Merge remote-tracking branch 'remotes/origin/feature_arrange_with_libnest2d'

This commit is contained in:
bubnikv 2018-07-17 19:42:02 +02:00
commit 36c1483ec5
6 changed files with 158 additions and 188 deletions

View File

@ -82,8 +82,8 @@ if(LIBNEST2D_OPTIMIZER_BACKEND STREQUAL "nlopt")
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/optimizers/genetic.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/optimizers/nlopt_boilerplate.hpp)
list(APPEND LIBNEST2D_LIBRARIES ${NLopt_LIBS}
# Threads::Threads
)
# Threads::Threads
)
list(APPEND LIBNEST2D_HEADERS ${NLopt_INCLUDE_DIR})
endif()

View File

@ -84,7 +84,8 @@ void arrangeRectangles() {
// {{0, 0}, {0, 20*SCALE}, {10*SCALE, 0}, {0, 0}}
// };
std::vector<Item> crasher = {
std::vector<Item> crasher =
{
{
{-5000000, 8954050},
{5000000, 8954050},
@ -527,12 +528,12 @@ void arrangeRectangles() {
};
std::vector<Item> input;
// input.insert(input.end(), prusaParts().begin(), prusaParts().end());
input.insert(input.end(), prusaParts().begin(), prusaParts().end());
// input.insert(input.end(), prusaExParts().begin(), prusaExParts().end());
// input.insert(input.end(), stegoParts().begin(), stegoParts().end());
// input.insert(input.end(), rects.begin(), rects.end());
// input.insert(input.end(), proba.begin(), proba.end());
input.insert(input.end(), crasher.begin(), crasher.end());
// input.insert(input.end(), crasher.begin(), crasher.end());
Box bin(250*SCALE, 210*SCALE);
@ -545,18 +546,18 @@ void arrangeRectangles() {
Packer::PlacementConfig pconf;
pconf.alignment = Placer::Config::Alignment::CENTER;
pconf.starting_point = Placer::Config::Alignment::CENTER;
pconf.rotations = {0.0/*, Pi/2.0, Pi, 3*Pi/2*/};
pconf.object_function = [&bin](Placer::Pile pile, double area,
double norm, double penality) {
auto bb = ShapeLike::boundingBox(pile);
double diameter = PointLike::distance(bb.minCorner(),
bb.maxCorner());
// We will optimize to the diameter of the circle around the bounding
// box and use the norming factor to get rid of the physical dimensions
double score = diameter / norm;
auto& sh = pile.back();
auto rv = Nfp::referenceVertex(sh);
auto c = bin.center();
auto d = PointLike::distance(rv, c);
double score = double(d)/norm;
// If it does not fit into the print bed we will beat it
// with a large penality
@ -568,7 +569,9 @@ void arrangeRectangles() {
Packer::SelectionConfig sconf;
// sconf.allow_parallel = false;
// sconf.force_parallel = false;
// sconf.try_triplets = true;
// sconf.try_reverse_order = true;
// sconf.waste_increment = 0.1;
arrange.configure(pconf, sconf);

View File

@ -26,11 +26,20 @@ struct NfpPConfig {
/// Where to align the resulting packed pile
Alignment alignment;
Alignment starting_point;
std::function<double(const Nfp::Shapes<RawShape>&, double, double, double)>
object_function;
/**
* @brief The quality of search for an optimal placement.
* This is a compromise slider between quality and speed. Zero is the
* fast and poor solution while 1.0 is the slowest but most accurate.
*/
float accuracy = 1.0;
NfpPConfig(): rotations({0.0, Pi/2.0, Pi, 3*Pi/2}),
alignment(Alignment::CENTER) {}
alignment(Alignment::CENTER), starting_point(Alignment::CENTER) {}
};
// A class for getting a point on the circumference of the polygon (in log time)
@ -39,14 +48,6 @@ template<class RawShape> class EdgeCache {
using Coord = TCoord<Vertex>;
using Edge = _Segment<Vertex>;
// enum Corners {
// BOTTOM,
// LEFT,
// RIGHT,
// TOP,
// NUM_CORNERS
// };
mutable std::vector<double> corners_;
std::vector<Edge> emap_;
@ -70,49 +71,9 @@ template<class RawShape> class EdgeCache {
void fetchCorners() const {
if(!corners_.empty()) return;
// TODO Accuracy
corners_ = distances_;
for(auto& d : corners_) {
d /= full_distance_;
}
// corners_ = std::vector<double>(NUM_CORNERS, 0.0);
// std::vector<unsigned> idx_ud(emap_.size(), 0);
// std::vector<unsigned> idx_lr(emap_.size(), 0);
// std::iota(idx_ud.begin(), idx_ud.end(), 0);
// std::iota(idx_lr.begin(), idx_lr.end(), 0);
// std::sort(idx_ud.begin(), idx_ud.end(),
// [this](unsigned idx1, unsigned idx2)
// {
// const Vertex& v1 = emap_[idx1].first();
// const Vertex& v2 = emap_[idx2].first();
// auto diff = getY(v1) - getY(v2);
// if(std::abs(diff) <= std::numeric_limits<Coord>::epsilon())
// return getX(v1) < getX(v2);
// return diff < 0;
// });
// std::sort(idx_lr.begin(), idx_lr.end(),
// [this](unsigned idx1, unsigned idx2)
// {
// const Vertex& v1 = emap_[idx1].first();
// const Vertex& v2 = emap_[idx2].first();
// auto diff = getX(v1) - getX(v2);
// if(std::abs(diff) <= std::numeric_limits<Coord>::epsilon())
// return getY(v1) < getY(v2);
// return diff < 0;
// });
// corners_[BOTTOM] = distances_[idx_ud.front()]/full_distance_;
// corners_[TOP] = distances_[idx_ud.back()]/full_distance_;
// corners_[LEFT] = distances_[idx_lr.front()]/full_distance_;
// corners_[RIGHT] = distances_[idx_lr.back()]/full_distance_;
for(auto& d : corners_) d /= full_distance_;
}
public:
@ -167,12 +128,6 @@ public:
inline double circumference() const BP2D_NOEXCEPT { return full_distance_; }
// inline double corner(Corners c) const BP2D_NOEXCEPT {
// assert(c < NUM_CORNERS);
// fetchCorners();
// return corners_[c];
// }
inline const std::vector<double>& corners() const BP2D_NOEXCEPT {
fetchCorners();
return corners_;
@ -400,7 +355,7 @@ public:
opt::StopCriteria stopcr;
stopcr.max_iterations = 1000;
stopcr.stoplimit = 0.01;
stopcr.stoplimit = 0.001;
stopcr.type = opt::StopLimitType::RELATIVE;
opt::TOptimizer<opt::Method::L_SIMPLEX> solver(stopcr);
@ -518,11 +473,37 @@ private:
void setInitialPosition(Item& item) {
Box&& bb = item.boundingBox();
Vertex ci, cb;
Vertex ci = bb.minCorner();
Vertex cb = bin_.minCorner();
switch(config_.starting_point) {
case Config::Alignment::CENTER: {
ci = bb.center();
cb = bin_.center();
break;
}
case Config::Alignment::BOTTOM_LEFT: {
ci = bb.minCorner();
cb = bin_.minCorner();
break;
}
case Config::Alignment::BOTTOM_RIGHT: {
ci = {getX(bb.maxCorner()), getY(bb.minCorner())};
cb = {getX(bin_.maxCorner()), getY(bin_.minCorner())};
break;
}
case Config::Alignment::TOP_LEFT: {
ci = {getX(bb.minCorner()), getY(bb.maxCorner())};
cb = {getX(bin_.minCorner()), getY(bin_.maxCorner())};
break;
}
case Config::Alignment::TOP_RIGHT: {
ci = bb.maxCorner();
cb = bin_.maxCorner();
break;
}
}
auto&& d = cb - ci;
auto d = cb - ci;
item.translate(d);
}

View File

@ -41,11 +41,24 @@ public:
struct Config {
/**
* If true, the algorithm will try to place pair and driplets in all
* possible order.
* If true, the algorithm will try to place pair and triplets in all
* possible order. It will have a hugely negative impact on performance.
*/
bool try_reverse_order = true;
/**
* @brief try_pairs Whether to try pairs of items to pack. It will add
* a quadratic component to the complexity.
*/
bool try_pairs = true;
/**
* @brief Whether to try groups of 3 items to pack. This could be very
* slow for large number of items (>100) as it adds a cubic component
* to the complexity.
*/
bool try_triplets = false;
/**
* The initial fill proportion of the bin area that will be filled before
* trying items one by one, or pairs or triplets.
@ -151,8 +164,8 @@ public:
return std::any_of(wrong_pairs.begin(), wrong_pairs.end(),
[&i1, &i2](const TPair& pair)
{
Item& pi1 = std::get<0>(pair), pi2 = std::get<1>(pair);
Item& ri1 = i1, ri2 = i2;
Item& pi1 = std::get<0>(pair), &pi2 = std::get<1>(pair);
Item& ri1 = i1, &ri2 = i2;
return (&pi1 == &ri1 && &pi2 == &ri2) ||
(&pi1 == &ri2 && &pi2 == &ri1);
});
@ -172,7 +185,7 @@ public:
Item& pi1 = std::get<0>(tripl);
Item& pi2 = std::get<1>(tripl);
Item& pi3 = std::get<2>(tripl);
Item& ri1 = i1, ri2 = i2, ri3 = i3;
Item& ri1 = i1, &ri2 = i2, &ri3 = i3;
return (&pi1 == &ri1 && &pi2 == &ri2 && &pi3 == &ri3) ||
(&pi1 == &ri1 && &pi2 == &ri3 && &pi3 == &ri2) ||
(&pi1 == &ri2 && &pi2 == &ri1 && &pi3 == &ri3) ||
@ -348,6 +361,10 @@ public:
// Will be true if a succesfull pack can be made.
bool ret = false;
auto area = [](const ItemListIt& it) {
return it->get().area();
};
while (it != endit && !ret) { // drill down 1st level
// We need to determine in each iteration the largest, second
@ -361,7 +378,7 @@ public:
// Check if there is enough free area for the item and the two
// largest item
if(free_area - it->get().area() - area_of_two_largest > waste)
if(free_area - area(it) - area_of_two_largest > waste)
break;
// Determine the area of the two smallest item.
@ -373,7 +390,7 @@ public:
double area_of_two_smallest =
smallest.area() + second_smallest.area();
if(it->get().area() + area_of_two_smallest > free_area) {
if(area(it) + area_of_two_smallest > free_area) {
it++; continue;
}
@ -384,16 +401,18 @@ public:
it2 = not_packed.begin();
double rem2_area = free_area - largest.area();
double a2_sum = it->get().area() + it2->get().area();
double a2_sum = 0;
while(it2 != endit && !ret &&
rem2_area - a2_sum <= waste) { // Drill down level 2
rem2_area - (a2_sum = area(it) + area(it2)) <= waste) {
// Drill down level 2
if(a2_sum != area(it) + area(it2)) throw -1;
if(it == it2 || check_pair(wrong_pairs, *it, *it2)) {
it2++; continue;
}
a2_sum = it->get().area() + it2->get().area();
if(a2_sum + smallest.area() > free_area) {
it2++; continue;
}
@ -429,14 +448,13 @@ public:
// The 'smallest' variable now could be identical with
// it2 but we don't bother with that
if(!can_pack2) { it2++; continue; }
it3 = not_packed.begin();
double a3_sum = a2_sum + it3->get().area();
double a3_sum = 0;
while(it3 != endit && !ret &&
free_area - a3_sum <= waste) { // 3rd level
free_area - (a3_sum = a2_sum + area(it3)) <= waste) {
// 3rd level
if(it3 == it || it3 == it2 ||
check_triplet(wrong_triplets, *it, *it2, *it3))
@ -560,8 +578,11 @@ public:
if(do_parallel) dout() << "Parallel execution..." << "\n";
bool do_pairs = config_.try_pairs;
bool do_triplets = config_.try_triplets;
// The DJD heuristic algorithm itself:
auto packjob = [INITIAL_FILL_AREA, bin_area, w,
auto packjob = [INITIAL_FILL_AREA, bin_area, w, do_triplets, do_pairs,
&tryOneByOne,
&tryGroupsOfTwo,
&tryGroupsOfThree,
@ -573,7 +594,7 @@ public:
double waste = .0;
bool lasttry = false;
while(!not_packed.empty() ) {
while(!not_packed.empty()) {
{// Fill the bin up to INITIAL_FILL_PROPORTION of its capacity
auto it = not_packed.begin();
@ -594,26 +615,25 @@ public:
// try pieses one by one
while(tryOneByOne(placer, not_packed, waste, free_area,
filled_area)) {
if(lasttry) std::cout << "Lasttry monopack" << std::endl;
waste = 0; lasttry = false;
makeProgress(placer, idx, 1);
}
// try groups of 2 pieses
while(tryGroupsOfTwo(placer, not_packed, waste, free_area,
while(do_pairs &&
tryGroupsOfTwo(placer, not_packed, waste, free_area,
filled_area)) {
if(lasttry) std::cout << "Lasttry bipack" << std::endl;
waste = 0; lasttry = false;
makeProgress(placer, idx, 2);
}
// // try groups of 3 pieses
// while(tryGroupsOfThree(placer, not_packed, waste, free_area,
// filled_area)) {
// if(lasttry) std::cout << "Lasttry tripack" << std::endl;
// waste = 0; lasttry = false;
// makeProgress(placer, idx, 3);
// }
// try groups of 3 pieses
while(do_triplets &&
tryGroupsOfThree(placer, not_packed, waste, free_area,
filled_area)) {
waste = 0; lasttry = false;
makeProgress(placer, idx, 3);
}
waste += w;
if(!lasttry && waste > free_area) lasttry = true;

View File

@ -55,6 +55,18 @@ public:
this->progress_(--total);
};
// Safety test: try to pack each item into an empty bin. If it fails
// then it should be removed from the not_packed list
{ auto it = store_.begin();
while (it != store_.end()) {
Placer p(bin);
if(!p.pack(*it)) {
auto itmp = it++;
store_.erase(itmp);
} else it++;
}
}
for(auto& item : store_ ) {
bool was_packed = false;
while(!was_packed) {

View File

@ -19,7 +19,6 @@
#include <boost/nowide/iostream.hpp>
#include <boost/algorithm/string/replace.hpp>
// #include <benchmark.h>
#include "SVG.hpp"
#include <Eigen/Dense>
@ -309,7 +308,7 @@ namespace arr {
using namespace libnest2d;
std::string toString(const Model& model) {
std::string toString(const Model& model, bool holes = true) {
std::stringstream ss;
ss << "{\n";
@ -348,17 +347,17 @@ std::string toString(const Model& model) {
// Holes:
ss << "\t\t{\n";
// for(auto h : expoly.holes) {
// ss << "\t\t\t{\n";
// for(auto v : h.points) ss << "\t\t\t\t{"
// << v.x << ", "
// << v.y << "},\n";
// {
// auto v = h.points.front();
// ss << "\t\t\t\t{" << v.x << ", " << v.y << "},\n";
// }
// ss << "\t\t\t},\n";
// }
if(holes) for(auto h : expoly.holes) {
ss << "\t\t\t{\n";
for(auto v : h.points) ss << "\t\t\t\t{"
<< v.x << ", "
<< v.y << "},\n";
{
auto v = h.points.front();
ss << "\t\t\t\t{" << v.x << ", " << v.y << "},\n";
}
ss << "\t\t\t},\n";
}
ss << "\t\t},\n";
ss << "\t},\n";
@ -477,58 +476,21 @@ bool arrange(Model &model, coordf_t dist, const Slic3r::BoundingBoxf* bb,
// Create the arranger config
auto min_obj_distance = static_cast<Coord>(dist/SCALING_FACTOR);
// Benchmark bench;
// std::cout << "Creating model siluett..." << std::endl;
// bench.start();
// Get the 2D projected shapes with their 3D model instance pointers
auto shapemap = arr::projectModelFromTop(model);
// bench.stop();
// std::cout << "Model siluett created in " << bench.getElapsedSec()
// << " seconds. " << "Min object distance = " << min_obj_distance << std::endl;
// std::cout << "{" << std::endl;
// std::for_each(shapemap.begin(), shapemap.end(),
// [] (ShapeData2D::value_type& it)
// {
// std::cout << "\t{" << std::endl;
// Item& item = it.second;
// for(auto& v : item) {
// std::cout << "\t\t" << "{" << getX(v)
// << ", " << getY(v) << "},\n";
// }
// std::cout << "\t}," << std::endl;
// });
// std::cout << "}" << std::endl;
// return true;
bool hasbin = bb != nullptr && bb->defined;
double area_max = 0;
Item *biggest = nullptr;
// Copy the references for the shapes only as the arranger expects a
// sequence of objects convertible to Item or ClipperPolygon
std::vector<std::reference_wrapper<Item>> shapes;
shapes.reserve(shapemap.size());
std::for_each(shapemap.begin(), shapemap.end(),
[&shapes, min_obj_distance, &area_max, &biggest,hasbin]
[&shapes, min_obj_distance, &area_max, hasbin]
(ShapeData2D::value_type& it)
{
if(!hasbin) {
Item& item = it.second;
item.addOffset(min_obj_distance);
auto b = ShapeLike::boundingBox(item.transformedShape());
auto a = b.width()*b.height();
if(area_max < a) {
area_max = static_cast<double>(a);
biggest = &item;
}
}
shapes.push_back(std::ref(it.second));
});
Box bin;
@ -546,9 +508,6 @@ bool arrange(Model &model, coordf_t dist, const Slic3r::BoundingBoxf* bb,
static_cast<libnest2d::Coord>(bbb.max.x),
static_cast<libnest2d::Coord>(bbb.max.y)
});
} else {
// Just take the biggest item as bin... ?
bin = ShapeLike::boundingBox(biggest->transformedShape());
}
// Will use the DJD selection heuristic with the BottomLeft placement
@ -563,20 +522,22 @@ bool arrange(Model &model, coordf_t dist, const Slic3r::BoundingBoxf* bb,
// Align the arranged pile into the center of the bin
pcfg.alignment = PConf::Alignment::CENTER;
// Start placing the items from the center of the print bed
pcfg.starting_point = PConf::Alignment::CENTER;
// TODO cannot use rotations until multiple objects of same geometry can
// handle different rotations
// arranger.useMinimumBoundigBoxRotation();
pcfg.rotations = { 0.0 };
// Magic: we will specify what is the goal of arrangement...
// In this case we override the default object function because we
// (apparently) don't care about pack efficiency and all we care is that the
// larger items go into the center of the pile and smaller items orbit it
// so the resulting pile has a circle-like shape.
// This is good for the print bed's heat profile.
// As a side effect, the arrange procedure is a lot faster (we do not need
// to calculate the convex hulls)
pcfg.object_function = [&bin](
// In this case we override the default object to make the larger items go
// into the center of the pile and smaller items orbit it so the resulting
// pile has a circle-like shape. This is good for the print bed's heat
// profile. We alse sacrafice a bit of pack efficiency for this to work. As
// a side effect, the arrange procedure is a lot faster (we do not need to
// calculate the convex hulls)
pcfg.object_function = [bin, hasbin](
NfpPlacer::Pile pile, // The currently arranged pile
double /*area*/, // Sum area of items (not needed)
double norm, // A norming factor for physical dimensions
@ -584,14 +545,25 @@ bool arrange(Model &model, coordf_t dist, const Slic3r::BoundingBoxf* bb,
{
auto bb = ShapeLike::boundingBox(pile);
// We will optimize to the diameter of the circle around the bounding
// box and use the norming factor to get rid of the physical dimensions
double score = PointLike::distance(bb.minCorner(),
bb.maxCorner()) / norm;
// We get the current item that's being evaluated.
auto& sh = pile.back();
// We retrieve the reference point of this item
auto rv = Nfp::referenceVertex(sh);
// We get the distance of the reference point from the center of the
// heat bed
auto c = bin.center();
auto d = PointLike::distance(rv, c);
// The score will be the normalized distance which will be minimized,
// effectively creating a circle shaped pile of items
double score = double(d)/norm;
// If it does not fit into the print bed we will beat it
// with a large penality
if(!NfpPlacer::wouldFit(bb, bin)) score = 2*penality - score;
// with a large penality. If we would not do this, there would be only
// one big pile that doesn't care whether it fits onto the print bed.
if(hasbin && !NfpPlacer::wouldFit(bb, bin)) score = 2*penality - score;
return score;
};
@ -602,18 +574,10 @@ bool arrange(Model &model, coordf_t dist, const Slic3r::BoundingBoxf* bb,
// Set the progress indicator for the arranger.
arranger.progressIndicator(progressind);
// std::cout << "Arranging model..." << std::endl;
// bench.start();
// Arrange and return the items with their respective indices within the
// input sequence.
auto result = arranger.arrangeIndexed(shapes.begin(), shapes.end());
// bench.stop();
// std::cout << "Model arranged in " << bench.getElapsedSec()
// << " seconds." << std::endl;
auto applyResult = [&shapemap](ArrangeResult::value_type& group,
Coord batch_offset)
{
@ -637,8 +601,6 @@ bool arrange(Model &model, coordf_t dist, const Slic3r::BoundingBoxf* bb,
}
};
// std::cout << "Applying result..." << std::endl;
// bench.start();
if(first_bin_only) {
applyResult(result.front(), 0);
} else {
@ -658,9 +620,6 @@ bool arrange(Model &model, coordf_t dist, const Slic3r::BoundingBoxf* bb,
batch_offset += stride;
}
}
// bench.stop();
// std::cout << "Result applied in " << bench.getElapsedSec()
// << " seconds." << std::endl;
for(auto objptr : model.objects) objptr->invalidate_bounding_box();
@ -675,16 +634,11 @@ bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb,
{
bool ret = false;
if(bb != nullptr && bb->defined) {
// Despite the new arrange is able to run without a specified bin,
// the perl testsuit still fails for this case. For now the safest
// thing to do is to use the new arrange only when a proper bin is
// specified.
ret = arr::arrange(*this, dist, bb, false, progressind);
// std::fstream out("out.cpp", std::fstream::out);
// if(out.good()) {
// out << "const TestData OBJECTS = \n";
// out << arr::toString(*this);
// }
// out.close();
// SVG svg("out.svg");
// arr::toSVG(svg, *this);
// svg.Close();
} else {
// get the (transformed) size of each instance so that we take
// into account their different transformations when packing