empty.
struct BottomExtraSlice { num_empty = std::find_if(slices.begin(), slices.end(), [](auto &s) { return !s.empty(); }) - slices.begin();
Polygons polygons; } else {
Polygons supported; if (branch.has_root) {
Polygons bottom_interfaces; if (branch.path.front()->state.to_model_gracious) {
double area; if (config.settings.support_floor_layers > 0)
double supported_area; //FIXME one may just take the whole tree slice as bottom interface.
}; bottom_contacts.emplace_back(intersection_clipped(slices.front(), volumes.getPlaceableAreas(0, layer_begin, [] {})));
std::vector<BottomExtraSlice> bottom_extra_slices; } else if (layer_begin > 0) {
Polygons rest_support; // Drop down areas that do rest non - gracefully on the model to ensure the branch actually rests on something.
coord_t bottom_radius = config.getRadius(branch.path.front()->state); struct BottomExtraSlice {
// Don't propagate further than 1.5 * bottom radius. Polygons polygons;
//LayerIndex layers_propagate_max = 2 * bottom_radius / config.layer_height; double area;
LayerIndex layers_propagate_max = 5 * bottom_radius / config.layer_height; };
LayerIndex layer_bottommost = std::max(0, layer_begin - layers_propagate_max); std::vector<BottomExtraSlice> bottom_extra_slices;
// Only propagate until the rest area is smaller than this threshold. Polygons rest_support;
double support_area_stop = 0.2 * M_PI * sqr(double(bottom_radius)); coord_t bottom_radius = config.getRadius(branch.path.front()->state);
// Only propagate until the rest area is smaller than this threshold. // Don't propagate further than 1.5 * bottom radius.
double support_area_min = 0.1 * M_PI * sqr(double(config.min_radius)); //LayerIndex layers_propagate_max = 2 * bottom_radius / config.layer_height;
for (LayerIndex layer_idx = layer_begin - 1; layer_idx >= layer_bottommost; -- layer_idx) { LayerIndex layers_propagate_max = 5 * bottom_radius / config.layer_height;
rest_support = diff_clipped(rest_support.empty() ? slices.front() : rest_support, volumes.getCollision(0, layer_idx, false)); LayerIndex layer_bottommost = std::max(0, layer_begin - layers_propagate_max);
double rest_support_area = area(rest_support); // Only propagate until the rest area is smaller than this threshold.
if (rest_support_area < support_area_stop) double support_area_stop = 0.2 * M_PI * sqr(double(bottom_radius));
// Don't propagate a fraction of the tree contact surface. // Only propagate until the rest area is smaller than this threshold.
break; double support_area_min = 0.1 * M_PI * sqr(double(config.min_radius));
// Measure how much the rest_support is actually supported. for (LayerIndex layer_idx = layer_begin - 1; layer_idx >= layer_bottommost; -- layer_idx) {
/* rest_support = diff_clipped(rest_support.empty() ? slices.front() : rest_support, volumes.getCollision(0, layer_idx, false));
Polygons supported = intersection_clipped(rest_support, volumes.getPlaceableAreas(0, layer_idx, []{})); double rest_support_area = area(rest_support);
double supported_area = area(supported); if (rest_support_area < support_area_stop)
printf("Supported area: %d, %lf\n", layer_idx, supported_area); // Don't propagate a fraction of the tree contact surface.
*/ break;
Polygons supported; bottom_extra_slices.push_back({ rest_support, rest_support_area });
double supported_area; }
bottom_extra_slices.push_back({ rest_support, std::move(supported), {}, rest_support_area, supported_area }); // Now remove those bottom slices that are not supported at all.
} while (! bottom_extra_slices.empty()) {
// Now remove those bottom slices that are not supported at all. Polygons this_bottom_contacts = intersection_clipped(
while (! bottom_extra_slices.empty()) { bottom_extra_slices.back().polygons, volumes.getPlaceableAreas(0, layer_begin - LayerIndex(bottom_extra_slices.size()), [] {}));
Polygons bottom_interfaces = intersection_clipped(bottom_extra_slices.back().polygons, volumes.getPlaceableAreas(0, layer_begin - LayerIndex(bottom_extra_slices.size()), [] {})); if (area(this_bottom_contacts) < support_area_min)
if (area(bottom_interfaces) < support_area_min) bottom_extra_slices.pop_back();
bottom_extra_slices.pop_back(); else if (config.settings.support_floor_layers > 0)
else { bottom_contacts.emplace_back(std::move(this_bottom_contacts));
bottom_extra_slices.back().bottom_interfaces = std::move(bottom_interfaces); }
if (config.settings.support_floor_layers > 0)
for (int i = int(bottom_extra_slices.size()) - 2; i >= 0; -- i)
bottom_contacts.emplace_back(
intersection_clipped(bottom_extra_slices[i].polygons, volumes.getPlaceableAreas(0, layer_begin - i - 1, [] {})));
layer_begin -= LayerIndex(bottom_extra_slices.size());
slices.insert(slices.begin(), bottom_extra_slices.size(), {});
auto it_dst = slices.begin();
for (auto it_src = bottom_extra_slices.rbegin(); it_src != bottom_extra_slices.rend(); ++ it_src)
*it_dst ++ = std::move(it_src->polygons);
} }
} }
layer_begin -= LayerIndex(bottom_extra_slices.size()); if (branch.has_tip) {
slices.insert(slices.begin(), bottom_extra_slices.size(), {}); // Add top slices to top contacts / interfaces / base interfaces.
size_t i = 0; //slices;
for (auto it = bottom_extra_slices.rbegin(); it != bottom_extra_slices.rend(); ++it, ++i) }
slices[i] = std::move(it->polygons); }
} else
num_empty = std::find_if(slices.begin(), slices.end(), [](auto &s) { return !s.empty(); }) - slices.begin();
layer_begin += LayerIndex(num_empty); layer_begin += LayerIndex(num_empty);
while (! slices.empty() && slices.back().empty()) { while (! slices.empty() && slices.back().empty()) {
@ -4414,14 +4454,21 @@ static std::vector<Polygons> draw_branches(
tree.slices.insert(tree.slices.begin(), tree.first_layer_id - new_begin, {}); tree.slices.insert(tree.slices.begin(), tree.first_layer_id - new_begin, {});
tree.slices.insert(tree.slices.end(), new_size - tree.slices.size(), {}); tree.slices.insert(tree.slices.end(), new_size - tree.slices.size(), {});
layer_begin -= LayerIndex(num_empty); layer_begin -= LayerIndex(num_empty);
for (LayerIndex i = layer_begin; i != layer_end; ++ i) for (LayerIndex i = layer_begin; i != layer_end; ++ i) {
if (Polygons &src = slices[i - layer_begin]; ! src.empty()) { int j = i - layer_begin;
if (Polygons &src = slices[j]; ! src.empty()) {
Slice &dst = tree.slices[i - new_begin]; Slice &dst = tree.slices[i - new_begin];
if (++ dst.num_branches > 1) if (++ dst.num_branches > 1) {
append(dst.polygons, std::move(src)); append(dst.polygons, std::move(src));
else if (j < bottom_contacts.size())
append(dst.bottom_contacts, std::move(bottom_contacts[j]));
} else {
dst.polygons = std::move(std::move(src)); dst.polygons = std::move(std::move(src));
if (j < bottom_contacts.size())
dst.bottom_contacts = std::move(bottom_contacts[j]);
}
} }
}
tree.first_layer_id = new_begin; tree.first_layer_id = new_begin;
} }
} }
@ -4434,7 +4481,8 @@ static std::vector<Polygons> draw_branches(
Tree &tree = trees[tree_id]; Tree &tree = trees[tree_id];
for (Slice &slice : tree.slices) for (Slice &slice : tree.slices)
if (slice.num_branches > 1) { if (slice.num_branches > 1) {
slice.polygons = union_(slice.polygons); slice.polygons = union_(slice.polygons);
slice.bottom_contacts = union_(slice.bottom_contacts);
slice.num_branches = 1; slice.num_branches = 1;
} }
throw_on_cancel(); throw_on_cancel();
@ -4452,25 +4500,55 @@ static std::vector<Polygons> draw_branches(
for (LayerIndex i = tree.first_layer_id; i != tree.first_layer_id + LayerIndex(tree.slices.size()); ++ i) for (LayerIndex i = tree.first_layer_id; i != tree.first_layer_id + LayerIndex(tree.slices.size()); ++ i)
if (Slice &src = tree.slices[i - tree.first_layer_id]; ! src.polygons.empty()) { if (Slice &src = tree.slices[i - tree.first_layer_id]; ! src.polygons.empty()) {
Slice &dst = slices[i]; Slice &dst = slices[i];
if (++ dst.num_branches > 1) if (++ dst.num_branches > 1) {
append(dst.polygons, std::move(src.polygons)); append(dst.polygons, std::move(src.polygons));
else append(dst.bottom_contacts, std::move(src.bottom_contacts));
dst.polygons = std::move(src.polygons); } else {
dst.polygons = std::move(src.polygons);
dst.bottom_contacts = std::move(src.bottom_contacts);
}
} }
} }
std::vector<Polygons> support_layer_storage(move_bounds.size());
tbb::parallel_for(tbb::blocked_range<size_t>(0, std::min(move_bounds.size(), slices.size()), 1), tbb::parallel_for(tbb::blocked_range<size_t>(0, std::min(move_bounds.size(), slices.size()), 1),
[&slices, &support_layer_storage, &throw_on_cancel](const tbb::blocked_range<size_t> &range) { [&print_object, &config, &slices, &bottom_contacts, &top_contacts, &intermediate_layers, &layer_storage, &throw_on_cancel](const tbb::blocked_range<size_t> &range) {
for (size_t slice_id = range.begin(); slice_id < range.end(); ++ slice_id) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) {
Slice &slice = slices[slice_id]; Slice &slice = slices[layer_idx];
support_layer_storage[slice_id] = slice.num_branches > 1 ? union_(slice.polygons) : std::move(slice.polygons); assert(intermediate_layers[layer_idx] == nullptr);
Polygons base_layer_polygons = slice.num_branches > 1 ? union_(slice.polygons) : std::move(slice.polygons);
Polygons bottom_contact_polygons = slice.num_branches > 1 ? union_(slice.bottom_contacts) : std::move(slice.bottom_contacts);
if (! base_layer_polygons.empty()) {
// Most of the time in this function is this union call. Can take 300+ ms when a lot of areas are to be unioned.
base_layer_polygons = smooth_outward(union_(base_layer_polygons), config.support_line_width); //FIXME was .smooth(50);
//smooth_outward(closing(std::move(bottom), closing_distance + minimum_island_radius, closing_distance, SUPPORT_SURFACES_OFFSET_PARAMETERS), smoothing_distance) :
// simplify a bit, to ensure the output does not contain outrageous amounts of vertices. Should not be necessary, just a precaution.
base_layer_polygons = polygons_simplify(base_layer_polygons, std::min(scaled<double>(0.03), double(config.resolution)), polygons_strictly_simple);
}
// Subtract top contact layer polygons from support base.
SupportGeneratorLayer *top_contact_layer = top_contacts[layer_idx];
if (top_contact_layer && ! top_contact_layer->polygons.empty() && ! base_layer_polygons.empty()) {
base_layer_polygons = diff(base_layer_polygons, top_contact_layer->polygons);
if (! bottom_contact_polygons.empty())
//FIXME it may be better to clip bottom contacts with top contacts first after they are propagated to produce interface layers.
bottom_contact_polygons = diff(bottom_contact_polygons, top_contact_layer->polygons);
}
if (! bottom_contact_polygons.empty()) {
base_layer_polygons = diff(base_layer_polygons, bottom_contact_polygons);
SupportGeneratorLayer *bottom_contact_layer = bottom_contacts[layer_idx] = &layer_allocate(
layer_storage, SupporLayerType::BottomContact, print_object.slicing_parameters(), config, layer_idx);
bottom_contact_layer->polygons = std::move(bottom_contact_polygons);
}
if (! base_layer_polygons.empty()) {
SupportGeneratorLayer *base_layer = intermediate_layers[layer_idx] = &layer_allocate(
layer_storage, SupporLayerType::Base, print_object.slicing_parameters(), config, layer_idx);
base_layer->polygons = union_(base_layer_polygons);
}
throw_on_cancel(); throw_on_cancel();
} }
}, tbb::simple_partitioner()); }, tbb::simple_partitioner());
//FIXME simplify!
return support_layer_storage;
} }
/*! /*!
@ -4538,9 +4616,12 @@ static void generate_support_areas(Print &print, const BuildVolume &build_volume
SupportGeneratorLayerStorage layer_storage; SupportGeneratorLayerStorage layer_storage;
SupportGeneratorLayersPtr top_contacts; SupportGeneratorLayersPtr top_contacts;
SupportGeneratorLayersPtr bottom_contacts; SupportGeneratorLayersPtr bottom_contacts;
SupportGeneratorLayersPtr top_interface_layers; SupportGeneratorLayersPtr interface_layers;
SupportGeneratorLayersPtr base_interface_layers;
SupportGeneratorLayersPtr intermediate_layers; SupportGeneratorLayersPtr intermediate_layers;
SupportParameters support_params(print_object);
if (size_t num_support_layers = precalculate(print, overhangs, processing.first, processing.second, volumes, throw_on_cancel); if (size_t num_support_layers = precalculate(print, overhangs, processing.first, processing.second, volumes, throw_on_cancel);
num_support_layers > 0) { num_support_layers > 0) {
@ -4550,13 +4631,15 @@ static void generate_support_areas(Print &print, const BuildVolume &build_volume
std::vector<SupportElements> move_bounds(num_support_layers); std::vector<SupportElements> move_bounds(num_support_layers);
// ### Place tips of the support tree // ### Place tips of the support tree
top_contacts .assign(num_support_layers, nullptr); bottom_contacts .assign(num_support_layers, nullptr);
bottom_contacts .assign(num_support_layers, nullptr); top_contacts .assign(num_support_layers, nullptr);
top_interface_layers.assign(num_support_layers, nullptr); interface_layers .assign(num_support_layers, nullptr);
intermediate_layers .assign(num_support_layers, nullptr); base_interface_layers.assign(num_support_layers, nullptr);
intermediate_layers .assign(num_support_layers, nullptr);
for (size_t mesh_idx : processing.second) for (size_t mesh_idx : processing.second)
generate_initial_areas(*print.get_object(mesh_idx), volumes, config, overhangs, move_bounds, top_contacts, top_interface_layers, layer_storage, throw_on_cancel); generate_initial_areas(*print.get_object(mesh_idx), volumes, config, overhangs,
move_bounds, top_contacts, interface_layers, base_interface_layers, layer_storage, throw_on_cancel);
auto t_gen = std::chrono::high_resolution_clock::now(); auto t_gen = std::chrono::high_resolution_clock::now();
#ifdef TREESUPPORT_DEBUG_SVG #ifdef TREESUPPORT_DEBUG_SVG
@ -4587,12 +4670,24 @@ static void generate_support_areas(Print &print, const BuildVolume &build_volume
bottom_contacts, top_contacts, intermediate_layers, layer_storage, throw_on_cancel); bottom_contacts, top_contacts, intermediate_layers, layer_storage, throw_on_cancel);
else { else {
assert(print_object.config().support_material_style == smsOrganic); assert(print_object.config().support_material_style == smsOrganic);
std::vector<Polygons> support_layer_storage = draw_branches(*print.get_object(processing.second.front()), volumes, config, move_bounds, throw_on_cancel); draw_branches(
std::vector<Polygons> support_roof_storage(support_layer_storage.size()); *print.get_object(processing.second.front()), volumes, config, move_bounds,
finalize_interface_and_support_areas(print_object, volumes, config, overhangs, support_layer_storage, support_roof_storage, bottom_contacts, top_contacts, intermediate_layers, layer_storage,
bottom_contacts, top_contacts, intermediate_layers, layer_storage, throw_on_cancel); throw_on_cancel);
} }
auto remove_undefined_layers = [](SupportGeneratorLayersPtr& layers) {
layers.erase(std::remove_if(layers.begin(), layers.end(), [](const SupportGeneratorLayer* ptr) { return ptr == nullptr; }), layers.end());
};
remove_undefined_layers(bottom_contacts);
remove_undefined_layers(top_contacts);
remove_undefined_layers(interface_layers);
remove_undefined_layers(base_interface_layers);
remove_undefined_layers(intermediate_layers);
std::tie(interface_layers, base_interface_layers) = generate_interface_layers(print_object.config(), support_params,
bottom_contacts, top_contacts, interface_layers, base_interface_layers, intermediate_layers, layer_storage);
auto t_draw = std::chrono::high_resolution_clock::now(); auto t_draw = std::chrono::high_resolution_clock::now();
auto dur_pre_gen = 0.001 * std::chrono::duration_cast<std::chrono::microseconds>(t_precalc - t_start).count(); auto dur_pre_gen = 0.001 * std::chrono::duration_cast<std::chrono::microseconds>(t_precalc - t_start).count();
auto dur_gen = 0.001 * std::chrono::duration_cast<std::chrono::microseconds>(t_gen - t_precalc).count(); auto dur_gen = 0.001 * std::chrono::duration_cast<std::chrono::microseconds>(t_gen - t_precalc).count();
@ -4618,18 +4713,10 @@ static void generate_support_areas(Print &print, const BuildVolume &build_volume
continue; continue;
} }
auto remove_undefined_layers = [](SupportGeneratorLayersPtr &layers) {
layers.erase(std::remove_if(layers.begin(), layers.end(), [](const SupportGeneratorLayer* ptr) { return ptr == nullptr; }), layers.end());
};
remove_undefined_layers(bottom_contacts);
remove_undefined_layers(top_contacts);
remove_undefined_layers(intermediate_layers);
// Produce the support G-code. // Produce the support G-code.
// Used by both classic and tree supports. // Used by both classic and tree supports.
SupportParameters support_params(print_object); SupportGeneratorLayersPtr raft_layers = generate_raft_base(print_object, support_params, print_object.slicing_parameters(),
SupportGeneratorLayersPtr interface_layers, base_interface_layers; top_contacts, interface_layers, base_interface_layers, intermediate_layers, layer_storage);
SupportGeneratorLayersPtr raft_layers = generate_raft_base(print_object, support_params, print_object.slicing_parameters(), top_contacts, interface_layers, base_interface_layers, intermediate_layers, layer_storage);
#if 1 //#ifdef SLIC3R_DEBUG #if 1 //#ifdef SLIC3R_DEBUG
SupportGeneratorLayersPtr layers_sorted = SupportGeneratorLayersPtr layers_sorted =
#endif // SLIC3R_DEBUG #endif // SLIC3R_DEBUG

View File

@ -364,10 +364,6 @@ public:
* \brief Amount of layers distance required from the top of the model to the bottom of a support structure. * \brief Amount of layers distance required from the top of the model to the bottom of a support structure.
*/ */
size_t z_distance_bottom_layers; size_t z_distance_bottom_layers;
/*!
* \brief used for performance optimization at the support floor. Should have no impact on the resulting tree.
*/
size_t performance_interface_skip_layers;
/*! /*!
* \brief User specified angles for the support infill. * \brief User specified angles for the support infill.
*/ */