Merge branch 'master' into fs_QuadricEdgeCollapse

This commit is contained in:
Filip Sykala 2021-06-23 13:59:03 +02:00
commit 38c83844a2
27 changed files with 480 additions and 212 deletions

View file

@ -1,4 +1,6 @@
min_slic3r_version = 2.4.0-alpha0
1.4.0-alpha2 Updated Prusa MINI machine limits.
1.4.0-alpha1 Added new SL1S resin profiles.
1.4.0-alpha0 Bumped up config version.
1.3.0-alpha2 Added SL1S SPEED profiles.
1.3.0-alpha1 Added Prusament PCCF. Increased travel acceleration for Prusa MINI. Updated start g-code for Prusa MINI. Added multiple add:north and Extrudr filament profiles. Updated Z travel speed values.

View file

@ -5,7 +5,7 @@
name = Prusa Research
# Configuration version of this file. Config file will only be installed, if the config_version differs.
# This means, the server may force the PrusaSlicer configuration to be downgraded.
config_version = 1.4.0-alpha0
config_version = 1.4.0-alpha2
# Where to get the updates from?
config_update_url = https://files.prusa3d.com/wp-content/uploads/repository/PrusaSlicer-settings-master/live/PrusaResearch/
changelog_url = https://files.prusa3d.com/?latest=slicer-profiles&lng=%1%
@ -5426,13 +5426,6 @@ initial_exposure_time = 25
material_type = Tough
material_vendor = Made for Prusa
[sla_material:Prusa Polymers Orange @0.025 SL1S]
inherits = *0.025_sl1s*
exposure_time = 1.8
initial_exposure_time = 25
material_type = Tough
material_vendor = Prusa Polymers
[sla_material:3DM-ABS Orange @0.025 SL1S]
inherits = *0.025_sl1s*
exposure_time = 1.8
@ -5461,6 +5454,20 @@ initial_exposure_time = 25
material_type = Tough
material_vendor = Peopoly
[sla_material:Peopoly Deft White @0.025 SL1S]
inherits = *0.025_sl1s*
exposure_time = 1.8
initial_exposure_time = 25
material_type = Tough
material_vendor = Peopoly
[sla_material:Peopoly Neo Clear @0.025 SL1S]
inherits = *0.025_sl1s*
exposure_time = 1.8
initial_exposure_time = 25
material_type = Tough
material_vendor = Peopoly
## 0.05 SL1S
[sla_material:Prusa Orange Tough @0.05 SL1S]
@ -5547,13 +5554,6 @@ initial_exposure_time = 25
material_type = Tough
material_vendor = Made for Prusa
[sla_material:Prusa Polymers Orange @0.05 SL1S]
inherits = *0.05_sl1s*
exposure_time = 2
initial_exposure_time = 25
material_type = Tough
material_vendor = Prusa Polymers
[sla_material:3DM-ABS Orange @0.05 SL1S]
inherits = *0.05_sl1s*
exposure_time = 2.6
@ -5582,6 +5582,20 @@ initial_exposure_time = 25
material_type = Tough
material_vendor = Peopoly
[sla_material:Peopoly Deft White @0.05 SL1S]
inherits = *0.05_sl1s*
exposure_time = 2
initial_exposure_time = 25
material_type = Tough
material_vendor = Peopoly
[sla_material:Peopoly Neo Clear @0.05 SL1S]
inherits = *0.05_sl1s*
exposure_time = 2
initial_exposure_time = 25
material_type = Tough
material_vendor = Peopoly
## 0.1 SL1S
[sla_material:Prusa Orange Tough @0.1 SL1S]
@ -5668,13 +5682,6 @@ initial_exposure_time = 25
material_type = Tough
material_vendor = Made for Prusa
[sla_material:Prusa Polymers Orange @0.1 SL1S]
inherits = *0.1_sl1s*
exposure_time = 2.6
initial_exposure_time = 25
material_type = Tough
material_vendor = Prusa Polymers
[sla_material:3DM-ABS Orange @0.1 SL1S]
inherits = *0.1_sl1s*
exposure_time = 3
@ -5703,6 +5710,20 @@ initial_exposure_time = 25
material_type = Tough
material_vendor = Peopoly
[sla_material:Peopoly Deft White @0.1 SL1S]
inherits = *0.1_sl1s*
exposure_time = 2.6
initial_exposure_time = 25
material_type = Tough
material_vendor = Peopoly
[sla_material:Peopoly Neo Clear @0.1 SL1S]
inherits = *0.1_sl1s*
exposure_time = 2.6
initial_exposure_time = 25
material_type = Tough
material_vendor = Peopoly
[printer:*common*]
printer_technology = FFF
bed_shape = 0x0,250x0,250x210,0x210
@ -6330,8 +6351,8 @@ machine_max_acceleration_e = 5000
machine_max_acceleration_extruding = 1250
machine_max_acceleration_retracting = 1250
machine_max_acceleration_travel = 2500
machine_max_acceleration_x = 1250
machine_max_acceleration_y = 1250
machine_max_acceleration_x = 2500
machine_max_acceleration_y = 2500
machine_max_acceleration_z = 400
machine_max_feedrate_e = 80
machine_max_feedrate_x = 180

View file

@ -90,12 +90,29 @@ inline R rectarea(const Pt& w, const std::array<It, 4>& rect)
return rectarea<Pt, Unit, R>(w, *rect[0], *rect[1], *rect[2], *rect[3]);
}
template<class Pt, class Unit = TCompute<Pt>, class R = TCompute<Pt>>
inline R rectarea(const Pt& w, // the axis
const Unit& a,
const Unit& b)
{
R m = R(a) / pl::magnsq<Pt, Unit>(w);
m = m * b;
return m;
};
template<class R, class Pt, class Unit>
inline R rectarea(const RotatedBox<Pt, Unit> &rb)
{
return rectarea<Pt, Unit, R>(rb.axis(), rb.bottom_extent(), rb.right_extent());
};
// This function is only applicable to counter-clockwise oriented convex
// polygons where only two points can be collinear witch each other.
template <class RawShape,
class Unit = TCompute<RawShape>,
class Ratio = TCompute<RawShape>>
RotatedBox<TPoint<RawShape>, Unit> minAreaBoundingBox(const RawShape& sh)
template <class RawShape,
class Unit = TCompute<RawShape>,
class Ratio = TCompute<RawShape>,
class VisitFn>
void rotcalipers(const RawShape& sh, VisitFn &&visitfn)
{
using Point = TPoint<RawShape>;
using Iterator = typename TContour<RawShape>::const_iterator;
@ -104,21 +121,21 @@ RotatedBox<TPoint<RawShape>, Unit> minAreaBoundingBox(const RawShape& sh)
// Get the first and the last vertex iterator
auto first = sl::cbegin(sh);
auto last = std::prev(sl::cend(sh));
// Check conditions and return undefined box if input is not sane.
if(last == first) return {};
if(last == first) return;
if(getX(*first) == getX(*last) && getY(*first) == getY(*last)) --last;
if(last - first < 2) return {};
if(last - first < 2) return;
RawShape shcpy; // empty at this point
{
{
Point p = *first, q = *std::next(first), r = *last;
// Determine orientation from first 3 vertex (should be consistent)
Unit d = (Unit(getY(q)) - getY(p)) * (Unit(getX(r)) - getX(p)) -
(Unit(getX(q)) - getX(p)) * (Unit(getY(r)) - getY(p));
if(d > 0) {
if(d > 0) {
// The polygon is clockwise. A flip is needed (for now)
sl::reserve(shcpy, last - first);
auto it = last; while(it != first) sl::addVertex(shcpy, *it--);
@ -126,69 +143,69 @@ RotatedBox<TPoint<RawShape>, Unit> minAreaBoundingBox(const RawShape& sh)
first = sl::cbegin(shcpy); last = std::prev(sl::cend(shcpy));
}
}
// Cyclic iterator increment
auto inc = [&first, &last](Iterator& it) {
if(it == last) it = first; else ++it;
if(it == last) it = first; else ++it;
};
// Cyclic previous iterator
auto prev = [&first, &last](Iterator it) {
return it == first ? last : std::prev(it);
auto prev = [&first, &last](Iterator it) {
return it == first ? last : std::prev(it);
};
// Cyclic next iterator
auto next = [&first, &last](Iterator it) {
return it == last ? first : std::next(it);
return it == last ? first : std::next(it);
};
// Establish initial (axis aligned) rectangle support verices by determining
// Establish initial (axis aligned) rectangle support verices by determining
// polygon extremes:
auto it = first;
Iterator minX = it, maxX = it, minY = it, maxY = it;
do { // Linear walk through the vertices and save the extreme positions
Point v = *it, d = v - *minX;
if(getX(d) < 0 || (getX(d) == 0 && getY(d) < 0)) minX = it;
d = v - *maxX;
if(getX(d) > 0 || (getX(d) == 0 && getY(d) > 0)) maxX = it;
d = v - *minY;
if(getY(d) < 0 || (getY(d) == 0 && getX(d) > 0)) minY = it;
d = v - *maxY;
if(getY(d) > 0 || (getY(d) == 0 && getX(d) < 0)) maxY = it;
} while(++it != std::next(last));
// Update the vertices defining the bounding rectangle. The rectangle with
// the smallest rotation is selected and the supporting vertices are
// the smallest rotation is selected and the supporting vertices are
// returned in the 'rect' argument.
auto update = [&next, &inc]
(const Point& w, std::array<Iterator, 4>& rect)
(const Point& w, std::array<Iterator, 4>& rect)
{
Iterator B = rect[0], Bn = next(B);
Iterator R = rect[1], Rn = next(R);
Iterator T = rect[2], Tn = next(T);
Iterator L = rect[3], Ln = next(L);
Point b = *Bn - *B, r = *Rn - *R, t = *Tn - *T, l = *Ln - *L;
Point pw = perp(w);
using Pt = Point;
Unit dotwpb = dot<Pt, Unit>( w, b), dotwpr = dot<Pt, Unit>(-pw, r);
Unit dotwpt = dot<Pt, Unit>(-w, t), dotwpl = dot<Pt, Unit>( pw, l);
Unit dw = magnsq<Pt, Unit>(w);
std::array<Ratio, 4> angles;
angles[0] = (Ratio(dotwpb) / magnsq<Pt, Unit>(b)) * dotwpb;
angles[1] = (Ratio(dotwpr) / magnsq<Pt, Unit>(r)) * dotwpr;
angles[2] = (Ratio(dotwpt) / magnsq<Pt, Unit>(t)) * dotwpt;
angles[3] = (Ratio(dotwpl) / magnsq<Pt, Unit>(l)) * dotwpl;
using AngleIndex = std::pair<Ratio, size_t>;
std::vector<AngleIndex> A; A.reserve(4);
@ -196,65 +213,84 @@ RotatedBox<TPoint<RawShape>, Unit> minAreaBoundingBox(const RawShape& sh)
if(rect[i] != rect[j] && angles[i] < dw) {
auto iv = std::make_pair(angles[i], i);
auto it = std::lower_bound(A.begin(), A.end(), iv,
[](const AngleIndex& ai,
const AngleIndex& aj)
{
return ai.first > aj.first;
[](const AngleIndex& ai,
const AngleIndex& aj)
{
return ai.first > aj.first;
});
A.insert(it, iv);
}
}
// The polygon is supposed to be a rectangle.
if(A.empty()) return false;
auto amin = A.front().first;
auto imin = A.front().second;
for(auto& a : A) if(a.first == amin) inc(rect[a.second]);
std::rotate(rect.begin(), rect.begin() + imin, rect.end());
return true;
};
Point w(1, 0);
Point w_min = w;
Ratio minarea((Unit(getX(*maxX)) - getX(*minX)) *
(Unit(getY(*maxY)) - getY(*minY)));
std::array<Iterator, 4> rect = {minY, maxX, maxY, minX};
std::array<Iterator, 4> minrect = rect;
{
Unit a = dot<Point, Unit>(w, *rect[1] - *rect[3]);
Unit b = dot<Point, Unit>(-perp(w), *rect[2] - *rect[0]);
if (!visitfn(RotatedBox<Point, Unit>{w, a, b}))
return;
}
// An edge might be examined twice in which case the algorithm terminates.
size_t c = 0, count = last - first + 1;
std::vector<bool> edgemask(count, false);
while(c++ < count)
{
while(c++ < count)
{
// Update the support vertices, if cannot be updated, break the cycle.
if(! update(w, rect)) break;
size_t eidx = size_t(rect[0] - first);
if(edgemask[eidx]) break;
edgemask[eidx] = true;
// get the unnormalized direction vector
w = *rect[0] - *prev(rect[0]);
// get the area of the rotated rectangle
Ratio rarea = rectarea<Point, Unit, Ratio>(w, rect);
// Update min area and the direction of the min bounding box;
if(rarea <= minarea) { w_min = w; minarea = rarea; minrect = rect; }
Unit a = dot<Point, Unit>(w, *rect[1] - *rect[3]);
Unit b = dot<Point, Unit>(-perp(w), *rect[2] - *rect[0]);
if (!visitfn(RotatedBox<Point, Unit>{w, a, b}))
break;
}
Unit a = dot<Point, Unit>(w_min, *minrect[1] - *minrect[3]);
Unit b = dot<Point, Unit>(-perp(w_min), *minrect[2] - *minrect[0]);
RotatedBox<Point, Unit> bb(w_min, a, b);
return bb;
}
// This function is only applicable to counter-clockwise oriented convex
// polygons where only two points can be collinear witch each other.
template <class S,
class Unit = TCompute<S>,
class Ratio = TCompute<S>>
RotatedBox<TPoint<S>, Unit> minAreaBoundingBox(const S& sh)
{
RotatedBox<TPoint<S>, Unit> minbox;
Ratio minarea = std::numeric_limits<Unit>::max();
auto minfn = [&minarea, &minbox](const RotatedBox<TPoint<S>, Unit> &rbox){
Ratio area = rectarea<Ratio>(rbox);
if (area <= minarea) {
minarea = area;
minbox = rbox;
}
return true; // continue search
};
rotcalipers<S, Unit, Ratio>(sh, minfn);
return minbox;
}
template <class RawShape> Radians minAreaBoundingBoxRotation(const RawShape& sh)
@ -262,7 +298,75 @@ template <class RawShape> Radians minAreaBoundingBoxRotation(const RawShape& sh)
return minAreaBoundingBox(sh).angleToX();
}
// Function to find a rotation for a shape that makes it fit into a box.
//
// The method is based on finding a pair of rotations from the rotating calipers
// algorithm such that the aspect ratio is changing from being smaller than
// that of the target to being bigger or vice versa. So that the correct
// AR is somewhere between the obtained pair of angles. Then bisecting that
// interval is sufficient to find the correct angle.
//
// The argument eps is the absolute error limit for the searched angle interval.
template<class S, class Unit = TCompute<S>, class Ratio = TCompute<S>>
Radians fitIntoBoxRotation(const S &shape, const _Box<TPoint<S>> &box, Radians eps = 1e-4)
{
constexpr auto get_aspect_r = [](const auto &b) -> double {
return double(b.width()) / b.height();
};
auto aspect_r = get_aspect_r(box);
RotatedBox<TPoint<S>, Unit> prev_rbox;
Radians a_from = 0., a_to = 0.;
auto visitfn = [&](const RotatedBox<TPoint<S>, Unit> &rbox) {
bool lower_prev = get_aspect_r(prev_rbox) < aspect_r;
bool lower_current = get_aspect_r(rbox) < aspect_r;
if (lower_prev != lower_current) {
a_from = prev_rbox.angleToX();
a_to = rbox.angleToX();
return false;
}
return true;
};
rotcalipers<S, Unit, Ratio>(shape, visitfn);
auto rot_shape_bb = [&shape](Radians r) {
auto s = shape;
sl::rotate(s, r);
return sl::boundingBox(s);
};
auto rot_aspect_r = [&rot_shape_bb, &get_aspect_r](Radians r) {
return get_aspect_r(rot_shape_bb(r));
};
// Lets bisect the retrieved interval where the correct aspect ratio is.
double ar_from = rot_aspect_r(a_from);
auto would_fit = [&box](const _Box<TPoint<S>> &b) {
return b.width() < box.width() && b.height() < box.height();
};
Radians middle = (a_from + a_to) / 2.;
_Box<TPoint<S>> box_middle = rot_shape_bb(middle);
while (!would_fit(box_middle) && std::abs(a_to - a_from) > eps)
{
double ar_middle = get_aspect_r(box_middle);
if ((ar_from < aspect_r) != (ar_middle < aspect_r))
a_to = middle;
else
a_from = middle;
ar_from = rot_aspect_r(a_from);
middle = (a_from + a_to) / 2.;
box_middle = rot_shape_bb(middle);
}
return middle;
}
} // namespace libnest2d
#endif // ROTCALIPERS_HPP

View file

@ -379,7 +379,7 @@ public:
});
if (stopcond) m_pck.stopCondition(stopcond);
m_pck.configure(m_pconf);
}
@ -472,6 +472,12 @@ template<class S> Radians min_area_boundingbox_rotation(const S &sh)
.angleToX();
}
template<class S>
Radians fit_into_box_rotation(const S &sh, const _Box<TPoint<S>> &box)
{
return fitIntoBoxRotation<S, TCompute<S>, boost::rational<LargeInt>>(sh, box);
}
template<class BinT> // Arrange for arbitrary bin type
void _arrange(
std::vector<Item> & shapes,
@ -509,10 +515,19 @@ void _arrange(
// Use the minimum bounding box rotation as a starting point.
// TODO: This only works for convex hull. If we ever switch to concave
// polygon nesting, a convex hull needs to be calculated.
if (params.allow_rotations)
for (auto &itm : shapes)
if (params.allow_rotations) {
for (auto &itm : shapes) {
itm.rotation(min_area_boundingbox_rotation(itm.rawShape()));
// If the item is too big, try to find a rotation that makes it fit
if constexpr (std::is_same_v<BinT, Box>) {
auto bb = itm.boundingBox();
if (bb.width() >= bin.width() || bb.height() >= bin.height())
itm.rotate(fit_into_box_rotation(itm.transformedShape(), bin));
}
}
}
arranger(inp.begin(), inp.end());
for (Item &itm : inp) itm.inflate(-infl);
}

View file

@ -15,6 +15,7 @@ class Exception : public std::runtime_error { using std::runtime_error::runtime_
SLIC3R_DERIVE_EXCEPTION(CriticalException, Exception);
SLIC3R_DERIVE_EXCEPTION(RuntimeError, CriticalException);
SLIC3R_DERIVE_EXCEPTION(LogicError, CriticalException);
SLIC3R_DERIVE_EXCEPTION(HardCrash, CriticalException);
SLIC3R_DERIVE_EXCEPTION(InvalidArgument, LogicError);
SLIC3R_DERIVE_EXCEPTION(OutOfRange, LogicError);
SLIC3R_DERIVE_EXCEPTION(IOError, CriticalException);

View file

@ -1,8 +1,9 @@
#ifndef EXECUTIONTBB_HPP
#define EXECUTIONTBB_HPP
#include <mutex>
#include <tbb/spin_mutex.h>
#include <tbb/mutex.h>
#include <tbb/parallel_for.h>
#include <tbb/parallel_reduce.h>
#include <tbb/task_arena.h>
@ -34,7 +35,7 @@ private:
public:
using SpinningMutex = tbb::spin_mutex;
using BlockingMutex = tbb::mutex;
using BlockingMutex = std::mutex;
template<class It, class Fn>
static void for_each(const ExecutionTBB &,

View file

@ -208,16 +208,20 @@ static bool _cgal_intersection(CGALMesh &A, CGALMesh &B, CGALMesh &R)
template<class Op> void _cgal_do(Op &&op, CGALMesh &A, CGALMesh &B)
{
bool success = false;
bool hw_fail = false;
try {
CGALMesh result;
try_catch_signal({SIGSEGV, SIGFPE}, [&success, &A, &B, &result, &op] {
success = op(A, B, result);
}, [&] { success = false; });
}, [&] { hw_fail = true; });
A = std::move(result); // In-place operation does not work
} catch (...) {
success = false;
}
if (hw_fail)
throw Slic3r::HardCrash("CGAL mesh boolean operation crashed.");
if (! success)
throw Slic3r::RuntimeError("CGAL mesh boolean operation failed.");
}

View file

@ -36,7 +36,7 @@ PrintRegion::PrintRegion(PrintRegionConfig &&config) : PrintRegion(std::move(con
void Print::clear()
{
tbb::mutex::scoped_lock lock(this->state_mutex());
std::scoped_lock<std::mutex> lock(this->state_mutex());
// The following call should stop background processing if it is running.
this->invalidate_all_steps();
for (PrintObject *object : m_objects)
@ -252,7 +252,7 @@ bool Print::is_step_done(PrintObjectStep step) const
{
if (m_objects.empty())
return false;
tbb::mutex::scoped_lock lock(this->state_mutex());
std::scoped_lock<std::mutex> lock(this->state_mutex());
for (const PrintObject *object : m_objects)
if (! object->is_step_done_unguarded(step))
return false;

View file

@ -915,7 +915,7 @@ Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_
update_apply_status(false);
// Grab the lock for the Print / PrintObject milestones.
tbb::mutex::scoped_lock lock(this->state_mutex());
std::scoped_lock<std::mutex> lock(this->state_mutex());
// The following call may stop the background processing.
if (! print_diff.empty())

View file

@ -104,7 +104,7 @@ void PrintBase::status_update_warnings(int step, PrintStateBase::WarningLevel /*
printf("%s warning: %s\n", print_object ? "print_object" : "print", message.c_str());
}
tbb::mutex& PrintObjectBase::state_mutex(PrintBase *print)
std::mutex& PrintObjectBase::state_mutex(PrintBase *print)
{
return print->state_mutex();
}

View file

@ -6,12 +6,8 @@
#include <vector>
#include <string>
#include <functional>
// tbb/mutex.h includes Windows, which in turn defines min/max macros. Convince Windows.h to not define these min/max macros.
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include "tbb/mutex.h"
#include <atomic>
#include <mutex>
#include "ObjectID.hpp"
#include "Model.hpp"
@ -84,23 +80,23 @@ class PrintState : public PrintStateBase
public:
PrintState() {}
StateWithTimeStamp state_with_timestamp(StepType step, tbb::mutex &mtx) const {
tbb::mutex::scoped_lock lock(mtx);
StateWithTimeStamp state_with_timestamp(StepType step, std::mutex &mtx) const {
std::scoped_lock<std::mutex> lock(mtx);
StateWithTimeStamp state = m_state[step];
return state;
}
StateWithWarnings state_with_warnings(StepType step, tbb::mutex &mtx) const {
tbb::mutex::scoped_lock lock(mtx);
StateWithWarnings state_with_warnings(StepType step, std::mutex &mtx) const {
std::scoped_lock<std::mutex> lock(mtx);
StateWithWarnings state = m_state[step];
return state;
}
bool is_started(StepType step, tbb::mutex &mtx) const {
bool is_started(StepType step, std::mutex &mtx) const {
return this->state_with_timestamp(step, mtx).state == STARTED;
}
bool is_done(StepType step, tbb::mutex &mtx) const {
bool is_done(StepType step, std::mutex &mtx) const {
return this->state_with_timestamp(step, mtx).state == DONE;
}
@ -121,8 +117,8 @@ public:
// This is necessary to block until the Print::apply() updates its state, which may
// influence the processing step being entered.
template<typename ThrowIfCanceled>
bool set_started(StepType step, tbb::mutex &mtx, ThrowIfCanceled throw_if_canceled) {
tbb::mutex::scoped_lock lock(mtx);
bool set_started(StepType step, std::mutex &mtx, ThrowIfCanceled throw_if_canceled) {
std::scoped_lock<std::mutex> lock(mtx);
// If canceled, throw before changing the step state.
throw_if_canceled();
#ifndef NDEBUG
@ -154,8 +150,8 @@ public:
// Timestamp when this stepentered the DONE state.
// bool indicates whether the UI has to update the slicing warnings of this step or not.
template<typename ThrowIfCanceled>
std::pair<TimeStamp, bool> set_done(StepType step, tbb::mutex &mtx, ThrowIfCanceled throw_if_canceled) {
tbb::mutex::scoped_lock lock(mtx);
std::pair<TimeStamp, bool> set_done(StepType step, std::mutex &mtx, ThrowIfCanceled throw_if_canceled) {
std::scoped_lock<std::mutex> lock(mtx);
// If canceled, throw before changing the step state.
throw_if_canceled();
assert(m_state[step].state == STARTED);
@ -266,9 +262,9 @@ public:
// Return value:
// Current milestone (StepType).
// bool indicates whether the UI has to be updated or not.
std::pair<StepType, bool> active_step_add_warning(PrintStateBase::WarningLevel warning_level, const std::string &message, int message_id, tbb::mutex &mtx)
std::pair<StepType, bool> active_step_add_warning(PrintStateBase::WarningLevel warning_level, const std::string &message, int message_id, std::mutex &mtx)
{
tbb::mutex::scoped_lock lock(mtx);
std::scoped_lock<std::mutex> lock(mtx);
assert(m_step_active != -1);
StateWithWarnings &state = m_state[m_step_active];
assert(state.state == STARTED);
@ -314,7 +310,7 @@ protected:
PrintObjectBase(ModelObject *model_object) : m_model_object(model_object) {}
virtual ~PrintObjectBase() {}
// Declared here to allow access from PrintBase through friendship.
static tbb::mutex& state_mutex(PrintBase *print);
static std::mutex& state_mutex(PrintBase *print);
static std::function<void()> cancel_callback(PrintBase *print);
// Notify UI about a new warning of a milestone "step" on this PrintObjectBase.
// The UI will be notified by calling a status callback registered on print.
@ -475,7 +471,7 @@ protected:
friend class PrintObjectBase;
friend class BackgroundSlicingProcess;
tbb::mutex& state_mutex() const { return m_state_mutex; }
std::mutex& state_mutex() const { return m_state_mutex; }
std::function<void()> cancel_callback() { return m_cancel_callback; }
void call_cancel_callback() { m_cancel_callback(); }
// Notify UI about a new warning of a milestone "step" on this PrintBase.
@ -502,7 +498,7 @@ protected:
status_callback_type m_status_callback;
private:
tbb::atomic<CancelStatus> m_cancel_status;
std::atomic<CancelStatus> m_cancel_status;
// Callback to be evoked to stop the background processing before a state is updated.
cancel_callback_type m_cancel_callback = [](){};
@ -510,7 +506,7 @@ private:
// Mutex used for synchronization of the worker thread with the UI thread:
// The mutex will be used to guard the worker thread against entering a stage
// while the data influencing the stage is modified.
mutable tbb::mutex m_state_mutex;
mutable std::mutex m_state_mutex;
friend PrintTryCancel;
};

View file

@ -22,7 +22,6 @@
#include <boost/log/trivial.hpp>
#include <tbb/parallel_for.h>
#include <tbb/atomic.h>
#include <Shiny/Shiny.h>

View file

@ -17,9 +17,6 @@
#include <libnest2d/optimizers/nlopt/genetic.hpp>
#include <libnest2d/optimizers/nlopt/subplex.hpp>
#include <boost/log/trivial.hpp>
#include <tbb/parallel_for.h>
#include <tbb/mutex.h>
#include <tbb/spin_mutex.h>
#include <libslic3r/I18N.hpp>
//! macro used to mark string used at localization,

View file

@ -19,8 +19,6 @@
#include <libnest2d/tools/benchmark.h>
#endif
//#include <tbb/spin_mutex.h>//#include "tbb/mutex.h"
#include "I18N.hpp"
//! macro used to mark string used at localization,
@ -118,7 +116,7 @@ bool validate_pad(const indexed_triangle_set &pad, const sla::PadConfig &pcfg)
void SLAPrint::clear()
{
tbb::mutex::scoped_lock lock(this->state_mutex());
std::scoped_lock<std::mutex> lock(this->state_mutex());
// The following call should stop background processing if it is running.
this->invalidate_all_steps();
for (SLAPrintObject *object : m_objects)
@ -212,7 +210,7 @@ SLAPrint::ApplyStatus SLAPrint::apply(const Model &model, DynamicPrintConfig con
update_apply_status(false);
// Grab the lock for the Print / PrintObject milestones.
tbb::mutex::scoped_lock lock(this->state_mutex());
std::scoped_lock<std::mutex> lock(this->state_mutex());
// The following call may stop the background processing.
bool invalidate_all_model_objects = false;
@ -514,7 +512,7 @@ SLAPrint::ApplyStatus SLAPrint::apply(const Model &model, DynamicPrintConfig con
void SLAPrint::set_task(const TaskParams &params)
{
// Grab the lock for the Print / PrintObject milestones.
tbb::mutex::scoped_lock lock(this->state_mutex());
std::scoped_lock<std::mutex> lock(this->state_mutex());
int n_object_steps = int(params.to_object_step) + 1;
if (n_object_steps == 0)
@ -884,7 +882,7 @@ bool SLAPrint::is_step_done(SLAPrintObjectStep step) const
{
if (m_objects.empty())
return false;
tbb::mutex::scoped_lock lock(this->state_mutex());
std::scoped_lock<std::mutex> lock(this->state_mutex());
for (const SLAPrintObject *object : m_objects)
if (! object->is_step_done_unguarded(step))
return false;

View file

@ -453,8 +453,7 @@ void SLAPrint::Steps::drill_holes(SLAPrintObject &po)
sla::remove_inside_triangles(mesh_view, interior, exclude_mask);
}
} catch (const std::runtime_error &) {
} catch (const Slic3r::RuntimeError &) {
throw Slic3r::SlicingError(L(
"Drilling holes into the mesh failed. "
"This is usually caused by broken model. Try to fix it first."));

View file

@ -14,7 +14,6 @@
#include <boost/container/static_vector.hpp>
#include <tbb/parallel_for.h>
#include <tbb/atomic.h>
#include <tbb/spin_mutex.h>
#include <tbb/task_group.h>

View file

@ -9,10 +9,10 @@
#include <atomic>
#include <condition_variable>
#include <mutex>
#include <thread>
#include <tbb/global_control.h>
#include <tbb/parallel_for.h>
#include <tbb/tbb_thread.h>
#include <tbb/task_arena.h>
#include <tbb/task_scheduler_init.h>
#include "Thread.hpp"
@ -206,13 +206,13 @@ void name_tbb_thread_pool_threads()
nthreads = 1;
#endif
if (nthreads != nthreads_hw)
new tbb::task_scheduler_init(int(nthreads));
if (nthreads != nthreads_hw)
tbb::global_control(tbb::global_control::max_allowed_parallelism, nthreads);
std::atomic<size_t> nthreads_running(0);
std::condition_variable cv;
std::mutex cv_m;
auto master_thread_id = tbb::this_tbb_thread::get_id();
auto master_thread_id = std::this_thread::get_id();
tbb::parallel_for(
tbb::blocked_range<size_t>(0, nthreads, 1),
[&nthreads_running, nthreads, &master_thread_id, &cv, &cv_m](const tbb::blocked_range<size_t> &range) {
@ -226,7 +226,7 @@ void name_tbb_thread_pool_threads()
std::unique_lock<std::mutex> lk(cv_m);
cv.wait(lk, [&nthreads_running, nthreads]{return nthreads_running == nthreads;});
}
auto thread_id = tbb::this_tbb_thread::get_id();
auto thread_id = std::this_thread::get_id();
if (thread_id == master_thread_id) {
// The calling thread runs the 0'th task.
assert(range.begin() == 0);

View file

@ -100,12 +100,9 @@
#include <boost/thread.hpp>
#include <boost/version.hpp>
#include <tbb/atomic.h>
#include <tbb/parallel_for.h>
#include <tbb/spin_mutex.h>
#include <tbb/mutex.h>
#include <tbb/task_group.h>
#include <tbb/task_scheduler_init.h>
#include <Eigen/Dense>
#include <Eigen/Geometry>

View file

@ -43,7 +43,7 @@
#include <boost/nowide/convert.hpp>
#include <boost/nowide/cstdio.hpp>
#include <tbb/task_scheduler_init.h>
#include <tbb/global_control.h>
#if defined(__linux__) || defined(__GNUC__ )
#include <strings.h>
@ -118,9 +118,7 @@ void trace(unsigned int level, const char *message)
void disable_multi_threading()
{
// Disable parallelization so the Shiny profiler works
static tbb::task_scheduler_init *tbb_init = nullptr;
if (tbb_init == nullptr)
tbb_init = new tbb::task_scheduler_init(1);
tbb::global_control(tbb::global_control::max_allowed_parallelism, 1);
}
static std::string g_var_dir;

View file

@ -2,6 +2,7 @@
#include "GUI_App.hpp"
#include "GUI.hpp"
#include "MainFrame.hpp"
#include "format.hpp"
#include <wx/app.h>
#include <wx/panel.h>
@ -74,11 +75,15 @@ std::pair<std::string, bool> SlicingProcessCompletedEvent::format_error_message(
bool monospace = false;
try {
this->rethrow_exception();
} catch (const std::bad_alloc& ex) {
} catch (const std::bad_alloc &ex) {
wxString errmsg = GUI::from_u8((boost::format(_utf8(L("%s has encountered an error. It was likely caused by running out of memory. "
"If you are sure you have enough RAM on your system, this may also be a bug and we would "
"be glad if you reported it."))) % SLIC3R_APP_NAME).str());
error = std::string(errmsg.ToUTF8()) + "\n\n" + std::string(ex.what());
} catch (const HardCrash &ex) {
error = GUI::format("PrusaSlicer has encountered a fatal error: \"%1%\"", ex.what()) + "\n\n" +
_u8L("Please save your project and restart PrusaSlicer. "
"We would be glad if you reported the issue.");
} catch (PlaceholderParserError &ex) {
error = ex.what();
monospace = true;
@ -277,19 +282,11 @@ void BackgroundSlicingProcess::thread_proc()
m_state = STATE_RUNNING;
lck.unlock();
std::exception_ptr exception;
try {
assert(m_print != nullptr);
switch(m_print->technology()) {
case ptFFF: this->process_fff(); break;
case ptSLA: this->process_sla(); break;
default: m_print->process(); break;
}
} catch (CanceledException & /* ex */) {
// Canceled, this is all right.
assert(m_print->canceled());
} catch (...) {
exception = std::current_exception();
}
#ifdef _WIN32
this->call_process_seh_throw(exception);
#else
this->call_process(exception);
#endif
m_print->finalize();
lck.lock();
m_state = m_print->canceled() ? STATE_CANCELED : STATE_FINISHED;
@ -312,7 +309,118 @@ void BackgroundSlicingProcess::thread_proc()
// End of the background processing thread. The UI thread should join m_thread now.
}
void BackgroundSlicingProcess::thread_proc_safe()
#ifdef _WIN32
// Only these SEH exceptions will be catched and turned into Slic3r::HardCrash C++ exceptions.
static bool is_win32_seh_harware_exception(unsigned long ex) throw() {
return
ex == STATUS_ACCESS_VIOLATION ||
ex == STATUS_DATATYPE_MISALIGNMENT ||
ex == STATUS_FLOAT_DIVIDE_BY_ZERO ||
ex == STATUS_FLOAT_OVERFLOW ||
ex == STATUS_FLOAT_UNDERFLOW ||
#ifdef STATUS_FLOATING_RESEVERED_OPERAND
ex == STATUS_FLOATING_RESEVERED_OPERAND ||
#endif // STATUS_FLOATING_RESEVERED_OPERAND
ex == STATUS_ILLEGAL_INSTRUCTION ||
ex == STATUS_PRIVILEGED_INSTRUCTION ||
ex == STATUS_INTEGER_DIVIDE_BY_ZERO ||
ex == STATUS_INTEGER_OVERFLOW ||
ex == STATUS_STACK_OVERFLOW;
}
// Rethrow some SEH exceptions as Slic3r::HardCrash C++ exceptions.
static void rethrow_seh_exception(unsigned long win32_seh_catched)
{
if (win32_seh_catched) {
// Rethrow SEH exception as Slicer::HardCrash.
if (win32_seh_catched == STATUS_ACCESS_VIOLATION || win32_seh_catched == STATUS_DATATYPE_MISALIGNMENT)
throw Slic3r::HardCrash(_u8L("Access violation"));
if (win32_seh_catched == STATUS_ILLEGAL_INSTRUCTION || win32_seh_catched == STATUS_PRIVILEGED_INSTRUCTION)
throw Slic3r::HardCrash(_u8L("Illegal instruction"));
if (win32_seh_catched == STATUS_FLOAT_DIVIDE_BY_ZERO || win32_seh_catched == STATUS_INTEGER_DIVIDE_BY_ZERO)
throw Slic3r::HardCrash(_u8L("Divide by zero"));
if (win32_seh_catched == STATUS_FLOAT_OVERFLOW || win32_seh_catched == STATUS_INTEGER_OVERFLOW)
throw Slic3r::HardCrash(_u8L("Overflow"));
if (win32_seh_catched == STATUS_FLOAT_UNDERFLOW)
throw Slic3r::HardCrash(_u8L("Underflow"));
#ifdef STATUS_FLOATING_RESEVERED_OPERAND
if (win32_seh_catched == STATUS_FLOATING_RESEVERED_OPERAND)
throw Slic3r::HardCrash(_u8L("Floating reserved operand"));
#endif // STATUS_FLOATING_RESEVERED_OPERAND
if (win32_seh_catched == STATUS_STACK_OVERFLOW)
throw Slic3r::HardCrash(_u8L("Stack overflow"));
}
}
// Wrapper for Win32 structured exceptions. Win32 structured exception blocks and C++ exception blocks cannot be mixed in the same function.
unsigned long BackgroundSlicingProcess::call_process_seh(std::exception_ptr &ex) throw()
{
unsigned long win32_seh_catched = 0;
__try {
this->call_process(ex);
} __except (is_win32_seh_harware_exception(GetExceptionCode())) {
win32_seh_catched = GetExceptionCode();
}
return win32_seh_catched;
}
void BackgroundSlicingProcess::call_process_seh_throw(std::exception_ptr &ex) throw()
{
unsigned long win32_seh_catched = this->call_process_seh(ex);
if (win32_seh_catched) {
// Rethrow SEH exception as Slicer::HardCrash.
try {
rethrow_seh_exception(win32_seh_catched);
} catch (...) {
ex = std::current_exception();
}
}
}
#endif // _WIN32
void BackgroundSlicingProcess::call_process(std::exception_ptr &ex) throw()
{
try {
assert(m_print != nullptr);
switch (m_print->technology()) {
case ptFFF: this->process_fff(); break;
case ptSLA: this->process_sla(); break;
default: m_print->process(); break;
}
} catch (CanceledException& /* ex */) {
// Canceled, this is all right.
assert(m_print->canceled());
ex = std::current_exception();
} catch (...) {
ex = std::current_exception();
}
}
#ifdef _WIN32
unsigned long BackgroundSlicingProcess::thread_proc_safe_seh() throw()
{
unsigned long win32_seh_catched = 0;
__try {
this->thread_proc_safe();
} __except (is_win32_seh_harware_exception(GetExceptionCode())) {
win32_seh_catched = GetExceptionCode();
}
return win32_seh_catched;
}
void BackgroundSlicingProcess::thread_proc_safe_seh_throw() throw()
{
unsigned long win32_seh_catched = this->thread_proc_safe_seh();
if (win32_seh_catched) {
// Rethrow SEH exception as Slicer::HardCrash.
try {
rethrow_seh_exception(win32_seh_catched);
} catch (...) {
wxTheApp->OnUnhandledException();
}
}
}
#endif // _WIN32
void BackgroundSlicingProcess::thread_proc_safe() throw()
{
try {
this->thread_proc();
@ -349,7 +457,13 @@ bool BackgroundSlicingProcess::start()
if (m_state == STATE_INITIAL) {
// The worker thread is not running yet. Start it.
assert(! m_thread.joinable());
m_thread = create_thread([this]{this->thread_proc_safe();});
m_thread = create_thread([this]{
#ifdef _WIN32
this->thread_proc_safe_seh_throw();
#else // _WIN32
this->thread_proc_safe();
#endif // _WIN32
});
// Wait until the worker thread is ready to execute the background processing task.
m_condition.wait(lck, [this](){ return m_state == STATE_IDLE; });
}
@ -531,7 +645,7 @@ void BackgroundSlicingProcess::schedule_export(const std::string &path, bool exp
return;
// Guard against entering the export step before changing the export path.
tbb::mutex::scoped_lock lock(m_print->state_mutex());
std::scoped_lock<std::mutex> lock(m_print->state_mutex());
this->invalidate_step(bspsGCodeFinalize);
m_export_path = path;
m_export_path_on_removable_media = export_path_on_removable_media;
@ -544,7 +658,7 @@ void BackgroundSlicingProcess::schedule_upload(Slic3r::PrintHostJob upload_job)
return;
// Guard against entering the export step before changing the export path.
tbb::mutex::scoped_lock lock(m_print->state_mutex());
std::scoped_lock<std::mutex> lock(m_print->state_mutex());
this->invalidate_step(bspsGCodeFinalize);
m_export_path.clear();
m_upload_job = std::move(upload_job);
@ -557,7 +671,7 @@ void BackgroundSlicingProcess::reset_export()
m_export_path.clear();
m_export_path_on_removable_media = false;
// invalidate_step expects the mutex to be locked.
tbb::mutex::scoped_lock lock(m_print->state_mutex());
std::scoped_lock<std::mutex> lock(m_print->state_mutex());
this->invalidate_step(bspsGCodeFinalize);
}
}

View file

@ -174,7 +174,16 @@ public:
private:
void thread_proc();
void thread_proc_safe();
// Calls thread_proc(), catches all C++ exceptions and shows them using wxApp::OnUnhandledException().
void thread_proc_safe() throw();
#ifdef _WIN32
// Wrapper for Win32 structured exceptions. Win32 structured exception blocks and C++ exception blocks cannot be mixed in the same function.
// Catch a SEH exception and return its ID or zero if no SEH exception has been catched.
unsigned long thread_proc_safe_seh() throw();
// Calls thread_proc_safe_seh(), rethrows a Slic3r::HardCrash exception based on SEH exception
// returned by thread_proc_safe_seh() and lets wxApp::OnUnhandledException() display it.
void thread_proc_safe_seh_throw() throw();
#endif // _WIN32
void join_background_thread();
// To be called by Print::apply() through the Print::m_cancel_callback to stop the background
// processing before changing any data of running or finalized milestones.
@ -187,6 +196,20 @@ private:
// Temporary: for mimicking the fff file export behavior with the raster output
void process_sla();
// Call Print::process() and catch all exceptions into ex, thus no exception could be thrown
// by this method. This exception behavior is required to combine C++ exceptions with Win32 SEH exceptions
// on the same thread.
void call_process(std::exception_ptr &ex) throw();
#ifdef _WIN32
// Wrapper for Win32 structured exceptions. Win32 structured exception blocks and C++ exception blocks cannot be mixed in the same function.
// Catch a SEH exception and return its ID or zero if no SEH exception has been catched.
unsigned long call_process_seh(std::exception_ptr &ex) throw();
// Calls call_process_seh(), rethrows a Slic3r::HardCrash exception based on SEH exception
// returned by call_process_seh().
void call_process_seh_throw(std::exception_ptr &ex) throw();
#endif // _WIN32
// Currently active print. It is one of m_fff_print and m_sla_print.
PrintBase *m_print = nullptr;
// Non-owned pointers to Print instances.

View file

@ -13,7 +13,7 @@
#if __linux__
#include <boost/thread.hpp>
#include <tbb/mutex.h>
#include <mutex>
#include <condition_variable>
#endif // __linux__

View file

@ -658,7 +658,7 @@ void MainFrame::init_tabpanel()
#endif
#if ENABLE_VALIDATE_CUSTOM_GCODE
if (int old_selection = e.GetOldSelection();
old_selection != wxNOT_FOUND && old_selection < m_tabpanel->GetPageCount()) {
old_selection != wxNOT_FOUND && old_selection < static_cast<int>(m_tabpanel->GetPageCount())) {
Tab* old_tab = dynamic_cast<Tab*>(m_tabpanel->GetPage(old_selection));
if (old_tab)
old_tab->validate_custom_gcodes();

View file

@ -66,7 +66,7 @@ void update_maximum(std::atomic<T>& maximum_value, T const& value) noexcept
void Mouse3DController::State::append_translation(const Vec3d& translation, size_t input_queue_max_size)
{
tbb::mutex::scoped_lock lock(m_input_queue_mutex);
std::scoped_lock<std::mutex> lock(m_input_queue_mutex);
while (m_input_queue.size() >= input_queue_max_size)
m_input_queue.pop_front();
m_input_queue.emplace_back(QueueItem::translation(translation));
@ -77,7 +77,7 @@ void Mouse3DController::State::append_translation(const Vec3d& translation, size
void Mouse3DController::State::append_rotation(const Vec3f& rotation, size_t input_queue_max_size)
{
tbb::mutex::scoped_lock lock(m_input_queue_mutex);
std::scoped_lock<std::mutex> lock(m_input_queue_mutex);
while (m_input_queue.size() >= input_queue_max_size)
m_input_queue.pop_front();
m_input_queue.emplace_back(QueueItem::rotation(rotation.cast<double>()));
@ -92,7 +92,7 @@ void Mouse3DController::State::append_rotation(const Vec3f& rotation, size_t inp
void Mouse3DController::State::append_button(unsigned int id, size_t /* input_queue_max_size */)
{
tbb::mutex::scoped_lock lock(m_input_queue_mutex);
std::scoped_lock<std::mutex> lock(m_input_queue_mutex);
m_input_queue.emplace_back(QueueItem::buttons(id));
#if ENABLE_3DCONNEXION_DEVICES_DEBUG_OUTPUT
update_maximum(input_queue_max_size_achieved, m_input_queue.size());
@ -274,7 +274,7 @@ void Mouse3DController::device_attached(const std::string &device)
m_stop_condition.notify_all();
m_device_str = format_device_string(vid, pid);
if (auto it_params = m_params_by_device.find(m_device_str); it_params != m_params_by_device.end()) {
tbb::mutex::scoped_lock lock(m_params_ui_mutex);
std::scoped_lock<std::mutex> lock(m_params_ui_mutex);
m_params = m_params_ui = it_params->second;
}
else
@ -290,7 +290,7 @@ void Mouse3DController::device_detached(const std::string& device)
int pid = 0;
if (sscanf(device.c_str(), "\\\\?\\HID#VID_%x&PID_%x&", &vid, &pid) == 2) {
if (std::find(_3DCONNEXION_VENDORS.begin(), _3DCONNEXION_VENDORS.end(), vid) != _3DCONNEXION_VENDORS.end()) {
tbb::mutex::scoped_lock lock(m_params_ui_mutex);
std::scoped_lock<std::mutex> lock(m_params_ui_mutex);
m_params_by_device[format_device_string(vid, pid)] = m_params_ui;
}
}
@ -301,12 +301,12 @@ void Mouse3DController::device_detached(const std::string& device)
// Filter out mouse scroll events produced by the 3DConnexion driver.
bool Mouse3DController::State::process_mouse_wheel()
{
tbb::mutex::scoped_lock lock(m_input_queue_mutex);
if (m_mouse_wheel_counter == 0)
// No 3DConnexion rotation has been captured since the last mouse scroll event.
std::scoped_lock<std::mutex> lock(m_input_queue_mutex);
if (m_mouse_wheel_counter == 0)
// No 3DConnexion rotation has been captured since the last mouse scroll event.
return false;
if (std::find_if(m_input_queue.begin(), m_input_queue.end(), [](const QueueItem &item){ return item.is_rotation(); }) != m_input_queue.end()) {
// There is a rotation stored in the queue. Suppress one mouse scroll event.
// There is a rotation stored in the queue. Suppress one mouse scroll event.
-- m_mouse_wheel_counter;
return true;
}
@ -323,7 +323,7 @@ bool Mouse3DController::State::apply(const Mouse3DController::Params &params, Ca
std::deque<QueueItem> input_queue;
{
// Atomically move m_input_queue to input_queue.
tbb::mutex::scoped_lock lock(m_input_queue_mutex);
std::scoped_lock<std::mutex> lock(m_input_queue_mutex);
input_queue = std::move(m_input_queue);
m_input_queue.clear();
}
@ -411,7 +411,7 @@ bool Mouse3DController::apply(Camera& camera)
#ifdef _WIN32
{
tbb::mutex::scoped_lock lock(m_params_ui_mutex);
std::scoped_lock<std::mutex> lock(m_params_ui_mutex);
if (m_params_ui_changed) {
m_params = m_params_ui;
m_params_ui_changed = false;
@ -439,7 +439,7 @@ void Mouse3DController::render_settings_dialog(GLCanvas3D& canvas) const
Params params_copy;
bool params_changed = false;
{
tbb::mutex::scoped_lock lock(m_params_ui_mutex);
std::scoped_lock<std::mutex> lock(m_params_ui_mutex);
params_copy = m_params_ui;
}
@ -557,7 +557,7 @@ void Mouse3DController::render_settings_dialog(GLCanvas3D& canvas) const
if (params_changed) {
// Synchronize front end parameters to back end.
tbb::mutex::scoped_lock lock(m_params_ui_mutex);
std::scoped_lock<std::mutex> lock(m_params_ui_mutex);
auto pthis = const_cast<Mouse3DController*>(this);
#if ENABLE_3DCONNEXION_DEVICES_DEBUG_OUTPUT
if (params_copy.input_queue_max_size != params_copy.input_queue_max_size)
@ -578,7 +578,7 @@ void Mouse3DController::connected(std::string device_name)
m_device_str = device_name;
// Copy the parameters for m_device_str into the current parameters.
if (auto it_params = m_params_by_device.find(m_device_str); it_params != m_params_by_device.end()) {
tbb::mutex::scoped_lock lock(m_params_ui_mutex);
std::scoped_lock<std::mutex> lock(m_params_ui_mutex);
m_params = m_params_ui = it_params->second;
}
m_connected = true;
@ -589,7 +589,7 @@ void Mouse3DController::disconnected()
// Copy the current parameters for m_device_str into the parameter database.
assert(m_connected == ! m_device_str.empty());
if (m_connected) {
tbb::mutex::scoped_lock lock(m_params_ui_mutex);
std::scoped_lock<std::mutex> lock(m_params_ui_mutex);
m_params_by_device[m_device_str] = m_params_ui;
m_device_str.clear();
m_connected = false;
@ -613,7 +613,7 @@ bool Mouse3DController::handle_input(const DataPacketAxis& packet)
{
// Synchronize parameters between the UI thread and the background thread.
//FIXME is this necessary on OSX? Are these notifications triggered from the main thread or from a worker thread?
tbb::mutex::scoped_lock lock(m_params_ui_mutex);
std::scoped_lock<std::mutex> lock(m_params_ui_mutex);
if (m_params_ui_changed) {
m_params = m_params_ui;
m_params_ui_changed = false;
@ -721,7 +721,7 @@ void Mouse3DController::run()
for (;;) {
{
tbb::mutex::scoped_lock lock(m_params_ui_mutex);
std::scoped_lock<std::mutex> lock(m_params_ui_mutex);
if (m_stop)
break;
if (m_params_ui_changed) {
@ -986,7 +986,7 @@ bool Mouse3DController::connect_device()
#endif // ENABLE_3DCONNEXION_DEVICES_DEBUG_OUTPUT
// Copy the parameters for m_device_str into the current parameters.
if (auto it_params = m_params_by_device.find(m_device_str); it_params != m_params_by_device.end()) {
tbb::mutex::scoped_lock lock(m_params_ui_mutex);
std::scoped_lock<std::mutex> lock(m_params_ui_mutex);
m_params = m_params_ui = it_params->second;
}
}
@ -1011,7 +1011,7 @@ void Mouse3DController::disconnect_device()
BOOST_LOG_TRIVIAL(info) << "Disconnected device: " << m_device_str;
// Copy the current parameters for m_device_str into the parameter database.
{
tbb::mutex::scoped_lock lock(m_params_ui_mutex);
std::scoped_lock<std::mutex> lock(m_params_ui_mutex);
m_params_by_device[m_device_str] = m_params_ui;
}
m_device_str.clear();

View file

@ -10,12 +10,12 @@
#include <queue>
#include <atomic>
#include <mutex>
#include <thread>
#include <vector>
#include <chrono>
#include <condition_variable>
#include <tbb/mutex.h>
namespace Slic3r {
@ -85,7 +85,7 @@ class Mouse3DController
// m_input_queue is accessed by the background thread and by the UI thread. Access to m_input_queue
// is guarded with m_input_queue_mutex.
std::deque<QueueItem> m_input_queue;
mutable tbb::mutex m_input_queue_mutex;
mutable std::mutex m_input_queue_mutex;
#ifdef WIN32
// When the 3Dconnexion driver is running the system gets, by default, mouse wheel events when rotations around the X axis are detected.
@ -112,12 +112,12 @@ class Mouse3DController
#if ENABLE_3DCONNEXION_DEVICES_DEBUG_OUTPUT
Vec3d get_first_vector_of_type(unsigned int type) const {
tbb::mutex::scoped_lock lock(m_input_queue_mutex);
std::scoped_lock<std::mutex> lock(m_input_queue_mutex);
auto it = std::find_if(m_input_queue.begin(), m_input_queue.end(), [type](const QueueItem& item) { return item.type_or_buttons == type; });
return (it == m_input_queue.end()) ? Vec3d::Zero() : it->vector;
}
size_t input_queue_size_current() const {
tbb::mutex::scoped_lock lock(m_input_queue_mutex);
std::scoped_lock<std::mutex> lock(m_input_queue_mutex);
return m_input_queue.size();
}
std::atomic<size_t> input_queue_max_size_achieved;
@ -133,7 +133,7 @@ class Mouse3DController
// UI thread will read / write this copy.
Params m_params_ui;
bool m_params_ui_changed { false };
mutable tbb::mutex m_params_ui_mutex;
mutable std::mutex m_params_ui_mutex;
// This is a database of parametes of all 3DConnexion devices ever connected.
// This database is loaded from AppConfig on application start and it is stored to AppConfig on application exit.

View file

@ -84,7 +84,7 @@ void RemovableDriveManager::eject_drive()
this->update();
#endif // REMOVABLE_DRIVE_MANAGER_OS_CALLBACKS
BOOST_LOG_TRIVIAL(info) << "Ejecting started";
tbb::mutex::scoped_lock lock(m_drives_mutex);
std::scoped_lock<std::mutex> lock(m_drives_mutex);
auto it_drive_data = this->find_last_save_path_drive_data();
if (it_drive_data != m_current_drives.end()) {
// get handle to device
@ -130,7 +130,7 @@ std::string RemovableDriveManager::get_removable_drive_path(const std::string &p
this->update();
#endif // REMOVABLE_DRIVE_MANAGER_OS_CALLBACKS
tbb::mutex::scoped_lock lock(m_drives_mutex);
std::scoped_lock<std::mutex> lock(m_drives_mutex);
if (m_current_drives.empty())
return std::string();
std::size_t found = path.find_last_of("\\");
@ -146,7 +146,7 @@ std::string RemovableDriveManager::get_removable_drive_path(const std::string &p
std::string RemovableDriveManager::get_removable_drive_from_path(const std::string& path)
{
tbb::mutex::scoped_lock lock(m_drives_mutex);
std::scoped_lock<std::mutex> lock(m_drives_mutex);
std::size_t found = path.find_last_of("\\");
std::string new_path = path.substr(0, found);
int letter = PathGetDriveNumberW(boost::nowide::widen(new_path).c_str());
@ -287,7 +287,7 @@ void RemovableDriveManager::eject_drive()
DriveData drive_data;
{
tbb::mutex::scoped_lock lock(m_drives_mutex);
std::scoped_lock<std::mutex> lock(m_drives_mutex);
auto it_drive_data = this->find_last_save_path_drive_data();
if (it_drive_data == m_current_drives.end())
return;
@ -343,7 +343,7 @@ void RemovableDriveManager::eject_drive()
if (success) {
// Remove the drive_data from m_current drives, searching by value, not by pointer, as m_current_drives may get modified during
// asynchronous execution on m_eject_thread.
tbb::mutex::scoped_lock lock(m_drives_mutex);
std::scoped_lock<std::mutex> lock(m_drives_mutex);
auto it = std::find(m_current_drives.begin(), m_current_drives.end(), drive_data);
if (it != m_current_drives.end())
m_current_drives.erase(it);
@ -363,7 +363,7 @@ std::string RemovableDriveManager::get_removable_drive_path(const std::string &p
std::size_t found = path.find_last_of("/");
std::string new_path = found == path.size() - 1 ? path.substr(0, found) : path;
tbb::mutex::scoped_lock lock(m_drives_mutex);
std::scoped_lock<std::mutex> lock(m_drives_mutex);
for (const DriveData &data : m_current_drives)
if (search_for_drives_internal::compare_filesystem_id(new_path, data.path))
return path;
@ -379,7 +379,7 @@ std::string RemovableDriveManager::get_removable_drive_from_path(const std::stri
new_path = new_path.substr(0, found);
// check if same filesystem
tbb::mutex::scoped_lock lock(m_drives_mutex);
std::scoped_lock<std::mutex> lock(m_drives_mutex);
for (const DriveData &drive_data : m_current_drives)
if (search_for_drives_internal::compare_filesystem_id(new_path, drive_data.path))
return drive_data.path;
@ -454,7 +454,7 @@ RemovableDriveManager::RemovableDrivesStatus RemovableDriveManager::status()
RemovableDriveManager::RemovableDrivesStatus out;
{
tbb::mutex::scoped_lock lock(m_drives_mutex);
std::scoped_lock<std::mutex> lock(m_drives_mutex);
out.has_eject =
// Cannot control eject on Chromium.
platform_flavor() != PlatformFlavor::LinuxOnChromium &&
@ -470,17 +470,17 @@ RemovableDriveManager::RemovableDrivesStatus RemovableDriveManager::status()
// Update is called from thread_proc() and from most of the public methods on demand.
void RemovableDriveManager::update()
{
tbb::mutex::scoped_lock inside_update_lock;
std::unique_lock<std::mutex> inside_update_lock(m_inside_update_mutex, std::defer_lock);
#ifdef _WIN32
// All wake up calls up to now are now consumed when the drive enumeration starts.
m_wakeup = false;
#endif // _WIN32
if (inside_update_lock.try_acquire(m_inside_update_mutex)) {
if (inside_update_lock.try_lock()) {
// Got the lock without waiting. That means, the update was not running.
// Run the update.
std::vector<DriveData> current_drives = this->search_for_removable_drives();
// Post update events.
tbb::mutex::scoped_lock lock(m_drives_mutex);
std::scoped_lock<std::mutex> lock(m_drives_mutex);
std::sort(current_drives.begin(), current_drives.end());
if (current_drives != m_current_drives) {
assert(m_callback_evt_handler);
@ -491,7 +491,7 @@ void RemovableDriveManager::update()
} else {
// Acquiring the m_iniside_update lock failed, therefore another update is running.
// Just block until the other instance of update() finishes.
inside_update_lock.acquire(m_inside_update_mutex);
inside_update_lock.lock();
}
}

View file

@ -5,7 +5,7 @@
#include <string>
#include <boost/thread.hpp>
#include <tbb/mutex.h>
#include <mutex>
#include <condition_variable>
// Custom wxWidget events
@ -111,9 +111,9 @@ private:
// m_current_drives is guarded by m_drives_mutex
// sorted ascending by path
std::vector<DriveData> m_current_drives;
mutable tbb::mutex m_drives_mutex;
mutable std::mutex m_drives_mutex;
// Locking the update() function to avoid that the function is executed multiple times.
mutable tbb::mutex m_inside_update_mutex;
mutable std::mutex m_inside_update_mutex;
// Returns drive path (same as path in DriveData) if exists otherwise empty string.
std::string get_removable_drive_from_path(const std::string& path);