Arranging with new structure.

This commit is contained in:
tamasmeszaros 2019-06-28 17:03:50 +02:00
parent 19e6bf58dd
commit 299e4f74c7
11 changed files with 189 additions and 479 deletions

View File

@ -30,9 +30,7 @@ using Circle = _Circle<PointImpl>;
using Item = _Item<PolygonImpl>;
using Rectangle = _Rectangle<PolygonImpl>;
using PackGroup = _PackGroup<PolygonImpl>;
using IndexedPackGroup = _IndexedPackGroup<PolygonImpl>;
using FillerSelection = selections::_FillerSelection<PolygonImpl>;
using FirstFitSelection = selections::_FirstFitSelection<PolygonImpl>;

View File

@ -65,6 +65,8 @@ class _Item {
Box bb; bool valid;
BBCache(): valid(false) {}
} bb_cache_;
std::function<void(const _Item&, unsigned)> applyfn_;
public:
@ -121,8 +123,26 @@ public:
inline _Item(TContour<RawShape>&& contour,
THolesContainer<RawShape>&& holes):
sh_(sl::create<RawShape>(std::move(contour),
std::move(holes))) {}
sh_(sl::create<RawShape>(std::move(contour), std::move(holes))) {}
template<class... Args>
_Item(std::function<void(const _Item&, unsigned)> applyfn, Args &&... args):
_Item(std::forward<Args>(args)...)
{
applyfn_ = std::move(applyfn);
}
// Call the apply callback set in constructor. Within the callback, the
// original caller can apply the stored transformation to the original
// objects inteded for nesting. It might not be the shape handed over
// to _Item (e.g. arranging 3D shapes based on 2D silhouette or the
// client uses a simplified or processed polygon for nesting)
// This callback, if present, will be called for each item after the nesting
// is finished.
inline void callApplyFunction(unsigned binidx) const
{
if (applyfn_) applyfn_(*this, binidx);
}
/**
* @brief Convert the polygon to string representation. The format depends
@ -492,24 +512,6 @@ template<class RawShape> using _ItemGroup = std::vector<_ItemRef<RawShape>>;
template<class RawShape>
using _PackGroup = std::vector<std::vector<_ItemRef<RawShape>>>;
/**
* \brief A list of packed (index, item) pair vectors. Each vector represents a
* bin.
*
* The index is points to the position of the item in the original input
* sequence. This way the caller can use the items as a transformation data
* carrier and transform the original objects manually.
*/
template<class RawShape>
using _IndexedPackGroup = std::vector<
std::vector<
std::pair<
unsigned,
_ItemRef<RawShape>
>
>
>;
template<class Iterator>
struct ConstItemRange {
Iterator from;
@ -768,13 +770,9 @@ public:
using BinType = typename TPlacer::BinType;
using PlacementConfig = typename TPlacer::Config;
using SelectionConfig = typename TSel::Config;
using Unit = TCoord<TPoint<typename Item::ShapeType>>;
using IndexedPackGroup = _IndexedPackGroup<typename Item::ShapeType>;
using PackGroup = _PackGroup<typename Item::ShapeType>;
using ResultType = PackGroup;
using ResultTypeIndexed = IndexedPackGroup;
private:
BinType bin_;
@ -786,6 +784,7 @@ private:
using TSItem = remove_cvref_t<SItem>;
std::vector<TPItem> item_cache_;
StopCondition stopfn_;
public:
@ -814,11 +813,13 @@ public:
void configure(const PlacementConfig& pconf) { pconfig_ = pconf; }
void configure(const SelectionConfig& sconf) { selector_.configure(sconf); }
void configure(const PlacementConfig& pconf, const SelectionConfig& sconf) {
void configure(const PlacementConfig& pconf, const SelectionConfig& sconf)
{
pconfig_ = pconf;
selector_.configure(sconf);
}
void configure(const SelectionConfig& sconf, const PlacementConfig& pconf) {
void configure(const SelectionConfig& sconf, const PlacementConfig& pconf)
{
pconfig_ = pconf;
selector_.configure(sconf);
}
@ -836,26 +837,6 @@ public:
return _execute(from, to);
}
/**
* A version of the arrange method returning an IndexedPackGroup with
* the item indexes into the original input sequence.
*
* Takes a little longer to collect the indices. Scales linearly with the
* input sequence size.
*/
template<class TIterator>
inline IndexedPackGroup executeIndexed(TIterator from, TIterator to)
{
return _executeIndexed(from, to);
}
/// Shorthand to normal arrange method.
template<class TIterator>
inline PackGroup operator() (TIterator from, TIterator to)
{
return _execute(from, to);
}
/// Set a progress indicator function object for the selector.
inline Nester& progressIndicator(ProgressFunction func)
{
@ -865,7 +846,7 @@ public:
/// Set a predicate to tell when to abort nesting.
inline Nester& stopCondition(StopCondition fn)
{
selector_.stopCondition(fn); return *this;
stopfn_ = fn; selector_.stopCondition(fn); return *this;
}
inline const PackGroup& lastResult() const
@ -878,16 +859,6 @@ public:
selector_.preload(pgrp);
}
inline void preload(const IndexedPackGroup& ipgrp)
{
PackGroup pgrp; pgrp.reserve(ipgrp.size());
for(auto& ig : ipgrp) {
pgrp.emplace_back(); pgrp.back().reserve(ig.size());
for(auto& r : ig) pgrp.back().emplace_back(r.second);
}
preload(pgrp);
}
private:
template<class TIterator,
@ -917,66 +888,6 @@ private:
return lastResult();
}
template<class TIterator,
class IT = remove_cvref_t<typename TIterator::value_type>,
// This function will be used only if the iterators are pointing to
// a type compatible with the libnest2d::_Item template.
// This way we can use references to input elements as they will
// have to exist for the lifetime of this call.
class T = enable_if_t< std::is_convertible<IT, TPItem>::value, IT>
>
inline IndexedPackGroup _executeIndexed(TIterator from,
TIterator to,
bool = false)
{
__execute(from, to);
return createIndexedPackGroup(from, to, selector_);
}
template<class TIterator,
class IT = remove_cvref_t<typename TIterator::value_type>,
class T = enable_if_t<!std::is_convertible<IT, TPItem>::value, IT>
>
inline IndexedPackGroup _executeIndexed(TIterator from,
TIterator to,
int = false)
{
item_cache_ = {from, to};
__execute(item_cache_.begin(), item_cache_.end());
return createIndexedPackGroup(from, to, selector_);
}
template<class TIterator>
static IndexedPackGroup createIndexedPackGroup(TIterator from,
TIterator to,
TSel& selector)
{
IndexedPackGroup pg;
pg.reserve(selector.getResult().size());
const PackGroup& pckgrp = selector.getResult();
for(size_t i = 0; i < pckgrp.size(); i++) {
auto items = pckgrp[i];
pg.emplace_back();
pg[i].reserve(items.size());
for(Item& itemA : items) {
auto it = from;
unsigned idx = 0;
while(it != to) {
Item& itemB = *it;
if(&itemB == &itemA) break;
it++; idx++;
}
pg[i].emplace_back(idx, itemA);
}
}
return pg;
}
template<class TIter> inline void __execute(TIter from, TIter to)
{
if(min_obj_distance_ > 0) std::for_each(from, to, [this](Item& item) {
@ -985,10 +896,19 @@ private:
selector_.template packItems<PlacementStrategy>(
from, to, bin_, pconfig_);
if(min_obj_distance_ > 0) std::for_each(from, to, [](Item& item) {
if(min_obj_distance_ > 0) std::for_each(from, to, [this](Item& item) {
item.removeOffset();
});
if(stopfn_ && !stopfn_()) { // Ignore results if nesting was stopped.
const PackGroup& bins = lastResult();
unsigned binidx = 0;
for(auto& bin : bins) {
for(const Item& itm : bin) itm.callApplyFunction(binidx);
++binidx;
}
}
}
};

View File

@ -366,7 +366,7 @@ TEST(GeometryAlgorithms, ArrangeRectanglesTight)
Nester<BottomLeftPlacer, DJDHeuristic> arrange(Box(210, 250));
auto groups = arrange(rects.begin(), rects.end());
auto groups = arrange.execute(rects.begin(), rects.end());
ASSERT_EQ(groups.size(), 1u);
ASSERT_EQ(groups[0].size(), rects.size());
@ -420,7 +420,7 @@ TEST(GeometryAlgorithms, ArrangeRectanglesLoose)
Nester<BottomLeftPlacer, DJDHeuristic> arrange(Box(210, 250),
min_obj_distance);
auto groups = arrange(rects.begin(), rects.end());
auto groups = arrange.execute(rects.begin(), rects.end());
ASSERT_EQ(groups.size(), 1u);
ASSERT_EQ(groups[0].size(), rects.size());

View File

@ -303,7 +303,7 @@ inline SLIC3R_CONSTEXPR ScaledCoordOnly<Tout> scaled(const Tin &v) SLIC3R_NOEXCE
template<class Tout = coord_t, class Tin, int N, class = FloatingOnly<Tin>>
inline EigenVec<ArithmeticOnly<Tout>, N> scaled(const EigenVec<Tin, N> &v)
{
return v.template cast<Tout>() /*/ SCALING_FACTOR*/;
return (v / SCALING_FACTOR).template cast<Tout>();
}
// Conversion from arithmetic scaled type to floating point unscaled

View File

@ -1801,7 +1801,7 @@ void ModelInstance::transform_polygon(Polygon* polygon) const
polygon->scale(get_scaling_factor(X), get_scaling_factor(Y)); // scale around polygon origin
}
Polygon ModelInstance::get_arrange_polygon() const
std::tuple<Polygon, Vec2crd, double> ModelInstance::get_arrange_polygon() const
{
static const double SIMPLIFY_TOLERANCE_MM = 0.1;
@ -1827,7 +1827,9 @@ Polygon ModelInstance::get_arrange_polygon() const
pp = p.simplify(scaled<double>(SIMPLIFY_TOLERANCE_MM));
if (!pp.empty()) p = pp.front();
return p;
return std::make_tuple(p, Vec2crd{scaled(get_offset(X)),
scaled(get_offset(Y))},
get_rotation(Z));
}
// Test whether the two models contain the same number of ModelObjects with the same set of IDs

View File

@ -554,15 +554,21 @@ public:
bool is_printable() const { return print_volume_state == PVS_Inside; }
virtual void set_arrange_result(Vec2d offs, double rot_rads) final
// /////////////////////////////////////////////////////////////////////////
// Implement arr::Arrangeable interface
// /////////////////////////////////////////////////////////////////////////
// Getting the input polygon for arrange
virtual std::tuple<Polygon, Vec2crd, double> get_arrange_polygon() const final;
// Apply the arrange result on the ModelInstance
virtual void apply_arrange_result(Vec2d offs, double rot_rads) final
{
// write the transformation data into the model instance
set_rotation(Z, get_rotation(Z) + rot_rads);
set_offset(X, get_offset(X) + offs(X));
set_offset(Y, get_offset(Y) + offs(Y));
set_rotation(Z, rot_rads);
set_offset(X, offs(X));
set_offset(Y, offs(Y));
}
virtual Polygon get_arrange_polygon() const final;
protected:
friend class Print;

View File

@ -4,7 +4,10 @@
#include "SVG.hpp"
#include "MTUtils.hpp"
#include <libnest2d.h>
#include <libnest2d/backends/clipper/geometries.hpp>
#include <libnest2d/optimizers/nlopt/subplex.hpp>
#include <libnest2d/placers/nfpplacer.hpp>
#include <libnest2d/selections/firstfit.hpp>
#include <numeric>
#include <ClipperUtils.hpp>
@ -18,14 +21,20 @@ namespace libnest2d {
using LargeInt = __int128;
#else
using LargeInt = boost::multiprecision::int128_t;
template<> struct _NumTag<LargeInt> { using Type = ScalarTag; };
template<> struct _NumTag<LargeInt>
{
using Type = ScalarTag;
};
#endif
template<class T> struct _NumTag<boost::rational<T>> { using Type = RationalTag; };
template<class T> struct _NumTag<boost::rational<T>>
{
using Type = RationalTag;
};
namespace nfp {
template<class S>
struct NfpImpl<S, NfpLevel::CONVEX_ONLY>
template<class S> struct NfpImpl<S, NfpLevel::CONVEX_ONLY>
{
NfpResult<S> operator()(const S &sh, const S &other)
{
@ -33,16 +42,22 @@ struct NfpImpl<S, NfpLevel::CONVEX_ONLY>
}
};
}
}
} // namespace nfp
} // namespace libnest2d
namespace Slic3r {
namespace arr {
using namespace libnest2d;
namespace clppr = ClipperLib;
using Shape = ClipperLib::Polygon;
using Item = _Item<clppr::Polygon>;
using Box = _Box<clppr::IntPoint>;
using Circle = _Circle<clppr::IntPoint>;
using Segment = _Segment<clppr::IntPoint>;
using MultiPolygon = TMultiShape<clppr::Polygon>;
using PackGroup = _PackGroup<clppr::Polygon>;
// Only for debugging. Prints the model object vertices on stdout.
//std::string toString(const Model& model, bool holes = true) {
@ -131,7 +146,7 @@ namespace bgi = boost::geometry::index;
using SpatElement = std::pair<Box, unsigned>;
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
using ItemGroup = std::vector<std::reference_wrapper<_Item<Shape>>>;
using ItemGroup = std::vector<std::reference_wrapper<Item>>;
const double BIG_ITEM_TRESHOLD = 0.02;
@ -156,10 +171,10 @@ Box boundingBox(const Box& pilebb, const Box& ibb ) {
// at the same time, it has to provide reasonable results.
std::tuple<double /*score*/, Box /*farthest point from bin center*/>
objfunc(const PointImpl& bincenter,
const TMultiShape<Shape>& merged_pile,
const MultiPolygon& merged_pile,
const Box& pilebb,
const ItemGroup& items,
const _Item<Shape> &item,
const Item &item,
double bin_area,
double norm, // A norming factor for physical dimensions
// a spatial index to quickly get neighbors of the candidate item
@ -224,8 +239,8 @@ objfunc(const PointImpl& bincenter,
auto mp = merged_pile;
mp.emplace_back(item.transformedShape());
auto chull = sl::convexHull(mp);
placers::EdgeCache<Shape> ec(chull);
placers::EdgeCache<clppr::Polygon> ec(chull);
double circ = ec.circumference() / norm;
double bcirc = 2.0*(fullbb.width() + fullbb.height()) / norm;
@ -256,7 +271,7 @@ objfunc(const PointImpl& bincenter,
for(auto& e : result) { // now get the score for the best alignment
auto idx = e.second;
_Item<Shape>& p = items[idx];
Item& p = items[idx];
auto parea = p.area();
if(std::abs(1.0 - parea/item.area()) < 1e-6) {
auto bb = boundingBox(p.boundingBox(), ibb);
@ -322,12 +337,11 @@ class _ArrBase {
public:
// Useful type shortcuts...
using Placer = typename placers::_NofitPolyPlacer<Shape, TBin>;
using Selector = selections::_FirstFitSelection<Shape>;
using Placer = typename placers::_NofitPolyPlacer<clppr::Polygon, TBin>;
using Selector = selections::_FirstFitSelection<clppr::Polygon>;
using Packer = Nester<Placer, Selector>;
using PConfig = typename Packer::PlacementConfig;
using Distance = TCoord<PointImpl>;
using Pile = TMultiShape<Shape>;
protected:
@ -337,7 +351,7 @@ protected:
SpatIndex m_rtree; // spatial index for the normal (bigger) objects
SpatIndex m_smallsrtree; // spatial index for only the smaller items
double m_norm; // A coefficient to scale distances
Pile m_merged_pile; // The already merged pile (vector of items)
MultiPolygon m_merged_pile; // The already merged pile (vector of items)
Box m_pilebb; // The bounding box of the merged pile.
ItemGroup m_remaining; // Remaining items (m_items at the beginning)
ItemGroup m_items; // The items to be packed
@ -354,7 +368,7 @@ public:
// Set up a callback that is called just before arranging starts
// This functionality is provided by the Nester class (m_pack).
m_pconf.before_packing =
[this](const Pile& merged_pile, // merged pile
[this](const MultiPolygon& merged_pile, // merged pile
const ItemGroup& items, // packed items
const ItemGroup& remaining) // future items to be packed
{
@ -373,7 +387,7 @@ public:
};
for(unsigned idx = 0; idx < items.size(); ++idx) {
_Item<Shape>& itm = items[idx];
Item& itm = items[idx];
if(isBig(itm.area())) m_rtree.insert({itm.boundingBox(), idx});
m_smallsrtree.insert({itm.boundingBox(), idx});
}
@ -383,12 +397,12 @@ public:
m_pck.stopCondition(stopcond);
}
template<class...Args> inline _PackGroup<Shape> operator()(Args&&...args) {
template<class...Args> inline PackGroup operator()(Args&&...args) {
m_rtree.clear();
return m_pck.execute(std::forward<Args>(args)...);
}
inline void preload(const _PackGroup<Shape>& pg) {
inline void preload(const PackGroup& pg) {
m_pconf.alignment = PConfig::Alignment::DONT_ALIGN;
m_pconf.object_function = nullptr; // drop the special objectfunction
m_pck.preload(pg);
@ -396,14 +410,14 @@ public:
// Build the rtree for queries to work
for(const ItemGroup& grp : pg)
for(unsigned idx = 0; idx < grp.size(); ++idx) {
_Item<Shape>& itm = grp[idx];
Item& itm = grp[idx];
m_rtree.insert({itm.boundingBox(), idx});
}
m_pck.configure(m_pconf);
}
bool is_colliding(const _Item<Shape>& item) {
bool is_colliding(const Item& item) {
if(m_rtree.empty()) return false;
std::vector<SpatElement> result;
m_rtree.query(bgi::intersects(item.boundingBox()),
@ -425,7 +439,7 @@ public:
// Here we set up the actual object function that calls the common
// object function for all bin shapes than does an additional inside
// check for the arranged pile.
m_pconf.object_function = [this, bin] (const _Item<Shape> &item) {
m_pconf.object_function = [this, bin] (const Item &item) {
auto result = objfunc(bin.center(),
m_merged_pile,
@ -452,23 +466,21 @@ public:
}
};
using lnCircle = libnest2d::_Circle<libnest2d::PointImpl>;
inline lnCircle to_lnCircle(const Circle& circ) {
return lnCircle({circ.center()(0), circ.center()(1)}, circ.radius());
inline Circle to_lnCircle(const CircleBed& circ) {
return Circle({circ.center()(0), circ.center()(1)}, circ.radius());
}
// Arranger specialization for circle shaped bin.
template<> class AutoArranger<lnCircle>: public _ArrBase<lnCircle> {
template<> class AutoArranger<Circle>: public _ArrBase<Circle> {
public:
AutoArranger(const lnCircle& bin, Distance dist,
AutoArranger(const Circle& bin, Distance dist,
std::function<void(unsigned)> progressind = [](unsigned){},
std::function<bool(void)> stopcond = [](){return false;}):
_ArrBase<lnCircle>(bin, dist, progressind, stopcond) {
_ArrBase<Circle>(bin, dist, progressind, stopcond) {
// As with the box, only the inside check is different.
m_pconf.object_function = [this, &bin] (const _Item<Shape> &item) {
m_pconf.object_function = [this, &bin] (const Item &item) {
auto result = objfunc(bin.center(),
m_merged_pile,
@ -483,7 +495,7 @@ public:
double score = std::get<0>(result);
auto isBig = [this](const _Item<Shape>& itm) {
auto isBig = [this](const Item& itm) {
return itm.area()/m_bin_area > BIG_ITEM_TRESHOLD ;
};
@ -512,7 +524,7 @@ public:
std::function<bool(void)> stopcond = [](){return false;}):
_ArrBase<PolygonImpl>(bin, dist, progressind, stopcond)
{
m_pconf.object_function = [this, &bin] (const _Item<Shape> &item) {
m_pconf.object_function = [this, &bin] (const Item &item) {
auto binbb = sl::boundingBox(bin);
auto result = objfunc(binbb.center(),
@ -544,7 +556,7 @@ public:
std::function<bool(void)> stopcond):
_ArrBase<Box>(Box(0, 0), dist, progressind, stopcond)
{
this->m_pconf.object_function = [this] (const _Item<Shape> &item) {
this->m_pconf.object_function = [this] (const Item &item) {
auto result = objfunc({0, 0},
m_merged_pile,
@ -563,152 +575,12 @@ public:
}
};
// A container which stores a pointer to the 3D object and its projected
// 2D shape from top view.
//using ShapeData2D = std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
//ShapeData2D projectModelFromTop(const Slic3r::Model &model,
// const WipeTowerInfo &wti,
// double tolerance)
//{
// ShapeData2D ret;
// // Count all the items on the bin (all the object's instances)
// auto s = std::accumulate(model.objects.begin(), model.objects.end(),
// size_t(0), [](size_t s, ModelObject* o)
// {
// return s + o->instances.size();
// });
// ret.reserve(s);
// for(ModelObject* objptr : model.objects) {
// if (! objptr->instances.empty()) {
// // TODO export the exact 2D projection. Cannot do it as libnest2d
// // does not support concave shapes (yet).
// ClipperLib::Path clpath;
// // Object instances should carry the same scaling and
// // x, y rotation that is why we use the first instance.
// {
// ModelInstance *finst = objptr->instances.front();
// Vec3d rotation = finst->get_rotation();
// rotation.z() = 0.;
// Transform3d trafo_instance = Geometry::assemble_transform(
// Vec3d::Zero(),
// rotation,
// finst->get_scaling_factor(),
// finst->get_mirror());
// Polygon p = objptr->convex_hull_2d(trafo_instance);
// assert(!p.points.empty());
// // this may happen for malformed models, see:
// // https://github.com/prusa3d/PrusaSlicer/issues/2209
// if (p.points.empty()) continue;
// if(tolerance > EPSILON) {
// Polygons pp { p };
// pp = p.simplify(scaled<double>(tolerance));
// if (!pp.empty()) p = pp.front();
// }
// p.reverse();
// assert(!p.is_counter_clockwise());
// clpath = Slic3rMultiPoint_to_ClipperPath(p);
// auto firstp = clpath.front(); clpath.emplace_back(firstp);
// }
// Vec3d rotation0 = objptr->instances.front()->get_rotation();
// rotation0(2) = 0.;
// for(ModelInstance* objinst : objptr->instances) {
// ClipperLib::Polygon pn;
// pn.Contour = clpath;
// // Efficient conversion to item.
// Item item(std::move(pn));
// // Invalid geometries would throw exceptions when arranging
// if(item.vertexCount() > 3) {
// item.rotation(Geometry::rotation_diff_z(rotation0, objinst->get_rotation()));
// item.translation({
// scaled<ClipperLib::cInt>(objinst->get_offset(X)),
// scaled<ClipperLib::cInt>(objinst->get_offset(Y))
// });
// ret.emplace_back(objinst, item);
// }
// }
// }
// }
// // The wipe tower is a separate case (in case there is one), let's duplicate the code
// if (wti.is_wipe_tower) {
// Points pts;
// pts.emplace_back(coord_t(scale_(0.)), coord_t(scale_(0.)));
// pts.emplace_back(coord_t(scale_(wti.bb_size(0))), coord_t(scale_(0.)));
// pts.emplace_back(coord_t(scale_(wti.bb_size(0))), coord_t(scale_(wti.bb_size(1))));
// pts.emplace_back(coord_t(scale_(-0.)), coord_t(scale_(wti.bb_size(1))));
// pts.emplace_back(coord_t(scale_(-0.)), coord_t(scale_(0.)));
// Polygon p(std::move(pts));
// ClipperLib::Path clpath = Slic3rMultiPoint_to_ClipperPath(p);
// ClipperLib::Polygon pn;
// pn.Contour = clpath;
// // Efficient conversion to item.
// Item item(std::move(pn));
// item.rotation(wti.rotation),
// item.translation({
// scaled<ClipperLib::cInt>(wti.pos(0)),
// scaled<ClipperLib::cInt>(wti.pos(1))
// });
// ret.emplace_back(nullptr, item);
// }
// return ret;
//}
// Apply the calculated translations and rotations (currently disabled) to
// the Model object instances.
//void applyResult(IndexedPackGroup::value_type &group,
// ClipperLib::cInt batch_offset,
// ShapeData2D & shapemap,
// WipeTowerInfo & wti)
//{
// for(auto& r : group) {
// auto idx = r.first; // get the original item index
// Item& item = r.second; // get the item itself
// // Get the model instance from the shapemap using the index
// ModelInstance *inst_ptr = shapemap[idx].first;
// // Get the transformation data from the item object and scale it
// // appropriately
// auto off = item.translation();
// Radians rot = item.rotation();
// Vec3d foff(unscaled(off.X + batch_offset),
// unscaled(off.Y),
// inst_ptr ? inst_ptr->get_offset()(Z) : 0.);
// if (inst_ptr) {
// // write the transformation data into the model instance
// inst_ptr->set_rotation(Z, rot);
// inst_ptr->set_offset(foff);
// }
// else { // this is the wipe tower - we will modify the struct with the info
// // and leave it up to the called to actually move the wipe tower
// wti.pos = Vec2d(foff(0), foff(1));
// wti.rotation = rot;
// }
// }
//}
// Get the type of bed geometry from a simple vector of points.
BedShapeHint bedShape(const Polyline &bed) {
BedShapeHint ret;
auto x = [](const Point& p) { return p(0); };
auto y = [](const Point& p) { return p(1); };
auto x = [](const Point& p) { return p(X); };
auto y = [](const Point& p) { return p(Y); };
auto width = [x](const BoundingBox& box) {
return x(box.max) - x(box.min);
@ -721,7 +593,7 @@ BedShapeHint bedShape(const Polyline &bed) {
auto area = [&width, &height](const BoundingBox& box) {
double w = width(box);
double h = height(box);
return w*h;
return w * h;
};
auto poly_area = [](Polyline p) {
@ -752,11 +624,11 @@ BedShapeHint bedShape(const Polyline &bed) {
avg_dist /= vertex_distances.size();
Circle ret(center, avg_dist);
CircleBed ret(center, avg_dist);
for(auto el : vertex_distances)
{
if (std::abs(el - avg_dist) > 10 * SCALED_EPSILON) {
ret = Circle();
ret = CircleBed();
break;
}
}
@ -785,14 +657,14 @@ BedShapeHint bedShape(const Polyline &bed) {
//static const SLIC3R_CONSTEXPR double SIMPLIFY_TOLERANCE_MM = 0.1;
template<class BinT>
_PackGroup<Shape> _arrange(std::vector<Shape> &shapes,
const BinT & bin,
coord_t minobjd,
std::function<void(unsigned)> prind,
std::function<bool()> stopfn)
PackGroup _arrange(std::vector<Item> & items,
const BinT & bin,
coord_t minobjd,
std::function<void(unsigned)> prind,
std::function<bool()> stopfn)
{
AutoArranger<BinT> arranger{bin, minobjd, prind, stopfn};
return arranger(shapes.begin(), shapes.end());
return arranger(items.begin(), items.end());
}
//template<class BinT>
@ -850,185 +722,94 @@ inline SLIC3R_CONSTEXPR coord_t stride_padding(coord_t w)
return w + w / 5;
}
bool arrange(ArrangeableRefs & arrangables,
//// The final client function to arrange the Model. A progress indicator and
//// a stop predicate can be also be passed to control the process.
bool arrange(Arrangeables & arrangables,
coord_t min_obj_distance,
BedShapeHint bedhint,
std::function<void(unsigned)> progressind,
std::function<bool()> stopcondition)
{
bool ret = true;
namespace clppr = ClipperLib;
std::vector<Shape> shapes;
shapes.reserve(arrangables.size());
size_t id = 0;
for (Arrangeable &iref : arrangables) {
Polygon p = iref.get_arrange_polygon();
std::vector<Item> items;
items.reserve(arrangables.size());
coord_t binwidth = 0;
for (Arrangeable *arrangeable : arrangables) {
assert(arrangeable);
p.reverse();
assert(!p.is_counter_clockwise());
auto arrangeitem = arrangeable->get_arrange_polygon();
Shape clpath(/*id++,*/ Slic3rMultiPoint_to_ClipperPath(p));
Polygon& p = std::get<0>(arrangeitem);
const Vec2crd& offs = std::get<1>(arrangeitem);
double rotation = std::get<2>(arrangeitem);
auto firstp = clpath.Contour.front(); clpath.Contour.emplace_back(firstp);
shapes.emplace_back(std::move(clpath));
if (p.is_counter_clockwise()) p.reverse();
clppr::Polygon clpath(Slic3rMultiPoint_to_ClipperPath(p));
auto firstp = clpath.Contour.front();
clpath.Contour.emplace_back(firstp);
items.emplace_back(
// callback called by arrange to apply the result on the arrangeable
[arrangeable, &binwidth](const Item &itm, unsigned binidx) {
clppr::cInt stride = binidx * stride_padding(binwidth);
clppr::IntPoint offs = itm.translation();
arrangeable->apply_arrange_result({unscaled(offs.X + stride),
unscaled(offs.Y)},
itm.rotation());
},
std::move(clpath));
items.front().rotation(rotation);
items.front().translation({offs.x(), offs.y()});
}
_PackGroup<Shape> result;
auto& cfn = stopcondition;
// Integer ceiling the min distance from the bed perimeters
coord_t md = min_obj_distance - SCALED_EPSILON;
md = (md % 2) ? md / 2 + 1 : md / 2;
coord_t binwidth = 0;
switch (bedhint.type) {
case BedShapeType::BOX: {
// Create the arranger for the box shaped bed
BoundingBox bbb = bedhint.shape.box;
auto binbb = Box({ClipperLib::cInt{bbb.min(0)} - md,
ClipperLib::cInt{bbb.min(1)} - md},
{ClipperLib::cInt{bbb.max(0)} + md,
ClipperLib::cInt{bbb.max(1)} + md});
result = _arrange(shapes, binbb, min_obj_distance, progressind, cfn);
bbb.min -= Point{md, md}, bbb.max += Point{md, md};
Box binbb{{bbb.min(X), bbb.min(Y)}, {bbb.max(X), bbb.max(Y)}};
binwidth = coord_t(binbb.width());
_arrange(items, binbb, min_obj_distance, progressind, stopcondition);
break;
}
case BedShapeType::CIRCLE: {
auto c = bedhint.shape.circ;
auto cc = to_lnCircle(c);
result = _arrange(shapes, cc, min_obj_distance, progressind, cfn);
binwidth = scaled(c.radius());
_arrange(items, cc, min_obj_distance, progressind, stopcondition);
break;
}
case BedShapeType::IRREGULAR: {
auto ctour = Slic3rMultiPoint_to_ClipperPath(bedhint.shape.polygon);
ClipperLib::Polygon irrbed = sl::create<PolygonImpl>(std::move(ctour));
result = _arrange(shapes, irrbed, min_obj_distance, progressind, cfn);
auto irrbed = sl::create<clppr::Polygon>(std::move(ctour));
BoundingBox polybb(bedhint.shape.polygon);
binwidth = (polybb.max(X) - polybb.min(X));
_arrange(items, irrbed, min_obj_distance, progressind, stopcondition);
break;
}
case BedShapeType::WHO_KNOWS: {
result = _arrange(shapes, false, min_obj_distance, progressind, cfn);
_arrange(items, false, min_obj_distance, progressind, stopcondition);
break;
}
};
if(result.empty() || stopcondition()) return false;
ClipperLib::cInt stride = stride_padding(binwidth);
ClipperLib::cInt batch_offset = 0;
for (const auto &group : result) {
for (_Item<Shape> &itm : group) {
ClipperLib::IntPoint offs = itm.translation();
// arrangables[itm.id()].get().set_arrange_result({offs.X, offs.Y},
// itm.rotation());
}
// Only the first pack group can be placed onto the print bed. The
// other objects which could not fit will be placed next to the
// print bed
batch_offset += stride;
}
if(stopcondition()) return false;
return ret;
}
//// The final client function to arrange the Model. A progress indicator and
//// a stop predicate can be also be passed to control the process.
//bool arrange(Model &model, // The model with the geometries
// WipeTowerInfo& wti, // Wipe tower info
// coord_t min_obj_distance, // Has to be in scaled (clipper) measure
// const Polyline &bed, // The bed geometry.
// BedShapeHint bedhint, // Hint about the bed geometry type.
// bool first_bin_only, // What to do is not all items fit.
// // Controlling callbacks.
// std::function<void (unsigned)> progressind,
// std::function<bool ()> stopcondition)
//{
// bool ret = true;
// // Get the 2D projected shapes with their 3D model instance pointers
// auto shapemap = arr::projectModelFromTop(model, wti, SIMPLIFY_TOLERANCE_MM);
// // Copy the references for the shapes only as the arranger expects a
// // sequence of objects convertible to Item or ClipperPolygon
// std::vector<std::reference_wrapper<Item>> shapes;
// shapes.reserve(shapemap.size());
// std::for_each(shapemap.begin(), shapemap.end(),
// [&shapes] (ShapeData2D::value_type& it)
// {
// shapes.push_back(std::ref(it.second));
// });
// IndexedPackGroup result;
// // If there is no hint about the shape, we will try to guess
// if(bedhint.type == BedShapeType::WHO_KNOWS) bedhint = bedShape(bed);
// BoundingBox bbb(bed);
// auto& cfn = stopcondition;
// // Integer ceiling the min distance from the bed perimeters
// coord_t md = min_obj_distance - SCALED_EPSILON;
// md = (md % 2) ? md / 2 + 1 : md / 2;
// auto binbb = Box({ClipperLib::cInt{bbb.min(0)} - md,
// ClipperLib::cInt{bbb.min(1)} - md},
// {ClipperLib::cInt{bbb.max(0)} + md,
// ClipperLib::cInt{bbb.max(1)} + md});
// switch(bedhint.type) {
// case BedShapeType::BOX: {
// // Create the arranger for the box shaped bed
// result = _arrange(shapes, binbb, min_obj_distance, progressind, cfn);
// break;
// }
// case BedShapeType::CIRCLE: {
// auto c = bedhint.shape.circ;
// auto cc = to_lnCircle(c);
// result = _arrange(shapes, cc, min_obj_distance, progressind, cfn);
// break;
// }
// case BedShapeType::IRREGULAR:
// case BedShapeType::WHO_KNOWS: {
// auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
// ClipperLib::Polygon irrbed = sl::create<PolygonImpl>(std::move(ctour));
// result = _arrange(shapes, irrbed, min_obj_distance, progressind, cfn);
// break;
// }
// };
// if(result.empty() || stopcondition()) return false;
// if(first_bin_only) {
// applyResult(result.front(), 0, shapemap, wti);
// } else {
// ClipperLib::cInt stride = stride_padding(binbb.width());
// ClipperLib::cInt batch_offset = 0;
// for(auto& group : result) {
// applyResult(group, batch_offset, shapemap, wti);
// // Only the first pack group can be placed onto the print bed. The
// // other objects which could not fit will be placed next to the
// // print bed
// batch_offset += stride;
// }
// }
// for(auto objptr : model.objects) objptr->invalidate_bounding_box();
// return ret && result.size() == 1;
//}
//void find_new_position(const Model &model,
// ModelInstancePtrs toadd,
// coord_t min_obj_distance,

View File

@ -11,13 +11,13 @@ class Model;
namespace arr {
class Circle {
class CircleBed {
Point center_;
double radius_;
public:
inline Circle(): center_(0, 0), radius_(std::nan("")) {}
inline Circle(const Point& c, double r): center_(c), radius_(r) {}
inline CircleBed(): center_(0, 0), radius_(std::nan("")) {}
inline CircleBed(const Point& c, double r): center_(c), radius_(r) {}
inline double radius() const { return radius_; }
inline const Point& center() const { return center_; }
@ -34,7 +34,7 @@ enum class BedShapeType {
struct BedShapeHint {
BedShapeType type = BedShapeType::WHO_KNOWS;
/*union*/ struct { // I know but who cares... TODO: use variant from cpp17?
Circle circ;
CircleBed circ;
BoundingBox box;
Polyline polygon;
} shape;
@ -47,12 +47,13 @@ public:
virtual ~Arrangeable() = default;
virtual void set_arrange_result(Vec2d offset, double rotation_rads) = 0;
virtual void apply_arrange_result(Vec2d offset, double rotation_rads) = 0;
virtual Polygon get_arrange_polygon() const = 0;
/// Get the 2D silhouette to arrange and an initial offset and rotation
virtual std::tuple<Polygon, Vec2crd, double> get_arrange_polygon() const = 0;
};
using ArrangeableRefs = std::vector<std::reference_wrapper<Arrangeable>>;
using Arrangeables = std::vector<Arrangeable*>;
/**
* \brief Arranges the model objects on the screen.
@ -89,7 +90,7 @@ using ArrangeableRefs = std::vector<std::reference_wrapper<Arrangeable>>;
// std::function<void(unsigned)> progressind,
// std::function<bool(void)> stopcondition);
bool arrange(ArrangeableRefs &items,
bool arrange(Arrangeables &items,
coord_t min_obj_distance,
BedShapeHint bedhint,
std::function<void(unsigned)> progressind,
@ -102,8 +103,8 @@ bool arrange(ArrangeableRefs &items,
// coord_t min_obj_distance,
// const Slic3r::Polyline& bed,
// WipeTowerInfo& wti);
void find_new_position(ArrangeableRefs &items,
const ArrangeableRefs &instances_to_add,
void find_new_position(Arrangeables &items,
const Arrangeables &instances_to_add,
coord_t min_obj_distance,
BedShapeHint bedhint);

View File

@ -5739,10 +5739,10 @@ const SLAPrint* GLCanvas3D::sla_print() const
return (m_process == nullptr) ? nullptr : m_process->sla_print();
}
void GLCanvas3D::WipeTowerInfo::set_arrange_result(Vec2d offset, double rotation_rads)
void GLCanvas3D::WipeTowerInfo::apply_arrange_result(Vec2d offset, double rotation_rads)
{
m_pos += offset;
m_rotation += rotation_rads;
m_pos = offset;
m_rotation = rotation_rads;
DynamicPrintConfig cfg;
cfg.opt<ConfigOptionFloat>("wipe_tower_x", true)->value = m_pos(X);
cfg.opt<ConfigOptionFloat>("wipe_tower_y", true)->value = m_pos(Y);

View File

@ -613,7 +613,7 @@ public:
int get_first_hover_volume_idx() const { return m_hover_volume_idxs.empty() ? -1 : m_hover_volume_idxs.front(); }
class WipeTowerInfo: public arr::Arrangeable {
Vec2d m_pos = {std::nan(""), std::nan("")};
Vec2d m_pos = {std::nan(""), std::nan("")};
Vec2d m_bb_size;
double m_rotation;
friend class GLCanvas3D;
@ -621,12 +621,12 @@ public:
inline operator bool() const
{
return std::isnan(m_pos.x()) || std::isnan(m_pos.y());
return !std::isnan(m_pos.x()) && !std::isnan(m_pos.y());
}
virtual void set_arrange_result(Vec2d offset, double rotation_rads) final;
virtual void apply_arrange_result(Vec2d offset, double rotation_rads) final;
virtual Polygon get_arrange_polygon() const final
virtual std::tuple<Polygon, Vec2crd, double> get_arrange_polygon() const final
{
Polygon p({
{coord_t(0), coord_t(0)},
@ -636,9 +636,7 @@ public:
{coord_t(0), coord_t(0)},
});
p.rotate(m_rotation);
p.translate(scaled(m_pos));
return p;
return std::make_tuple(p, scaled(m_pos), m_rotation);
}
};

View File

@ -2357,7 +2357,7 @@ void Plater::priv::remove(size_t obj_idx)
void Plater::priv::delete_object_from_model(size_t obj_idx)
{
{
model.delete_object(obj_idx);
update();
object_list_changed();
@ -2422,11 +2422,15 @@ arr::BedShapeHint Plater::priv::get_bed_shape_hint() const {
void Plater::priv::ExclusiveJobGroup::ArrangeJob::process() {
static const auto arrangestr = _(L("Arranging"));
arr::ArrangeableRefs arrangeinput; arrangeinput.reserve(m_count);
// Collect the model instances and place them into the input vector
arr::Arrangeables arrangeinput; arrangeinput.reserve(m_count);
for(ModelObject *mo : plater().model.objects)
for(ModelInstance *minst : mo->instances)
arrangeinput.emplace_back(std::ref(*minst));
arrangeinput.emplace_back(minst);
// Place back the wipe tower if that's available.
if (m_wti) arrangeinput.emplace_back(&m_wti);
// FIXME: I don't know how to obtain the minimum distance, it depends
// on printer technology. I guess the following should work but it crashes.
@ -3456,7 +3460,7 @@ void Plater::priv::set_bed_shape(const Pointfs& shape)
bool Plater::priv::can_delete() const
{
return !get_selection().is_empty() && !get_selection().is_wipe_tower();
return !get_selection().is_empty() && !get_selection().is_wipe_tower() && !m_ui_jobs.is_any_running();
}
bool Plater::priv::can_delete_all() const