Arranging with new structure.
This commit is contained in:
parent
19e6bf58dd
commit
299e4f74c7
@ -30,9 +30,7 @@ using Circle = _Circle<PointImpl>;
|
||||
|
||||
using Item = _Item<PolygonImpl>;
|
||||
using Rectangle = _Rectangle<PolygonImpl>;
|
||||
|
||||
using PackGroup = _PackGroup<PolygonImpl>;
|
||||
using IndexedPackGroup = _IndexedPackGroup<PolygonImpl>;
|
||||
|
||||
using FillerSelection = selections::_FillerSelection<PolygonImpl>;
|
||||
using FirstFitSelection = selections::_FirstFitSelection<PolygonImpl>;
|
||||
|
@ -66,6 +66,8 @@ class _Item {
|
||||
BBCache(): valid(false) {}
|
||||
} bb_cache_;
|
||||
|
||||
std::function<void(const _Item&, unsigned)> applyfn_;
|
||||
|
||||
public:
|
||||
|
||||
/// The type of the shape which was handed over as the template argument.
|
||||
@ -121,8 +123,26 @@ public:
|
||||
|
||||
inline _Item(TContour<RawShape>&& contour,
|
||||
THolesContainer<RawShape>&& holes):
|
||||
sh_(sl::create<RawShape>(std::move(contour),
|
||||
std::move(holes))) {}
|
||||
sh_(sl::create<RawShape>(std::move(contour), std::move(holes))) {}
|
||||
|
||||
template<class... Args>
|
||||
_Item(std::function<void(const _Item&, unsigned)> applyfn, Args &&... args):
|
||||
_Item(std::forward<Args>(args)...)
|
||||
{
|
||||
applyfn_ = std::move(applyfn);
|
||||
}
|
||||
|
||||
// Call the apply callback set in constructor. Within the callback, the
|
||||
// original caller can apply the stored transformation to the original
|
||||
// objects inteded for nesting. It might not be the shape handed over
|
||||
// to _Item (e.g. arranging 3D shapes based on 2D silhouette or the
|
||||
// client uses a simplified or processed polygon for nesting)
|
||||
// This callback, if present, will be called for each item after the nesting
|
||||
// is finished.
|
||||
inline void callApplyFunction(unsigned binidx) const
|
||||
{
|
||||
if (applyfn_) applyfn_(*this, binidx);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Convert the polygon to string representation. The format depends
|
||||
@ -492,24 +512,6 @@ template<class RawShape> using _ItemGroup = std::vector<_ItemRef<RawShape>>;
|
||||
template<class RawShape>
|
||||
using _PackGroup = std::vector<std::vector<_ItemRef<RawShape>>>;
|
||||
|
||||
/**
|
||||
* \brief A list of packed (index, item) pair vectors. Each vector represents a
|
||||
* bin.
|
||||
*
|
||||
* The index is points to the position of the item in the original input
|
||||
* sequence. This way the caller can use the items as a transformation data
|
||||
* carrier and transform the original objects manually.
|
||||
*/
|
||||
template<class RawShape>
|
||||
using _IndexedPackGroup = std::vector<
|
||||
std::vector<
|
||||
std::pair<
|
||||
unsigned,
|
||||
_ItemRef<RawShape>
|
||||
>
|
||||
>
|
||||
>;
|
||||
|
||||
template<class Iterator>
|
||||
struct ConstItemRange {
|
||||
Iterator from;
|
||||
@ -768,13 +770,9 @@ public:
|
||||
using BinType = typename TPlacer::BinType;
|
||||
using PlacementConfig = typename TPlacer::Config;
|
||||
using SelectionConfig = typename TSel::Config;
|
||||
|
||||
using Unit = TCoord<TPoint<typename Item::ShapeType>>;
|
||||
|
||||
using IndexedPackGroup = _IndexedPackGroup<typename Item::ShapeType>;
|
||||
using PackGroup = _PackGroup<typename Item::ShapeType>;
|
||||
using ResultType = PackGroup;
|
||||
using ResultTypeIndexed = IndexedPackGroup;
|
||||
|
||||
private:
|
||||
BinType bin_;
|
||||
@ -786,6 +784,7 @@ private:
|
||||
using TSItem = remove_cvref_t<SItem>;
|
||||
|
||||
std::vector<TPItem> item_cache_;
|
||||
StopCondition stopfn_;
|
||||
|
||||
public:
|
||||
|
||||
@ -814,11 +813,13 @@ public:
|
||||
|
||||
void configure(const PlacementConfig& pconf) { pconfig_ = pconf; }
|
||||
void configure(const SelectionConfig& sconf) { selector_.configure(sconf); }
|
||||
void configure(const PlacementConfig& pconf, const SelectionConfig& sconf) {
|
||||
void configure(const PlacementConfig& pconf, const SelectionConfig& sconf)
|
||||
{
|
||||
pconfig_ = pconf;
|
||||
selector_.configure(sconf);
|
||||
}
|
||||
void configure(const SelectionConfig& sconf, const PlacementConfig& pconf) {
|
||||
void configure(const SelectionConfig& sconf, const PlacementConfig& pconf)
|
||||
{
|
||||
pconfig_ = pconf;
|
||||
selector_.configure(sconf);
|
||||
}
|
||||
@ -836,26 +837,6 @@ public:
|
||||
return _execute(from, to);
|
||||
}
|
||||
|
||||
/**
|
||||
* A version of the arrange method returning an IndexedPackGroup with
|
||||
* the item indexes into the original input sequence.
|
||||
*
|
||||
* Takes a little longer to collect the indices. Scales linearly with the
|
||||
* input sequence size.
|
||||
*/
|
||||
template<class TIterator>
|
||||
inline IndexedPackGroup executeIndexed(TIterator from, TIterator to)
|
||||
{
|
||||
return _executeIndexed(from, to);
|
||||
}
|
||||
|
||||
/// Shorthand to normal arrange method.
|
||||
template<class TIterator>
|
||||
inline PackGroup operator() (TIterator from, TIterator to)
|
||||
{
|
||||
return _execute(from, to);
|
||||
}
|
||||
|
||||
/// Set a progress indicator function object for the selector.
|
||||
inline Nester& progressIndicator(ProgressFunction func)
|
||||
{
|
||||
@ -865,7 +846,7 @@ public:
|
||||
/// Set a predicate to tell when to abort nesting.
|
||||
inline Nester& stopCondition(StopCondition fn)
|
||||
{
|
||||
selector_.stopCondition(fn); return *this;
|
||||
stopfn_ = fn; selector_.stopCondition(fn); return *this;
|
||||
}
|
||||
|
||||
inline const PackGroup& lastResult() const
|
||||
@ -878,16 +859,6 @@ public:
|
||||
selector_.preload(pgrp);
|
||||
}
|
||||
|
||||
inline void preload(const IndexedPackGroup& ipgrp)
|
||||
{
|
||||
PackGroup pgrp; pgrp.reserve(ipgrp.size());
|
||||
for(auto& ig : ipgrp) {
|
||||
pgrp.emplace_back(); pgrp.back().reserve(ig.size());
|
||||
for(auto& r : ig) pgrp.back().emplace_back(r.second);
|
||||
}
|
||||
preload(pgrp);
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
template<class TIterator,
|
||||
@ -917,66 +888,6 @@ private:
|
||||
return lastResult();
|
||||
}
|
||||
|
||||
template<class TIterator,
|
||||
class IT = remove_cvref_t<typename TIterator::value_type>,
|
||||
|
||||
// This function will be used only if the iterators are pointing to
|
||||
// a type compatible with the libnest2d::_Item template.
|
||||
// This way we can use references to input elements as they will
|
||||
// have to exist for the lifetime of this call.
|
||||
class T = enable_if_t< std::is_convertible<IT, TPItem>::value, IT>
|
||||
>
|
||||
inline IndexedPackGroup _executeIndexed(TIterator from,
|
||||
TIterator to,
|
||||
bool = false)
|
||||
{
|
||||
__execute(from, to);
|
||||
return createIndexedPackGroup(from, to, selector_);
|
||||
}
|
||||
|
||||
template<class TIterator,
|
||||
class IT = remove_cvref_t<typename TIterator::value_type>,
|
||||
class T = enable_if_t<!std::is_convertible<IT, TPItem>::value, IT>
|
||||
>
|
||||
inline IndexedPackGroup _executeIndexed(TIterator from,
|
||||
TIterator to,
|
||||
int = false)
|
||||
{
|
||||
item_cache_ = {from, to};
|
||||
__execute(item_cache_.begin(), item_cache_.end());
|
||||
return createIndexedPackGroup(from, to, selector_);
|
||||
}
|
||||
|
||||
template<class TIterator>
|
||||
static IndexedPackGroup createIndexedPackGroup(TIterator from,
|
||||
TIterator to,
|
||||
TSel& selector)
|
||||
{
|
||||
IndexedPackGroup pg;
|
||||
pg.reserve(selector.getResult().size());
|
||||
|
||||
const PackGroup& pckgrp = selector.getResult();
|
||||
|
||||
for(size_t i = 0; i < pckgrp.size(); i++) {
|
||||
auto items = pckgrp[i];
|
||||
pg.emplace_back();
|
||||
pg[i].reserve(items.size());
|
||||
|
||||
for(Item& itemA : items) {
|
||||
auto it = from;
|
||||
unsigned idx = 0;
|
||||
while(it != to) {
|
||||
Item& itemB = *it;
|
||||
if(&itemB == &itemA) break;
|
||||
it++; idx++;
|
||||
}
|
||||
pg[i].emplace_back(idx, itemA);
|
||||
}
|
||||
}
|
||||
|
||||
return pg;
|
||||
}
|
||||
|
||||
template<class TIter> inline void __execute(TIter from, TIter to)
|
||||
{
|
||||
if(min_obj_distance_ > 0) std::for_each(from, to, [this](Item& item) {
|
||||
@ -986,9 +897,18 @@ private:
|
||||
selector_.template packItems<PlacementStrategy>(
|
||||
from, to, bin_, pconfig_);
|
||||
|
||||
if(min_obj_distance_ > 0) std::for_each(from, to, [](Item& item) {
|
||||
if(min_obj_distance_ > 0) std::for_each(from, to, [this](Item& item) {
|
||||
item.removeOffset();
|
||||
});
|
||||
|
||||
if(stopfn_ && !stopfn_()) { // Ignore results if nesting was stopped.
|
||||
const PackGroup& bins = lastResult();
|
||||
unsigned binidx = 0;
|
||||
for(auto& bin : bins) {
|
||||
for(const Item& itm : bin) itm.callApplyFunction(binidx);
|
||||
++binidx;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -366,7 +366,7 @@ TEST(GeometryAlgorithms, ArrangeRectanglesTight)
|
||||
|
||||
Nester<BottomLeftPlacer, DJDHeuristic> arrange(Box(210, 250));
|
||||
|
||||
auto groups = arrange(rects.begin(), rects.end());
|
||||
auto groups = arrange.execute(rects.begin(), rects.end());
|
||||
|
||||
ASSERT_EQ(groups.size(), 1u);
|
||||
ASSERT_EQ(groups[0].size(), rects.size());
|
||||
@ -420,7 +420,7 @@ TEST(GeometryAlgorithms, ArrangeRectanglesLoose)
|
||||
Nester<BottomLeftPlacer, DJDHeuristic> arrange(Box(210, 250),
|
||||
min_obj_distance);
|
||||
|
||||
auto groups = arrange(rects.begin(), rects.end());
|
||||
auto groups = arrange.execute(rects.begin(), rects.end());
|
||||
|
||||
ASSERT_EQ(groups.size(), 1u);
|
||||
ASSERT_EQ(groups[0].size(), rects.size());
|
||||
|
@ -303,7 +303,7 @@ inline SLIC3R_CONSTEXPR ScaledCoordOnly<Tout> scaled(const Tin &v) SLIC3R_NOEXCE
|
||||
template<class Tout = coord_t, class Tin, int N, class = FloatingOnly<Tin>>
|
||||
inline EigenVec<ArithmeticOnly<Tout>, N> scaled(const EigenVec<Tin, N> &v)
|
||||
{
|
||||
return v.template cast<Tout>() /*/ SCALING_FACTOR*/;
|
||||
return (v / SCALING_FACTOR).template cast<Tout>();
|
||||
}
|
||||
|
||||
// Conversion from arithmetic scaled type to floating point unscaled
|
||||
|
@ -1801,7 +1801,7 @@ void ModelInstance::transform_polygon(Polygon* polygon) const
|
||||
polygon->scale(get_scaling_factor(X), get_scaling_factor(Y)); // scale around polygon origin
|
||||
}
|
||||
|
||||
Polygon ModelInstance::get_arrange_polygon() const
|
||||
std::tuple<Polygon, Vec2crd, double> ModelInstance::get_arrange_polygon() const
|
||||
{
|
||||
static const double SIMPLIFY_TOLERANCE_MM = 0.1;
|
||||
|
||||
@ -1827,7 +1827,9 @@ Polygon ModelInstance::get_arrange_polygon() const
|
||||
pp = p.simplify(scaled<double>(SIMPLIFY_TOLERANCE_MM));
|
||||
if (!pp.empty()) p = pp.front();
|
||||
|
||||
return p;
|
||||
return std::make_tuple(p, Vec2crd{scaled(get_offset(X)),
|
||||
scaled(get_offset(Y))},
|
||||
get_rotation(Z));
|
||||
}
|
||||
|
||||
// Test whether the two models contain the same number of ModelObjects with the same set of IDs
|
||||
|
@ -554,16 +554,22 @@ public:
|
||||
|
||||
bool is_printable() const { return print_volume_state == PVS_Inside; }
|
||||
|
||||
virtual void set_arrange_result(Vec2d offs, double rot_rads) final
|
||||
// /////////////////////////////////////////////////////////////////////////
|
||||
// Implement arr::Arrangeable interface
|
||||
// /////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Getting the input polygon for arrange
|
||||
virtual std::tuple<Polygon, Vec2crd, double> get_arrange_polygon() const final;
|
||||
|
||||
// Apply the arrange result on the ModelInstance
|
||||
virtual void apply_arrange_result(Vec2d offs, double rot_rads) final
|
||||
{
|
||||
// write the transformation data into the model instance
|
||||
set_rotation(Z, get_rotation(Z) + rot_rads);
|
||||
set_offset(X, get_offset(X) + offs(X));
|
||||
set_offset(Y, get_offset(Y) + offs(Y));
|
||||
set_rotation(Z, rot_rads);
|
||||
set_offset(X, offs(X));
|
||||
set_offset(Y, offs(Y));
|
||||
}
|
||||
|
||||
virtual Polygon get_arrange_polygon() const final;
|
||||
|
||||
protected:
|
||||
friend class Print;
|
||||
friend class SLAPrint;
|
||||
|
@ -4,7 +4,10 @@
|
||||
#include "SVG.hpp"
|
||||
#include "MTUtils.hpp"
|
||||
|
||||
#include <libnest2d.h>
|
||||
#include <libnest2d/backends/clipper/geometries.hpp>
|
||||
#include <libnest2d/optimizers/nlopt/subplex.hpp>
|
||||
#include <libnest2d/placers/nfpplacer.hpp>
|
||||
#include <libnest2d/selections/firstfit.hpp>
|
||||
|
||||
#include <numeric>
|
||||
#include <ClipperUtils.hpp>
|
||||
@ -18,14 +21,20 @@ namespace libnest2d {
|
||||
using LargeInt = __int128;
|
||||
#else
|
||||
using LargeInt = boost::multiprecision::int128_t;
|
||||
template<> struct _NumTag<LargeInt> { using Type = ScalarTag; };
|
||||
template<> struct _NumTag<LargeInt>
|
||||
{
|
||||
using Type = ScalarTag;
|
||||
};
|
||||
#endif
|
||||
template<class T> struct _NumTag<boost::rational<T>> { using Type = RationalTag; };
|
||||
|
||||
template<class T> struct _NumTag<boost::rational<T>>
|
||||
{
|
||||
using Type = RationalTag;
|
||||
};
|
||||
|
||||
namespace nfp {
|
||||
|
||||
template<class S>
|
||||
struct NfpImpl<S, NfpLevel::CONVEX_ONLY>
|
||||
template<class S> struct NfpImpl<S, NfpLevel::CONVEX_ONLY>
|
||||
{
|
||||
NfpResult<S> operator()(const S &sh, const S &other)
|
||||
{
|
||||
@ -33,16 +42,22 @@ struct NfpImpl<S, NfpLevel::CONVEX_ONLY>
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
} // namespace nfp
|
||||
} // namespace libnest2d
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
namespace arr {
|
||||
|
||||
using namespace libnest2d;
|
||||
namespace clppr = ClipperLib;
|
||||
|
||||
using Shape = ClipperLib::Polygon;
|
||||
using Item = _Item<clppr::Polygon>;
|
||||
using Box = _Box<clppr::IntPoint>;
|
||||
using Circle = _Circle<clppr::IntPoint>;
|
||||
using Segment = _Segment<clppr::IntPoint>;
|
||||
using MultiPolygon = TMultiShape<clppr::Polygon>;
|
||||
using PackGroup = _PackGroup<clppr::Polygon>;
|
||||
|
||||
// Only for debugging. Prints the model object vertices on stdout.
|
||||
//std::string toString(const Model& model, bool holes = true) {
|
||||
@ -131,7 +146,7 @@ namespace bgi = boost::geometry::index;
|
||||
|
||||
using SpatElement = std::pair<Box, unsigned>;
|
||||
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
|
||||
using ItemGroup = std::vector<std::reference_wrapper<_Item<Shape>>>;
|
||||
using ItemGroup = std::vector<std::reference_wrapper<Item>>;
|
||||
|
||||
const double BIG_ITEM_TRESHOLD = 0.02;
|
||||
|
||||
@ -156,10 +171,10 @@ Box boundingBox(const Box& pilebb, const Box& ibb ) {
|
||||
// at the same time, it has to provide reasonable results.
|
||||
std::tuple<double /*score*/, Box /*farthest point from bin center*/>
|
||||
objfunc(const PointImpl& bincenter,
|
||||
const TMultiShape<Shape>& merged_pile,
|
||||
const MultiPolygon& merged_pile,
|
||||
const Box& pilebb,
|
||||
const ItemGroup& items,
|
||||
const _Item<Shape> &item,
|
||||
const Item &item,
|
||||
double bin_area,
|
||||
double norm, // A norming factor for physical dimensions
|
||||
// a spatial index to quickly get neighbors of the candidate item
|
||||
@ -225,7 +240,7 @@ objfunc(const PointImpl& bincenter,
|
||||
mp.emplace_back(item.transformedShape());
|
||||
auto chull = sl::convexHull(mp);
|
||||
|
||||
placers::EdgeCache<Shape> ec(chull);
|
||||
placers::EdgeCache<clppr::Polygon> ec(chull);
|
||||
|
||||
double circ = ec.circumference() / norm;
|
||||
double bcirc = 2.0*(fullbb.width() + fullbb.height()) / norm;
|
||||
@ -256,7 +271,7 @@ objfunc(const PointImpl& bincenter,
|
||||
|
||||
for(auto& e : result) { // now get the score for the best alignment
|
||||
auto idx = e.second;
|
||||
_Item<Shape>& p = items[idx];
|
||||
Item& p = items[idx];
|
||||
auto parea = p.area();
|
||||
if(std::abs(1.0 - parea/item.area()) < 1e-6) {
|
||||
auto bb = boundingBox(p.boundingBox(), ibb);
|
||||
@ -322,12 +337,11 @@ class _ArrBase {
|
||||
public:
|
||||
|
||||
// Useful type shortcuts...
|
||||
using Placer = typename placers::_NofitPolyPlacer<Shape, TBin>;
|
||||
using Selector = selections::_FirstFitSelection<Shape>;
|
||||
using Placer = typename placers::_NofitPolyPlacer<clppr::Polygon, TBin>;
|
||||
using Selector = selections::_FirstFitSelection<clppr::Polygon>;
|
||||
using Packer = Nester<Placer, Selector>;
|
||||
using PConfig = typename Packer::PlacementConfig;
|
||||
using Distance = TCoord<PointImpl>;
|
||||
using Pile = TMultiShape<Shape>;
|
||||
|
||||
protected:
|
||||
|
||||
@ -337,7 +351,7 @@ protected:
|
||||
SpatIndex m_rtree; // spatial index for the normal (bigger) objects
|
||||
SpatIndex m_smallsrtree; // spatial index for only the smaller items
|
||||
double m_norm; // A coefficient to scale distances
|
||||
Pile m_merged_pile; // The already merged pile (vector of items)
|
||||
MultiPolygon m_merged_pile; // The already merged pile (vector of items)
|
||||
Box m_pilebb; // The bounding box of the merged pile.
|
||||
ItemGroup m_remaining; // Remaining items (m_items at the beginning)
|
||||
ItemGroup m_items; // The items to be packed
|
||||
@ -354,7 +368,7 @@ public:
|
||||
// Set up a callback that is called just before arranging starts
|
||||
// This functionality is provided by the Nester class (m_pack).
|
||||
m_pconf.before_packing =
|
||||
[this](const Pile& merged_pile, // merged pile
|
||||
[this](const MultiPolygon& merged_pile, // merged pile
|
||||
const ItemGroup& items, // packed items
|
||||
const ItemGroup& remaining) // future items to be packed
|
||||
{
|
||||
@ -373,7 +387,7 @@ public:
|
||||
};
|
||||
|
||||
for(unsigned idx = 0; idx < items.size(); ++idx) {
|
||||
_Item<Shape>& itm = items[idx];
|
||||
Item& itm = items[idx];
|
||||
if(isBig(itm.area())) m_rtree.insert({itm.boundingBox(), idx});
|
||||
m_smallsrtree.insert({itm.boundingBox(), idx});
|
||||
}
|
||||
@ -383,12 +397,12 @@ public:
|
||||
m_pck.stopCondition(stopcond);
|
||||
}
|
||||
|
||||
template<class...Args> inline _PackGroup<Shape> operator()(Args&&...args) {
|
||||
template<class...Args> inline PackGroup operator()(Args&&...args) {
|
||||
m_rtree.clear();
|
||||
return m_pck.execute(std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
inline void preload(const _PackGroup<Shape>& pg) {
|
||||
inline void preload(const PackGroup& pg) {
|
||||
m_pconf.alignment = PConfig::Alignment::DONT_ALIGN;
|
||||
m_pconf.object_function = nullptr; // drop the special objectfunction
|
||||
m_pck.preload(pg);
|
||||
@ -396,14 +410,14 @@ public:
|
||||
// Build the rtree for queries to work
|
||||
for(const ItemGroup& grp : pg)
|
||||
for(unsigned idx = 0; idx < grp.size(); ++idx) {
|
||||
_Item<Shape>& itm = grp[idx];
|
||||
Item& itm = grp[idx];
|
||||
m_rtree.insert({itm.boundingBox(), idx});
|
||||
}
|
||||
|
||||
m_pck.configure(m_pconf);
|
||||
}
|
||||
|
||||
bool is_colliding(const _Item<Shape>& item) {
|
||||
bool is_colliding(const Item& item) {
|
||||
if(m_rtree.empty()) return false;
|
||||
std::vector<SpatElement> result;
|
||||
m_rtree.query(bgi::intersects(item.boundingBox()),
|
||||
@ -425,7 +439,7 @@ public:
|
||||
// Here we set up the actual object function that calls the common
|
||||
// object function for all bin shapes than does an additional inside
|
||||
// check for the arranged pile.
|
||||
m_pconf.object_function = [this, bin] (const _Item<Shape> &item) {
|
||||
m_pconf.object_function = [this, bin] (const Item &item) {
|
||||
|
||||
auto result = objfunc(bin.center(),
|
||||
m_merged_pile,
|
||||
@ -452,23 +466,21 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
using lnCircle = libnest2d::_Circle<libnest2d::PointImpl>;
|
||||
|
||||
inline lnCircle to_lnCircle(const Circle& circ) {
|
||||
return lnCircle({circ.center()(0), circ.center()(1)}, circ.radius());
|
||||
inline Circle to_lnCircle(const CircleBed& circ) {
|
||||
return Circle({circ.center()(0), circ.center()(1)}, circ.radius());
|
||||
}
|
||||
|
||||
// Arranger specialization for circle shaped bin.
|
||||
template<> class AutoArranger<lnCircle>: public _ArrBase<lnCircle> {
|
||||
template<> class AutoArranger<Circle>: public _ArrBase<Circle> {
|
||||
public:
|
||||
|
||||
AutoArranger(const lnCircle& bin, Distance dist,
|
||||
AutoArranger(const Circle& bin, Distance dist,
|
||||
std::function<void(unsigned)> progressind = [](unsigned){},
|
||||
std::function<bool(void)> stopcond = [](){return false;}):
|
||||
_ArrBase<lnCircle>(bin, dist, progressind, stopcond) {
|
||||
_ArrBase<Circle>(bin, dist, progressind, stopcond) {
|
||||
|
||||
// As with the box, only the inside check is different.
|
||||
m_pconf.object_function = [this, &bin] (const _Item<Shape> &item) {
|
||||
m_pconf.object_function = [this, &bin] (const Item &item) {
|
||||
|
||||
auto result = objfunc(bin.center(),
|
||||
m_merged_pile,
|
||||
@ -483,7 +495,7 @@ public:
|
||||
|
||||
double score = std::get<0>(result);
|
||||
|
||||
auto isBig = [this](const _Item<Shape>& itm) {
|
||||
auto isBig = [this](const Item& itm) {
|
||||
return itm.area()/m_bin_area > BIG_ITEM_TRESHOLD ;
|
||||
};
|
||||
|
||||
@ -512,7 +524,7 @@ public:
|
||||
std::function<bool(void)> stopcond = [](){return false;}):
|
||||
_ArrBase<PolygonImpl>(bin, dist, progressind, stopcond)
|
||||
{
|
||||
m_pconf.object_function = [this, &bin] (const _Item<Shape> &item) {
|
||||
m_pconf.object_function = [this, &bin] (const Item &item) {
|
||||
|
||||
auto binbb = sl::boundingBox(bin);
|
||||
auto result = objfunc(binbb.center(),
|
||||
@ -544,7 +556,7 @@ public:
|
||||
std::function<bool(void)> stopcond):
|
||||
_ArrBase<Box>(Box(0, 0), dist, progressind, stopcond)
|
||||
{
|
||||
this->m_pconf.object_function = [this] (const _Item<Shape> &item) {
|
||||
this->m_pconf.object_function = [this] (const Item &item) {
|
||||
|
||||
auto result = objfunc({0, 0},
|
||||
m_merged_pile,
|
||||
@ -563,152 +575,12 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
// A container which stores a pointer to the 3D object and its projected
|
||||
// 2D shape from top view.
|
||||
//using ShapeData2D = std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
|
||||
|
||||
//ShapeData2D projectModelFromTop(const Slic3r::Model &model,
|
||||
// const WipeTowerInfo &wti,
|
||||
// double tolerance)
|
||||
//{
|
||||
// ShapeData2D ret;
|
||||
|
||||
// // Count all the items on the bin (all the object's instances)
|
||||
// auto s = std::accumulate(model.objects.begin(), model.objects.end(),
|
||||
// size_t(0), [](size_t s, ModelObject* o)
|
||||
// {
|
||||
// return s + o->instances.size();
|
||||
// });
|
||||
|
||||
// ret.reserve(s);
|
||||
|
||||
// for(ModelObject* objptr : model.objects) {
|
||||
// if (! objptr->instances.empty()) {
|
||||
|
||||
// // TODO export the exact 2D projection. Cannot do it as libnest2d
|
||||
// // does not support concave shapes (yet).
|
||||
// ClipperLib::Path clpath;
|
||||
|
||||
// // Object instances should carry the same scaling and
|
||||
// // x, y rotation that is why we use the first instance.
|
||||
// {
|
||||
// ModelInstance *finst = objptr->instances.front();
|
||||
// Vec3d rotation = finst->get_rotation();
|
||||
// rotation.z() = 0.;
|
||||
// Transform3d trafo_instance = Geometry::assemble_transform(
|
||||
// Vec3d::Zero(),
|
||||
// rotation,
|
||||
// finst->get_scaling_factor(),
|
||||
// finst->get_mirror());
|
||||
// Polygon p = objptr->convex_hull_2d(trafo_instance);
|
||||
|
||||
// assert(!p.points.empty());
|
||||
|
||||
// // this may happen for malformed models, see:
|
||||
// // https://github.com/prusa3d/PrusaSlicer/issues/2209
|
||||
// if (p.points.empty()) continue;
|
||||
|
||||
// if(tolerance > EPSILON) {
|
||||
// Polygons pp { p };
|
||||
// pp = p.simplify(scaled<double>(tolerance));
|
||||
// if (!pp.empty()) p = pp.front();
|
||||
// }
|
||||
|
||||
// p.reverse();
|
||||
// assert(!p.is_counter_clockwise());
|
||||
// clpath = Slic3rMultiPoint_to_ClipperPath(p);
|
||||
// auto firstp = clpath.front(); clpath.emplace_back(firstp);
|
||||
// }
|
||||
|
||||
// Vec3d rotation0 = objptr->instances.front()->get_rotation();
|
||||
// rotation0(2) = 0.;
|
||||
// for(ModelInstance* objinst : objptr->instances) {
|
||||
// ClipperLib::Polygon pn;
|
||||
// pn.Contour = clpath;
|
||||
|
||||
// // Efficient conversion to item.
|
||||
// Item item(std::move(pn));
|
||||
|
||||
// // Invalid geometries would throw exceptions when arranging
|
||||
// if(item.vertexCount() > 3) {
|
||||
// item.rotation(Geometry::rotation_diff_z(rotation0, objinst->get_rotation()));
|
||||
// item.translation({
|
||||
// scaled<ClipperLib::cInt>(objinst->get_offset(X)),
|
||||
// scaled<ClipperLib::cInt>(objinst->get_offset(Y))
|
||||
// });
|
||||
// ret.emplace_back(objinst, item);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
// // The wipe tower is a separate case (in case there is one), let's duplicate the code
|
||||
// if (wti.is_wipe_tower) {
|
||||
// Points pts;
|
||||
// pts.emplace_back(coord_t(scale_(0.)), coord_t(scale_(0.)));
|
||||
// pts.emplace_back(coord_t(scale_(wti.bb_size(0))), coord_t(scale_(0.)));
|
||||
// pts.emplace_back(coord_t(scale_(wti.bb_size(0))), coord_t(scale_(wti.bb_size(1))));
|
||||
// pts.emplace_back(coord_t(scale_(-0.)), coord_t(scale_(wti.bb_size(1))));
|
||||
// pts.emplace_back(coord_t(scale_(-0.)), coord_t(scale_(0.)));
|
||||
// Polygon p(std::move(pts));
|
||||
// ClipperLib::Path clpath = Slic3rMultiPoint_to_ClipperPath(p);
|
||||
// ClipperLib::Polygon pn;
|
||||
// pn.Contour = clpath;
|
||||
// // Efficient conversion to item.
|
||||
// Item item(std::move(pn));
|
||||
// item.rotation(wti.rotation),
|
||||
// item.translation({
|
||||
// scaled<ClipperLib::cInt>(wti.pos(0)),
|
||||
// scaled<ClipperLib::cInt>(wti.pos(1))
|
||||
// });
|
||||
// ret.emplace_back(nullptr, item);
|
||||
// }
|
||||
|
||||
// return ret;
|
||||
//}
|
||||
|
||||
// Apply the calculated translations and rotations (currently disabled) to
|
||||
// the Model object instances.
|
||||
//void applyResult(IndexedPackGroup::value_type &group,
|
||||
// ClipperLib::cInt batch_offset,
|
||||
// ShapeData2D & shapemap,
|
||||
// WipeTowerInfo & wti)
|
||||
//{
|
||||
// for(auto& r : group) {
|
||||
// auto idx = r.first; // get the original item index
|
||||
// Item& item = r.second; // get the item itself
|
||||
|
||||
// // Get the model instance from the shapemap using the index
|
||||
// ModelInstance *inst_ptr = shapemap[idx].first;
|
||||
|
||||
// // Get the transformation data from the item object and scale it
|
||||
// // appropriately
|
||||
// auto off = item.translation();
|
||||
// Radians rot = item.rotation();
|
||||
|
||||
// Vec3d foff(unscaled(off.X + batch_offset),
|
||||
// unscaled(off.Y),
|
||||
// inst_ptr ? inst_ptr->get_offset()(Z) : 0.);
|
||||
|
||||
// if (inst_ptr) {
|
||||
// // write the transformation data into the model instance
|
||||
// inst_ptr->set_rotation(Z, rot);
|
||||
// inst_ptr->set_offset(foff);
|
||||
// }
|
||||
// else { // this is the wipe tower - we will modify the struct with the info
|
||||
// // and leave it up to the called to actually move the wipe tower
|
||||
// wti.pos = Vec2d(foff(0), foff(1));
|
||||
// wti.rotation = rot;
|
||||
// }
|
||||
// }
|
||||
//}
|
||||
|
||||
// Get the type of bed geometry from a simple vector of points.
|
||||
BedShapeHint bedShape(const Polyline &bed) {
|
||||
BedShapeHint ret;
|
||||
|
||||
auto x = [](const Point& p) { return p(0); };
|
||||
auto y = [](const Point& p) { return p(1); };
|
||||
auto x = [](const Point& p) { return p(X); };
|
||||
auto y = [](const Point& p) { return p(Y); };
|
||||
|
||||
auto width = [x](const BoundingBox& box) {
|
||||
return x(box.max) - x(box.min);
|
||||
@ -752,11 +624,11 @@ BedShapeHint bedShape(const Polyline &bed) {
|
||||
|
||||
avg_dist /= vertex_distances.size();
|
||||
|
||||
Circle ret(center, avg_dist);
|
||||
CircleBed ret(center, avg_dist);
|
||||
for(auto el : vertex_distances)
|
||||
{
|
||||
if (std::abs(el - avg_dist) > 10 * SCALED_EPSILON) {
|
||||
ret = Circle();
|
||||
ret = CircleBed();
|
||||
break;
|
||||
}
|
||||
}
|
||||
@ -785,14 +657,14 @@ BedShapeHint bedShape(const Polyline &bed) {
|
||||
//static const SLIC3R_CONSTEXPR double SIMPLIFY_TOLERANCE_MM = 0.1;
|
||||
|
||||
template<class BinT>
|
||||
_PackGroup<Shape> _arrange(std::vector<Shape> &shapes,
|
||||
PackGroup _arrange(std::vector<Item> & items,
|
||||
const BinT & bin,
|
||||
coord_t minobjd,
|
||||
std::function<void(unsigned)> prind,
|
||||
std::function<bool()> stopfn)
|
||||
{
|
||||
AutoArranger<BinT> arranger{bin, minobjd, prind, stopfn};
|
||||
return arranger(shapes.begin(), shapes.end());
|
||||
return arranger(items.begin(), items.end());
|
||||
}
|
||||
|
||||
//template<class BinT>
|
||||
@ -850,185 +722,94 @@ inline SLIC3R_CONSTEXPR coord_t stride_padding(coord_t w)
|
||||
return w + w / 5;
|
||||
}
|
||||
|
||||
bool arrange(ArrangeableRefs & arrangables,
|
||||
//// The final client function to arrange the Model. A progress indicator and
|
||||
//// a stop predicate can be also be passed to control the process.
|
||||
bool arrange(Arrangeables & arrangables,
|
||||
coord_t min_obj_distance,
|
||||
BedShapeHint bedhint,
|
||||
std::function<void(unsigned)> progressind,
|
||||
std::function<bool()> stopcondition)
|
||||
{
|
||||
bool ret = true;
|
||||
namespace clppr = ClipperLib;
|
||||
|
||||
std::vector<Shape> shapes;
|
||||
shapes.reserve(arrangables.size());
|
||||
size_t id = 0;
|
||||
for (Arrangeable &iref : arrangables) {
|
||||
Polygon p = iref.get_arrange_polygon();
|
||||
std::vector<Item> items;
|
||||
items.reserve(arrangables.size());
|
||||
coord_t binwidth = 0;
|
||||
|
||||
p.reverse();
|
||||
assert(!p.is_counter_clockwise());
|
||||
for (Arrangeable *arrangeable : arrangables) {
|
||||
assert(arrangeable);
|
||||
|
||||
Shape clpath(/*id++,*/ Slic3rMultiPoint_to_ClipperPath(p));
|
||||
auto arrangeitem = arrangeable->get_arrange_polygon();
|
||||
|
||||
auto firstp = clpath.Contour.front(); clpath.Contour.emplace_back(firstp);
|
||||
shapes.emplace_back(std::move(clpath));
|
||||
Polygon& p = std::get<0>(arrangeitem);
|
||||
const Vec2crd& offs = std::get<1>(arrangeitem);
|
||||
double rotation = std::get<2>(arrangeitem);
|
||||
|
||||
if (p.is_counter_clockwise()) p.reverse();
|
||||
|
||||
clppr::Polygon clpath(Slic3rMultiPoint_to_ClipperPath(p));
|
||||
|
||||
auto firstp = clpath.Contour.front();
|
||||
clpath.Contour.emplace_back(firstp);
|
||||
|
||||
items.emplace_back(
|
||||
// callback called by arrange to apply the result on the arrangeable
|
||||
[arrangeable, &binwidth](const Item &itm, unsigned binidx) {
|
||||
clppr::cInt stride = binidx * stride_padding(binwidth);
|
||||
|
||||
clppr::IntPoint offs = itm.translation();
|
||||
arrangeable->apply_arrange_result({unscaled(offs.X + stride),
|
||||
unscaled(offs.Y)},
|
||||
itm.rotation());
|
||||
},
|
||||
std::move(clpath));
|
||||
items.front().rotation(rotation);
|
||||
items.front().translation({offs.x(), offs.y()});
|
||||
}
|
||||
|
||||
_PackGroup<Shape> result;
|
||||
|
||||
auto& cfn = stopcondition;
|
||||
|
||||
// Integer ceiling the min distance from the bed perimeters
|
||||
coord_t md = min_obj_distance - SCALED_EPSILON;
|
||||
md = (md % 2) ? md / 2 + 1 : md / 2;
|
||||
coord_t binwidth = 0;
|
||||
|
||||
switch (bedhint.type) {
|
||||
case BedShapeType::BOX: {
|
||||
// Create the arranger for the box shaped bed
|
||||
BoundingBox bbb = bedhint.shape.box;
|
||||
bbb.min -= Point{md, md}, bbb.max += Point{md, md};
|
||||
|
||||
auto binbb = Box({ClipperLib::cInt{bbb.min(0)} - md,
|
||||
ClipperLib::cInt{bbb.min(1)} - md},
|
||||
{ClipperLib::cInt{bbb.max(0)} + md,
|
||||
ClipperLib::cInt{bbb.max(1)} + md});
|
||||
|
||||
result = _arrange(shapes, binbb, min_obj_distance, progressind, cfn);
|
||||
Box binbb{{bbb.min(X), bbb.min(Y)}, {bbb.max(X), bbb.max(Y)}};
|
||||
binwidth = coord_t(binbb.width());
|
||||
|
||||
_arrange(items, binbb, min_obj_distance, progressind, stopcondition);
|
||||
break;
|
||||
}
|
||||
case BedShapeType::CIRCLE: {
|
||||
auto c = bedhint.shape.circ;
|
||||
auto cc = to_lnCircle(c);
|
||||
result = _arrange(shapes, cc, min_obj_distance, progressind, cfn);
|
||||
binwidth = scaled(c.radius());
|
||||
_arrange(items, cc, min_obj_distance, progressind, stopcondition);
|
||||
break;
|
||||
}
|
||||
case BedShapeType::IRREGULAR: {
|
||||
auto ctour = Slic3rMultiPoint_to_ClipperPath(bedhint.shape.polygon);
|
||||
ClipperLib::Polygon irrbed = sl::create<PolygonImpl>(std::move(ctour));
|
||||
result = _arrange(shapes, irrbed, min_obj_distance, progressind, cfn);
|
||||
auto irrbed = sl::create<clppr::Polygon>(std::move(ctour));
|
||||
BoundingBox polybb(bedhint.shape.polygon);
|
||||
binwidth = (polybb.max(X) - polybb.min(X));
|
||||
_arrange(items, irrbed, min_obj_distance, progressind, stopcondition);
|
||||
break;
|
||||
}
|
||||
case BedShapeType::WHO_KNOWS: {
|
||||
result = _arrange(shapes, false, min_obj_distance, progressind, cfn);
|
||||
_arrange(items, false, min_obj_distance, progressind, stopcondition);
|
||||
break;
|
||||
}
|
||||
};
|
||||
|
||||
if(result.empty() || stopcondition()) return false;
|
||||
|
||||
ClipperLib::cInt stride = stride_padding(binwidth);
|
||||
ClipperLib::cInt batch_offset = 0;
|
||||
|
||||
for (const auto &group : result) {
|
||||
for (_Item<Shape> &itm : group) {
|
||||
ClipperLib::IntPoint offs = itm.translation();
|
||||
// arrangables[itm.id()].get().set_arrange_result({offs.X, offs.Y},
|
||||
// itm.rotation());
|
||||
}
|
||||
|
||||
// Only the first pack group can be placed onto the print bed. The
|
||||
// other objects which could not fit will be placed next to the
|
||||
// print bed
|
||||
batch_offset += stride;
|
||||
}
|
||||
if(stopcondition()) return false;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
//// The final client function to arrange the Model. A progress indicator and
|
||||
//// a stop predicate can be also be passed to control the process.
|
||||
//bool arrange(Model &model, // The model with the geometries
|
||||
// WipeTowerInfo& wti, // Wipe tower info
|
||||
// coord_t min_obj_distance, // Has to be in scaled (clipper) measure
|
||||
// const Polyline &bed, // The bed geometry.
|
||||
// BedShapeHint bedhint, // Hint about the bed geometry type.
|
||||
// bool first_bin_only, // What to do is not all items fit.
|
||||
|
||||
// // Controlling callbacks.
|
||||
// std::function<void (unsigned)> progressind,
|
||||
// std::function<bool ()> stopcondition)
|
||||
//{
|
||||
// bool ret = true;
|
||||
|
||||
// // Get the 2D projected shapes with their 3D model instance pointers
|
||||
// auto shapemap = arr::projectModelFromTop(model, wti, SIMPLIFY_TOLERANCE_MM);
|
||||
|
||||
// // Copy the references for the shapes only as the arranger expects a
|
||||
// // sequence of objects convertible to Item or ClipperPolygon
|
||||
// std::vector<std::reference_wrapper<Item>> shapes;
|
||||
// shapes.reserve(shapemap.size());
|
||||
// std::for_each(shapemap.begin(), shapemap.end(),
|
||||
// [&shapes] (ShapeData2D::value_type& it)
|
||||
// {
|
||||
// shapes.push_back(std::ref(it.second));
|
||||
// });
|
||||
|
||||
// IndexedPackGroup result;
|
||||
|
||||
// // If there is no hint about the shape, we will try to guess
|
||||
// if(bedhint.type == BedShapeType::WHO_KNOWS) bedhint = bedShape(bed);
|
||||
|
||||
// BoundingBox bbb(bed);
|
||||
|
||||
// auto& cfn = stopcondition;
|
||||
|
||||
// // Integer ceiling the min distance from the bed perimeters
|
||||
// coord_t md = min_obj_distance - SCALED_EPSILON;
|
||||
// md = (md % 2) ? md / 2 + 1 : md / 2;
|
||||
|
||||
// auto binbb = Box({ClipperLib::cInt{bbb.min(0)} - md,
|
||||
// ClipperLib::cInt{bbb.min(1)} - md},
|
||||
// {ClipperLib::cInt{bbb.max(0)} + md,
|
||||
// ClipperLib::cInt{bbb.max(1)} + md});
|
||||
|
||||
// switch(bedhint.type) {
|
||||
// case BedShapeType::BOX: {
|
||||
// // Create the arranger for the box shaped bed
|
||||
// result = _arrange(shapes, binbb, min_obj_distance, progressind, cfn);
|
||||
// break;
|
||||
// }
|
||||
// case BedShapeType::CIRCLE: {
|
||||
// auto c = bedhint.shape.circ;
|
||||
// auto cc = to_lnCircle(c);
|
||||
// result = _arrange(shapes, cc, min_obj_distance, progressind, cfn);
|
||||
// break;
|
||||
// }
|
||||
// case BedShapeType::IRREGULAR:
|
||||
// case BedShapeType::WHO_KNOWS: {
|
||||
// auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
|
||||
// ClipperLib::Polygon irrbed = sl::create<PolygonImpl>(std::move(ctour));
|
||||
// result = _arrange(shapes, irrbed, min_obj_distance, progressind, cfn);
|
||||
// break;
|
||||
// }
|
||||
// };
|
||||
|
||||
// if(result.empty() || stopcondition()) return false;
|
||||
|
||||
// if(first_bin_only) {
|
||||
// applyResult(result.front(), 0, shapemap, wti);
|
||||
// } else {
|
||||
|
||||
// ClipperLib::cInt stride = stride_padding(binbb.width());
|
||||
// ClipperLib::cInt batch_offset = 0;
|
||||
|
||||
// for(auto& group : result) {
|
||||
// applyResult(group, batch_offset, shapemap, wti);
|
||||
|
||||
// // Only the first pack group can be placed onto the print bed. The
|
||||
// // other objects which could not fit will be placed next to the
|
||||
// // print bed
|
||||
// batch_offset += stride;
|
||||
// }
|
||||
// }
|
||||
|
||||
// for(auto objptr : model.objects) objptr->invalidate_bounding_box();
|
||||
|
||||
// return ret && result.size() == 1;
|
||||
//}
|
||||
|
||||
//void find_new_position(const Model &model,
|
||||
// ModelInstancePtrs toadd,
|
||||
// coord_t min_obj_distance,
|
||||
|
@ -11,13 +11,13 @@ class Model;
|
||||
|
||||
namespace arr {
|
||||
|
||||
class Circle {
|
||||
class CircleBed {
|
||||
Point center_;
|
||||
double radius_;
|
||||
public:
|
||||
|
||||
inline Circle(): center_(0, 0), radius_(std::nan("")) {}
|
||||
inline Circle(const Point& c, double r): center_(c), radius_(r) {}
|
||||
inline CircleBed(): center_(0, 0), radius_(std::nan("")) {}
|
||||
inline CircleBed(const Point& c, double r): center_(c), radius_(r) {}
|
||||
|
||||
inline double radius() const { return radius_; }
|
||||
inline const Point& center() const { return center_; }
|
||||
@ -34,7 +34,7 @@ enum class BedShapeType {
|
||||
struct BedShapeHint {
|
||||
BedShapeType type = BedShapeType::WHO_KNOWS;
|
||||
/*union*/ struct { // I know but who cares... TODO: use variant from cpp17?
|
||||
Circle circ;
|
||||
CircleBed circ;
|
||||
BoundingBox box;
|
||||
Polyline polygon;
|
||||
} shape;
|
||||
@ -47,12 +47,13 @@ public:
|
||||
|
||||
virtual ~Arrangeable() = default;
|
||||
|
||||
virtual void set_arrange_result(Vec2d offset, double rotation_rads) = 0;
|
||||
virtual void apply_arrange_result(Vec2d offset, double rotation_rads) = 0;
|
||||
|
||||
virtual Polygon get_arrange_polygon() const = 0;
|
||||
/// Get the 2D silhouette to arrange and an initial offset and rotation
|
||||
virtual std::tuple<Polygon, Vec2crd, double> get_arrange_polygon() const = 0;
|
||||
};
|
||||
|
||||
using ArrangeableRefs = std::vector<std::reference_wrapper<Arrangeable>>;
|
||||
using Arrangeables = std::vector<Arrangeable*>;
|
||||
|
||||
/**
|
||||
* \brief Arranges the model objects on the screen.
|
||||
@ -89,7 +90,7 @@ using ArrangeableRefs = std::vector<std::reference_wrapper<Arrangeable>>;
|
||||
// std::function<void(unsigned)> progressind,
|
||||
// std::function<bool(void)> stopcondition);
|
||||
|
||||
bool arrange(ArrangeableRefs &items,
|
||||
bool arrange(Arrangeables &items,
|
||||
coord_t min_obj_distance,
|
||||
BedShapeHint bedhint,
|
||||
std::function<void(unsigned)> progressind,
|
||||
@ -102,8 +103,8 @@ bool arrange(ArrangeableRefs &items,
|
||||
// coord_t min_obj_distance,
|
||||
// const Slic3r::Polyline& bed,
|
||||
// WipeTowerInfo& wti);
|
||||
void find_new_position(ArrangeableRefs &items,
|
||||
const ArrangeableRefs &instances_to_add,
|
||||
void find_new_position(Arrangeables &items,
|
||||
const Arrangeables &instances_to_add,
|
||||
coord_t min_obj_distance,
|
||||
BedShapeHint bedhint);
|
||||
|
||||
|
@ -5739,10 +5739,10 @@ const SLAPrint* GLCanvas3D::sla_print() const
|
||||
return (m_process == nullptr) ? nullptr : m_process->sla_print();
|
||||
}
|
||||
|
||||
void GLCanvas3D::WipeTowerInfo::set_arrange_result(Vec2d offset, double rotation_rads)
|
||||
void GLCanvas3D::WipeTowerInfo::apply_arrange_result(Vec2d offset, double rotation_rads)
|
||||
{
|
||||
m_pos += offset;
|
||||
m_rotation += rotation_rads;
|
||||
m_pos = offset;
|
||||
m_rotation = rotation_rads;
|
||||
DynamicPrintConfig cfg;
|
||||
cfg.opt<ConfigOptionFloat>("wipe_tower_x", true)->value = m_pos(X);
|
||||
cfg.opt<ConfigOptionFloat>("wipe_tower_y", true)->value = m_pos(Y);
|
||||
|
@ -621,12 +621,12 @@ public:
|
||||
|
||||
inline operator bool() const
|
||||
{
|
||||
return std::isnan(m_pos.x()) || std::isnan(m_pos.y());
|
||||
return !std::isnan(m_pos.x()) && !std::isnan(m_pos.y());
|
||||
}
|
||||
|
||||
virtual void set_arrange_result(Vec2d offset, double rotation_rads) final;
|
||||
virtual void apply_arrange_result(Vec2d offset, double rotation_rads) final;
|
||||
|
||||
virtual Polygon get_arrange_polygon() const final
|
||||
virtual std::tuple<Polygon, Vec2crd, double> get_arrange_polygon() const final
|
||||
{
|
||||
Polygon p({
|
||||
{coord_t(0), coord_t(0)},
|
||||
@ -636,9 +636,7 @@ public:
|
||||
{coord_t(0), coord_t(0)},
|
||||
});
|
||||
|
||||
p.rotate(m_rotation);
|
||||
p.translate(scaled(m_pos));
|
||||
return p;
|
||||
return std::make_tuple(p, scaled(m_pos), m_rotation);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -2423,10 +2423,14 @@ arr::BedShapeHint Plater::priv::get_bed_shape_hint() const {
|
||||
void Plater::priv::ExclusiveJobGroup::ArrangeJob::process() {
|
||||
static const auto arrangestr = _(L("Arranging"));
|
||||
|
||||
arr::ArrangeableRefs arrangeinput; arrangeinput.reserve(m_count);
|
||||
// Collect the model instances and place them into the input vector
|
||||
arr::Arrangeables arrangeinput; arrangeinput.reserve(m_count);
|
||||
for(ModelObject *mo : plater().model.objects)
|
||||
for(ModelInstance *minst : mo->instances)
|
||||
arrangeinput.emplace_back(std::ref(*minst));
|
||||
arrangeinput.emplace_back(minst);
|
||||
|
||||
// Place back the wipe tower if that's available.
|
||||
if (m_wti) arrangeinput.emplace_back(&m_wti);
|
||||
|
||||
// FIXME: I don't know how to obtain the minimum distance, it depends
|
||||
// on printer technology. I guess the following should work but it crashes.
|
||||
@ -3456,7 +3460,7 @@ void Plater::priv::set_bed_shape(const Pointfs& shape)
|
||||
|
||||
bool Plater::priv::can_delete() const
|
||||
{
|
||||
return !get_selection().is_empty() && !get_selection().is_wipe_tower();
|
||||
return !get_selection().is_empty() && !get_selection().is_wipe_tower() && !m_ui_jobs.is_any_running();
|
||||
}
|
||||
|
||||
bool Plater::priv::can_delete_all() const
|
||||
|
Loading…
Reference in New Issue
Block a user