Debug version, threading disabled for the first part currently and crashing. But core should be finished
This commit is contained in:
parent
a57f98961e
commit
3d158e545e
@ -36,6 +36,7 @@
|
||||
#include <cstddef>
|
||||
#include <float.h>
|
||||
#include <limits>
|
||||
#include <oneapi/tbb/blocked_range.h>
|
||||
#include <oneapi/tbb/parallel_for.h>
|
||||
#include <string_view>
|
||||
#include <unordered_map>
|
||||
@ -1534,398 +1535,521 @@ void PrintObject::bridge_over_infill()
|
||||
{
|
||||
BOOST_LOG_TRIVIAL(info) << "Bridge over infill - Start" << log_memory_info();
|
||||
|
||||
tbb::parallel_for(
|
||||
tbb::blocked_range<size_t>(0, this->layers().size()),
|
||||
[po = this](tbb::blocked_range<size_t> r) {
|
||||
for (size_t lidx = r.begin(); lidx < r.end(); lidx++) {
|
||||
const Layer *layer = po->get_layer(lidx);
|
||||
struct ModifiedSurface
|
||||
{
|
||||
ModifiedSurface(const Surface *original_surface, Polygons new_polys, const LayerRegion *region, double bridge_angle)
|
||||
: original_surface(original_surface), new_polys(new_polys), region(region), bridge_angle(bridge_angle)
|
||||
{}
|
||||
const Surface *original_surface;
|
||||
Polygons new_polys;
|
||||
const LayerRegion *region;
|
||||
double bridge_angle;
|
||||
};
|
||||
|
||||
// gather also sparse infill surfaces on this layer, to which we can expand the bridges for anchoring
|
||||
// gather potential internal bridging surfaces for the current layer
|
||||
// pair of LayerSlice idx and surfaces. The LayerSlice idx simplifies the processing, since we cannot expand beyond it
|
||||
std::unordered_map<const LayerSlice *, SurfacesPtr> bridging_surface_candidates;
|
||||
std::unordered_map<const LayerSlice *, SurfacesPtr> expansion_space;
|
||||
std::unordered_map<const LayerSlice *, float> max_bridge_flow_height;
|
||||
std::unordered_map<const Surface *, const LayerRegion *> surface_to_region;
|
||||
for (const LayerSlice &slice : layer->lslices_ex) {
|
||||
std::unordered_set<size_t> regions_to_check;
|
||||
for (const LayerIsland &island : slice.islands) {
|
||||
regions_to_check.insert(island.perimeters.region());
|
||||
if (!island.fill_expolygons_composite()) {
|
||||
regions_to_check.insert(island.fill_region_id);
|
||||
}
|
||||
}
|
||||
std::unordered_map<const LayerSlice *, std::vector<ModifiedSurface>> expanded_briding_surfaces;
|
||||
|
||||
for (size_t region_idx : regions_to_check) {
|
||||
const LayerRegion *region = layer->get_region(region_idx);
|
||||
auto region_internal_solids = region->fill_surfaces().filter_by_type(stInternalSolid);
|
||||
if (!region_internal_solids.empty()) {
|
||||
max_bridge_flow_height[&slice] = std::max(max_bridge_flow_height[&slice],
|
||||
region->bridging_flow(frSolidInfill).height());
|
||||
}
|
||||
for (const Surface *s : region_internal_solids) {
|
||||
surface_to_region[s] = region;
|
||||
}
|
||||
bridging_surface_candidates[&slice].insert(bridging_surface_candidates[&slice].end(),
|
||||
region_internal_solids.begin(), region_internal_solids.end());
|
||||
auto region_sparse_infill = region->fill_surfaces().filter_by_type(stInternal);
|
||||
expansion_space[&slice].insert(expansion_space[&slice].end(), region_sparse_infill.begin(),
|
||||
region_sparse_infill.end());
|
||||
// tbb::parallel_for(tbb::blocked_range<size_t>(0, this->layers().size()), [po = this,
|
||||
// &expanded_briding_surfaces](tbb::blocked_range<size_t> r) {
|
||||
auto r = tbb::blocked_range<size_t>{0, this->layer_count()};
|
||||
auto po = this;
|
||||
|
||||
for (size_t lidx = r.begin(); lidx < r.end(); lidx++) {
|
||||
const Layer *layer = po->get_layer(lidx);
|
||||
|
||||
// gather also sparse infill surfaces on this layer, to which we can expand the bridges for anchoring
|
||||
// gather potential internal bridging surfaces for the current layer
|
||||
// pair of LayerSlice idx and surfaces. The LayerSlice idx simplifies the processing, since we cannot expand beyond it
|
||||
std::unordered_map<const LayerSlice *, SurfacesPtr> bridging_surface_candidates;
|
||||
std::unordered_map<const LayerSlice *, SurfacesPtr> expansion_space;
|
||||
std::unordered_map<const LayerSlice *, float> max_bridge_flow_height;
|
||||
std::unordered_map<const Surface *, const LayerRegion *> surface_to_region;
|
||||
for (const LayerSlice &slice : layer->lslices_ex) {
|
||||
std::unordered_set<size_t> regions_to_check;
|
||||
for (const LayerIsland &island : slice.islands) {
|
||||
regions_to_check.insert(island.perimeters.region());
|
||||
if (!island.fill_expolygons_composite()) {
|
||||
regions_to_check.insert(island.fill_region_id);
|
||||
}
|
||||
}
|
||||
|
||||
// if there are none briding candidates, exit now, before making infill for the previous layer
|
||||
if (std::all_of(bridging_surface_candidates.begin(), bridging_surface_candidates.end(),
|
||||
[](const std::pair<const LayerSlice *, SurfacesPtr> &candidates) { return candidates.second.empty(); })) {
|
||||
for (size_t region_idx : regions_to_check) {
|
||||
const LayerRegion *region = layer->get_region(region_idx);
|
||||
auto region_internal_solids = region->fill_surfaces().filter_by_type(stInternalSolid);
|
||||
if (!region_internal_solids.empty()) {
|
||||
max_bridge_flow_height[&slice] = std::max(max_bridge_flow_height[&slice],
|
||||
region->bridging_flow(frSolidInfill).height());
|
||||
}
|
||||
for (const Surface *s : region_internal_solids) {
|
||||
surface_to_region[s] = region;
|
||||
}
|
||||
bridging_surface_candidates[&slice].insert(bridging_surface_candidates[&slice].end(), region_internal_solids.begin(),
|
||||
region_internal_solids.end());
|
||||
auto region_sparse_infill = region->fill_surfaces().filter_by_type(stInternal);
|
||||
expansion_space[&slice].insert(expansion_space[&slice].end(), region_sparse_infill.begin(), region_sparse_infill.end());
|
||||
}
|
||||
}
|
||||
|
||||
// if there are none briding candidates, exit now, before making infill for the previous layer
|
||||
if (std::all_of(bridging_surface_candidates.begin(), bridging_surface_candidates.end(),
|
||||
[](const std::pair<const LayerSlice *, SurfacesPtr> &candidates) { return candidates.second.empty(); })) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Now, temporarily fill the previous layer and extract the extrusions.
|
||||
// TODO - the make_fills function does a lot of work, some of it is not needed (e.g. sorting the paths)
|
||||
// It would be nice to have a function that only creates the fill polylines, ideally without modifying the global state
|
||||
po->get_layer(lidx)->lower_layer->make_fills(nullptr, nullptr, nullptr);
|
||||
Polylines lower_layer_polylines;
|
||||
for (const LayerRegion *region : layer->lower_layer->m_regions) {
|
||||
for (const ExtrusionEntity *ee : region->fills().entities) {
|
||||
assert(ee->is_collection());
|
||||
auto region_polylines = dynamic_cast<const ExtrusionEntityCollection *>(ee)->as_polylines();
|
||||
lower_layer_polylines.insert(lower_layer_polylines.end(), region_polylines.begin(), region_polylines.end());
|
||||
}
|
||||
}
|
||||
|
||||
for (const std::pair<const LayerSlice *, SurfacesPtr> candidates : bridging_surface_candidates) {
|
||||
if (candidates.second.empty()) {
|
||||
continue;
|
||||
};
|
||||
|
||||
// Gather lower layers sparse infill areas, to depth defined by used bridge flow
|
||||
Polygons lower_layers_sparse_infill{};
|
||||
double bottom_z = layer->print_z - max_bridge_flow_height[candidates.first] - EPSILON;
|
||||
LayerSlice::Links current_links = candidates.first->overlaps_below;
|
||||
LayerSlice::Links next_links{};
|
||||
for (int i = int(lidx) - 1; i >= 0; --i) {
|
||||
// Stop iterating if layer is lower than bottom_z.
|
||||
if (po->get_layer(i)->print_z < bottom_z)
|
||||
break;
|
||||
for (const auto &link : current_links) {
|
||||
const LayerSlice &slice_below = po->get_layer(i)->lslices_ex[link.slice_idx];
|
||||
next_links.insert(next_links.end(), slice_below.overlaps_below.begin(), slice_below.overlaps_below.end());
|
||||
std::unordered_set<size_t> regions_under_to_check;
|
||||
for (const LayerIsland &island : slice_below.islands) {
|
||||
regions_under_to_check.insert(island.perimeters.region());
|
||||
if (!island.fill_expolygons_composite()) {
|
||||
regions_under_to_check.insert(island.fill_region_id);
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t region_idx : regions_under_to_check) {
|
||||
const LayerRegion *region = po->get_layer(i)->get_region(region_idx);
|
||||
for (const Surface *surface : region->fill_surfaces().filter_by_type(stInternal)) {
|
||||
Polygons p = to_polygons(surface->expolygon);
|
||||
lower_layers_sparse_infill.insert(lower_layers_sparse_infill.end(), p.begin(), p.end());
|
||||
}
|
||||
}
|
||||
}
|
||||
current_links = next_links;
|
||||
}
|
||||
if (lower_layers_sparse_infill.empty()) {
|
||||
continue;
|
||||
}
|
||||
lower_layers_sparse_infill = union_(lower_layers_sparse_infill);
|
||||
|
||||
// Now, temporarily fill the previous layer and extract the extrusions.
|
||||
// TODO - the make_fills function does a lot of work, some of it is not needed (e.g. sorting the paths)
|
||||
// It would be nice to have a function that only creates the fill polylines, ideally without modifying the global state
|
||||
po->get_layer(lidx)->lower_layer->make_fills(nullptr, nullptr, nullptr);
|
||||
Polylines lower_layer_polylines;
|
||||
for (const LayerRegion *region : layer->lower_layer->m_regions) {
|
||||
for (const ExtrusionEntity *ee : region->fills().entities) {
|
||||
assert(ee->is_collection());
|
||||
auto region_polylines = dynamic_cast<const ExtrusionEntityCollection *>(ee)->as_polylines();
|
||||
lower_layer_polylines.insert(lower_layer_polylines.end(), region_polylines.begin(), region_polylines.end());
|
||||
}
|
||||
Polygons expand_area;
|
||||
for (const Surface *sparse_infill : expansion_space[candidates.first]) {
|
||||
assert(sparse_infill->surface_type == stInternal);
|
||||
Polygons a = to_polygons(sparse_infill->expolygon);
|
||||
expand_area.insert(expand_area.end(), a.begin(), a.end());
|
||||
}
|
||||
|
||||
for (const std::pair<const LayerSlice *, SurfacesPtr> candidates : bridging_surface_candidates) {
|
||||
if (candidates.second.empty()) {
|
||||
// Lower layers sparse infill sections gathered
|
||||
// now we can intersected them with bridging surface candidates to get actual areas that need and can accumulate
|
||||
// bridging. These areas we then expand (within the surrounding sparse infill only!)
|
||||
// to touch the infill polylines on previous layer.
|
||||
for (const Surface *candidate : candidates.second) {
|
||||
const Flow &flow = surface_to_region[candidate]->bridging_flow(frSolidInfill);
|
||||
assert(candidate->surface_type == stInternalSolid);
|
||||
Polygons bridged_area = to_polygons(candidate->expolygon);
|
||||
bridged_area =
|
||||
intersection(bridged_area,
|
||||
lower_layers_sparse_infill); // cut off parts which are not over sparse infill - material overflow
|
||||
|
||||
if (bridged_area.empty()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
Polygons max_area = expand_area;
|
||||
max_area.insert(max_area.end(), bridged_area.begin(), bridged_area.end());
|
||||
closing(max_area, flow.scaled_width());
|
||||
|
||||
Polylines anchors = intersection_pl(lower_layer_polylines, max_area);
|
||||
anchors = diff_pl(anchors, shrink(bridged_area, flow.scaled_width()));
|
||||
|
||||
Lines anchors_and_walls = to_lines(anchors);
|
||||
Lines tmp = to_lines(max_area);
|
||||
tmp.insert(anchors_and_walls.end(), tmp.begin(), tmp.end());
|
||||
|
||||
double bridging_angle = 0;
|
||||
{
|
||||
AABBTreeLines::LinesDistancer<Line> lines_tree{anchors_and_walls};
|
||||
|
||||
std::vector<std::pair<double, double>> directions_with_distances;
|
||||
for (const Polygon &p : bridged_area) {
|
||||
for (int point_idx = 0; point_idx < int(p.points.size()) - 1; ++point_idx) {
|
||||
Vec2d start = p.points[point_idx].cast<double>();
|
||||
Vec2d next = p.points[point_idx + 1].cast<double>();
|
||||
Vec2d v = next - start; // vector from next to current
|
||||
double dist_to_next = v.norm();
|
||||
v.normalize();
|
||||
int lines_count = int(std::ceil(dist_to_next / scaled(3.0)));
|
||||
float step_size = dist_to_next / lines_count;
|
||||
for (int i = 0; i < lines_count; ++i) {
|
||||
Point a = (start + v * (i * step_size)).cast<coord_t>();
|
||||
auto [distance, index, p] = lines_tree.distance_from_lines_extra<false>(a);
|
||||
const Line &l = lines_tree.get_line(index);
|
||||
directions_with_distances.emplace_back(PI - l.direction(), unscaled(distance));
|
||||
}
|
||||
}
|
||||
}
|
||||
double max_dist = directions_with_distances[0].second;
|
||||
for (const auto &dir : directions_with_distances) {
|
||||
max_dist = std::max(max_dist, dir.second);
|
||||
}
|
||||
double acc = 0;
|
||||
for (const auto &dir : directions_with_distances) {
|
||||
bridging_angle += dir.first * (max_dist - dir.second);
|
||||
acc += (max_dist - dir.second);
|
||||
}
|
||||
bridging_angle /= acc;
|
||||
}
|
||||
|
||||
// TODO maybe get extens of rotated max_area, then fill with vertical lines, make AABB tree rotated for anchors and
|
||||
// walls and also
|
||||
// for bridged area
|
||||
// then cut off the vertical lines, compose the final polygon, and rotate back
|
||||
auto lines_rotate = [](Lines &lines, double cos_angle, double sin_angle) {
|
||||
for (Line &l : lines) {
|
||||
double ax = double(l.a.x());
|
||||
double ay = double(l.a.y());
|
||||
l.a.x() = coord_t(round(cos_angle * ax - sin_angle * ay));
|
||||
l.a.y() = coord_t(round(cos_angle * ay + sin_angle * ax));
|
||||
double bx = double(l.b.x());
|
||||
double by = double(l.b.y());
|
||||
l.b.x() = coord_t(round(cos_angle * bx - sin_angle * by));
|
||||
l.b.y() = coord_t(round(cos_angle * by + sin_angle * bx));
|
||||
}
|
||||
};
|
||||
|
||||
// Gather lower layers sparse infill areas, to depth defined by used bridge flow
|
||||
Polygons lower_layers_sparse_infill;
|
||||
double bottom_z = layer->print_z - max_bridge_flow_height[candidates.first] - EPSILON;
|
||||
LayerSlice::Links current_links = candidates.first->overlaps_below;
|
||||
LayerSlice::Links next_links{};
|
||||
for (auto i = int(lidx) - 1; i >= 0; --i) {
|
||||
// Stop iterating if layer is lower than bottom_z.
|
||||
if (po->get_layer(i)->print_z < bottom_z)
|
||||
break;
|
||||
for (const auto &link : current_links) {
|
||||
const LayerSlice &slice_below = po->get_layer(i)->lslices_ex[link.slice_idx];
|
||||
next_links.insert(next_links.end(), slice_below.overlaps_below.begin(), slice_below.overlaps_below.end());
|
||||
std::unordered_set<size_t> regions_under_to_check;
|
||||
for (const LayerIsland &island : slice_below.islands) {
|
||||
regions_under_to_check.insert(island.perimeters.region());
|
||||
if (!island.fill_expolygons_composite()) {
|
||||
regions_under_to_check.insert(island.fill_region_id);
|
||||
}
|
||||
}
|
||||
Polygons expanded_bridged_area{};
|
||||
{
|
||||
polygons_rotate(bridged_area, bridging_angle);
|
||||
lines_rotate(anchors_and_walls, cos(bridging_angle), sin(bridging_angle));
|
||||
BoundingBox bb_x = get_extents(bridged_area);
|
||||
BoundingBox bb_y = get_extents(anchors_and_walls);
|
||||
|
||||
for (size_t region_idx : regions_under_to_check) {
|
||||
const LayerRegion *region = layer->get_region(region_idx);
|
||||
for (const Surface *surface : region->fill_surfaces().filter_by_type(stInternal)) {
|
||||
Polygons p = to_polygons(surface->expolygon);
|
||||
lower_layers_sparse_infill.insert(lower_layers_sparse_infill.end(), p.begin(), p.end());
|
||||
const size_t n_vlines = (bb_x.max.x() - bb_x.min.x() + flow.scaled_spacing() - 1) / flow.scaled_spacing();
|
||||
std::vector<Line> vertical_lines(n_vlines);
|
||||
for (size_t i = 0; i < n_vlines; i++) {
|
||||
coord_t x = bb_x.min.x() + i * flow.scaled_spacing();
|
||||
coord_t y_min = bb_y.min.y() - flow.scaled_spacing();
|
||||
coord_t y_max = bb_y.max.y() + flow.scaled_spacing();
|
||||
vertical_lines[i].a = Point{x, y_min};
|
||||
vertical_lines[i].b = Point{x, y_max};
|
||||
}
|
||||
|
||||
auto anchors_and_walls_tree = AABBTreeLines::LinesDistancer<Line>{std::move(anchors_and_walls)};
|
||||
auto bridged_area_tree = AABBTreeLines::LinesDistancer<Line>{to_lines(bridged_area)};
|
||||
|
||||
std::vector<std::vector<std::pair<Point, Point>>> polygon_sections(n_vlines);
|
||||
for (size_t i = 0; i < n_vlines; i++) {
|
||||
auto area_intersections = bridged_area_tree.intersections_with_line<true>(vertical_lines[i]);
|
||||
if (area_intersections.size() < 2) {
|
||||
if (area_intersections.size() > 0) {
|
||||
polygon_sections[i].emplace_back(area_intersections[0].first, area_intersections[0].first);
|
||||
}
|
||||
continue;
|
||||
}
|
||||
auto anchors_intersections = anchors_and_walls_tree.intersections_with_line<true>(vertical_lines[i]);
|
||||
for (const auto &intersection : area_intersections) {
|
||||
auto high_b = std::upper_bound(anchors_intersections.begin(), anchors_intersections.end(), intersection,
|
||||
[](const std::pair<Point, size_t> left,
|
||||
const std::pair<Point, size_t> right) {
|
||||
return left.first.y() > right.first.y();
|
||||
});
|
||||
Point low, high;
|
||||
if (high_b == anchors_intersections.end()) {
|
||||
assert(false); // should not happen
|
||||
continue;
|
||||
} else if (high_b == anchors_intersections.begin()) {
|
||||
low = high_b->first;
|
||||
high = (++high_b)->first;
|
||||
} else {
|
||||
low = (--high_b)->first;
|
||||
high = high_b->first;
|
||||
}
|
||||
|
||||
if (polygon_sections[i].size() > 0 && polygon_sections[i].back().second.y() >= low.y()) {
|
||||
polygon_sections[i].back().second = high;
|
||||
} else {
|
||||
polygon_sections[i].emplace_back(low, high);
|
||||
}
|
||||
}
|
||||
}
|
||||
current_links = next_links;
|
||||
}
|
||||
if (lower_layers_sparse_infill.empty()) {
|
||||
continue;
|
||||
}
|
||||
lower_layers_sparse_infill = union_(lower_layers_sparse_infill);
|
||||
|
||||
Polygons expand_area;
|
||||
for (const Surface *sparse_infill : expansion_space[candidates.first]) {
|
||||
assert(sparse_infill->surface_type == stInternal);
|
||||
Polygons a = to_polygons(sparse_infill->expolygon);
|
||||
expand_area.insert(expand_area.end(), a.begin(), a.end());
|
||||
}
|
||||
|
||||
// Lower layers sparse infill sections gathered
|
||||
// now we can intersected them with bridging surface candidates to get actual areas that need and can accumulate
|
||||
// bridging. These areas we then expand (within the surrounding sparse infill only!)
|
||||
// to touch the infill polylines on previous layer.
|
||||
for (const Surface *candidate : candidates.second) {
|
||||
const Flow &flow = surface_to_region[candidate]->bridging_flow(frSolidInfill);
|
||||
assert(candidate->surface_type == stInternalSolid);
|
||||
Polygons bridged_area = to_polygons(candidate->expolygon);
|
||||
bridged_area =
|
||||
intersection(bridged_area,
|
||||
lower_layers_sparse_infill); // cut off parts which are not over sparse infill - material overflow
|
||||
|
||||
if (bridged_area.empty()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
Polygons max_area = expand_area;
|
||||
max_area.insert(max_area.end(), bridged_area.begin(), bridged_area.end());
|
||||
closing(max_area, flow.scaled_width());
|
||||
|
||||
Polylines anchors = intersection_pl(lower_layer_polylines, max_area);
|
||||
anchors = diff_pl(anchors, shrink(bridged_area, flow.scaled_width()));
|
||||
|
||||
Lines anchors_and_walls = to_lines(anchors);
|
||||
Lines tmp = to_lines(max_area);
|
||||
tmp.insert(anchors_and_walls.end(), tmp.begin(), tmp.end());
|
||||
|
||||
double bridging_angle = 0;
|
||||
// reconstruct polygon from polygon sections
|
||||
struct TracedPoly
|
||||
{
|
||||
AABBTreeLines::LinesDistancer<Line> lines_tree{anchors_and_walls};
|
||||
|
||||
std::vector<std::pair<double, double>> directions_with_distances;
|
||||
for (const Polygon &p : bridged_area) {
|
||||
for (int point_idx = 0; point_idx < int(p.points.size()) - 1; ++point_idx) {
|
||||
Vec2d start = p.points[point_idx].cast<double>();
|
||||
Vec2d next = p.points[point_idx + 1].cast<double>();
|
||||
Vec2d v = next - start; // vector from next to current
|
||||
double dist_to_next = v.norm();
|
||||
v.normalize();
|
||||
int lines_count = int(std::ceil(dist_to_next / scaled(3.0)));
|
||||
float step_size = dist_to_next / lines_count;
|
||||
for (int i = 0; i < lines_count; ++i) {
|
||||
Point a(start + v * (i * step_size));
|
||||
auto [distance, index, p] = lines_tree.distance_from_lines_extra<false>(a);
|
||||
const Line &l = lines_tree.get_line(index);
|
||||
directions_with_distances.emplace_back(PI - l.direction(), unscaled(distance));
|
||||
}
|
||||
}
|
||||
}
|
||||
double max_dist = directions_with_distances[0].second;
|
||||
for (const auto &dir : directions_with_distances) {
|
||||
max_dist = std::max(max_dist, dir.second);
|
||||
}
|
||||
double acc = 0;
|
||||
for (const auto &dir : directions_with_distances) {
|
||||
bridging_angle += dir.first * (max_dist - dir.second);
|
||||
acc += (max_dist - dir.second);
|
||||
}
|
||||
bridging_angle /= acc;
|
||||
}
|
||||
|
||||
// TODO maybe get extens of rotated max_area, then fill with vertical lines, make AABB tree rotated for anchors and
|
||||
// walls and also
|
||||
// for bridged area
|
||||
// then cut off the vertical lines, compose the final polygon, and rotate back
|
||||
auto lines_rotate = [](Lines &lines, double cos_angle, double sin_angle) {
|
||||
for (Line &l : lines) {
|
||||
double ax = double(l.a.x());
|
||||
double ay = double(l.a.y());
|
||||
l.a.x() = coord_t(round(cos_angle * ax - sin_angle * ay));
|
||||
l.a.y() = coord_t(round(cos_angle * ay + sin_angle * ax));
|
||||
double bx = double(l.b.x());
|
||||
double by = double(l.b.y());
|
||||
l.b.x() = coord_t(round(cos_angle * bx - sin_angle * by));
|
||||
l.b.y() = coord_t(round(cos_angle * by + sin_angle * bx));
|
||||
}
|
||||
std::vector<Point> lows;
|
||||
std::vector<Point> highs;
|
||||
};
|
||||
|
||||
Polygons expanded_bridged_area{};
|
||||
{
|
||||
polygons_rotate(bridged_area, bridging_angle);
|
||||
lines_rotate(anchors_and_walls, cos(bridging_angle), sin(bridging_angle));
|
||||
BoundingBox bb_x = get_extents(bridged_area);
|
||||
BoundingBox bb_y = get_extents(anchors_and_walls);
|
||||
auto segments_overlap = [](coord_t alow, coord_t ahigh, coord_t blow, coord_t bhigh) {
|
||||
return (alow >= blow && alow <= bhigh) || (ahigh >= blow && ahigh <= bhigh) ||
|
||||
(blow >= alow && blow <= ahigh) || (bhigh >= alow && bhigh <= ahigh);
|
||||
};
|
||||
|
||||
const size_t n_vlines = (bb_x.max.x() - bb_x.min.x() + flow.scaled_spacing() - 1) / flow.scaled_spacing();
|
||||
std::vector<Line> vertical_lines(n_vlines);
|
||||
for (size_t i = 0; i < n_vlines; i++) {
|
||||
coord_t x = bb_x.min.x() + i * flow.scaled_spacing();
|
||||
coord_t y_min = bb_y.min.y() - flow.scaled_spacing();
|
||||
coord_t y_max = bb_y.max.y() + flow.scaled_spacing();
|
||||
vertical_lines[i].a = Point{x, y_min};
|
||||
vertical_lines[i].b = Point{x, y_max};
|
||||
}
|
||||
std::vector<TracedPoly> current_traced_polys;
|
||||
for (const auto &layer : polygon_sections) {
|
||||
std::unordered_set<const std::pair<Point, Point> *> used_segments;
|
||||
for (TracedPoly &traced_poly : current_traced_polys) {
|
||||
auto maybe_first_overlap = std::upper_bound(layer.begin(), layer.end(), traced_poly.lows.back(),
|
||||
[](const Point &low, const std::pair<Point, Point> &seg) {
|
||||
return seg.second.y() > low.y();
|
||||
});
|
||||
|
||||
auto anchors_and_walls_tree = AABBTreeLines::LinesDistancer<Line>{std::move(anchors_and_walls)};
|
||||
auto bridged_area_tree = AABBTreeLines::LinesDistancer<Line>{to_lines(bridged_area)};
|
||||
|
||||
std::vector<std::vector<std::pair<Point, Point>>> polygon_sections(n_vlines);
|
||||
for (size_t i = 0; i < n_vlines; i++) {
|
||||
auto area_intersections = bridged_area_tree.intersections_with_line<true>(vertical_lines[i]);
|
||||
if (area_intersections.size() < 2) {
|
||||
if (area_intersections.size() > 0) {
|
||||
polygon_sections[i].emplace_back(area_intersections[0].first, area_intersections[0].first);
|
||||
}
|
||||
continue;
|
||||
}
|
||||
auto anchors_intersections = anchors_and_walls_tree.intersections_with_line<true>(vertical_lines[i]);
|
||||
for (const auto &intersection : area_intersections) {
|
||||
auto high_b = std::upper_bound(anchors_intersections.begin(), anchors_intersections.end(), intersection,
|
||||
[](const std::pair<Point, size_t> left,
|
||||
const std::pair<Point, size_t> right) {
|
||||
return left.first.y() > right.first.y();
|
||||
});
|
||||
Point low, high;
|
||||
if (high_b == anchors_intersections.end()) {
|
||||
assert(false); // should not happen
|
||||
continue;
|
||||
} else if (high_b == anchors_intersections.begin()) {
|
||||
low = high_b->first;
|
||||
high = (++high_b)->first;
|
||||
} else {
|
||||
low = (--high_b)->first;
|
||||
high = high_b->first;
|
||||
}
|
||||
|
||||
if (polygon_sections[i].size() > 0 && polygon_sections[i].back().second.y() >= low.y()) {
|
||||
polygon_sections[i].back().second = high;
|
||||
} else {
|
||||
polygon_sections[i].emplace_back(low, high);
|
||||
}
|
||||
if (maybe_first_overlap != layer.end() && // segment exists
|
||||
segments_overlap(traced_poly.lows.back().y(), traced_poly.highs.back().y(),
|
||||
maybe_first_overlap->first.y(),
|
||||
maybe_first_overlap->second.y())) // segment is overlapping
|
||||
{
|
||||
// Overlapping segment. In that case, add it
|
||||
// to the traced polygon and add segment to used segments
|
||||
traced_poly.lows.push_back(maybe_first_overlap->first - Point{flow.scaled_spacing() / 2, 0});
|
||||
traced_poly.lows.push_back(maybe_first_overlap->first + Point{flow.scaled_spacing() / 2, 0});
|
||||
traced_poly.highs.push_back(maybe_first_overlap->second - Point{flow.scaled_spacing() / 2, 0});
|
||||
traced_poly.highs.push_back(maybe_first_overlap->second + Point{flow.scaled_spacing() / 2, 0});
|
||||
used_segments.insert(&(*maybe_first_overlap));
|
||||
} else {
|
||||
// Zero or multiple overlapping segments. Resolving this is nontrivial,
|
||||
// so we just close this polygon and maybe open several new. This will hopefully happen much less often
|
||||
Polygon &new_poly = expanded_bridged_area.emplace_back(std::move(traced_poly.lows));
|
||||
new_poly.points.insert(new_poly.points.end(), traced_poly.highs.rbegin(), traced_poly.highs.rend());
|
||||
traced_poly.lows.clear();
|
||||
traced_poly.highs.clear();
|
||||
}
|
||||
}
|
||||
|
||||
//reconstruct polygon from polygon sections
|
||||
struct TracedPoly {
|
||||
std::vector<Point> lows;
|
||||
std::vector<Point> highs;
|
||||
};
|
||||
|
||||
std::vector<TracedPoly> traced_polys;
|
||||
for (const auto& layer : polygon_sections) {
|
||||
for ()
|
||||
std::remove_if(current_traced_polys.begin(), current_traced_polys.end(),
|
||||
[](const TracedPoly &tp) { return tp.lows.empty(); });
|
||||
|
||||
for (const auto &segment : layer) {
|
||||
if (used_segments.find(&segment) != used_segments.end()) {
|
||||
TracedPoly &new_tp = current_traced_polys.emplace_back();
|
||||
new_tp.lows.push_back(segment.first - Point{flow.scaled_spacing() / 2, 0});
|
||||
new_tp.lows.push_back(segment.first + Point{flow.scaled_spacing() / 2, 0});
|
||||
new_tp.highs.push_back(segment.second - Point{flow.scaled_spacing() / 2, 0});
|
||||
new_tp.highs.push_back(segment.second + Point{flow.scaled_spacing() / 2, 0});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// add not closed polys
|
||||
for (TracedPoly &traced_poly : current_traced_polys) {
|
||||
Polygon &new_poly = expanded_bridged_area.emplace_back(std::move(traced_poly.lows));
|
||||
new_poly.points.insert(new_poly.points.end(), traced_poly.highs.rbegin(), traced_poly.highs.rend());
|
||||
}
|
||||
}
|
||||
|
||||
} // surface iteration end
|
||||
} // island iteration end
|
||||
} // layer iteration end
|
||||
);
|
||||
expand_area = diff(expand_area, expanded_bridged_area);
|
||||
|
||||
expanded_briding_surfaces[candidates.first].emplace_back(candidate, expanded_bridged_area, surface_to_region[candidate],
|
||||
bridging_angle);
|
||||
}
|
||||
}
|
||||
}
|
||||
// });
|
||||
|
||||
BOOST_LOG_TRIVIAL(info) << "Bridge over infill - Directions and expanded surfaces computed" << log_memory_info();
|
||||
|
||||
tbb::parallel_for(tbb::blocked_range<size_t>(0, this->layers().size()),
|
||||
[po = this, &expanded_briding_surfaces](tbb::blocked_range<size_t> r) {
|
||||
for (size_t lidx = r.begin(); lidx < r.end(); lidx++) {
|
||||
Layer *layer = po->get_layer(lidx);
|
||||
|
||||
for (const LayerSlice &slice : layer->lslices_ex) {
|
||||
if (const auto &modified_surfaces = expanded_briding_surfaces.find(&slice);
|
||||
modified_surfaces != expanded_briding_surfaces.end()) {
|
||||
std::unordered_set<size_t> regions_to_check;
|
||||
for (const LayerIsland &island : slice.islands) {
|
||||
regions_to_check.insert(island.perimeters.region());
|
||||
if (!island.fill_expolygons_composite()) {
|
||||
regions_to_check.insert(island.fill_region_id);
|
||||
}
|
||||
}
|
||||
|
||||
Polygons cut_from_infill{};
|
||||
for (const auto &surface : modified_surfaces->second) {
|
||||
cut_from_infill.insert(cut_from_infill.end(), surface.new_polys.begin(), surface.new_polys.end());
|
||||
}
|
||||
|
||||
for (size_t region_idx : regions_to_check) {
|
||||
LayerRegion *region = layer->get_region(region_idx);
|
||||
Surfaces new_surfaces;
|
||||
|
||||
for (const ModifiedSurface &s : modified_surfaces->second) {
|
||||
for (Surface &surface : region->m_fill_surfaces.surfaces) {
|
||||
if (s.original_surface == &surface) {
|
||||
Surface tmp(surface, {});
|
||||
tmp.surface_type = stInternalBridge;
|
||||
tmp.bridge_angle = s.bridge_angle;
|
||||
for (const ExPolygon &expoly : union_ex(s.new_polys)) {
|
||||
new_surfaces.emplace_back(tmp, expoly);
|
||||
}
|
||||
surface.clear();
|
||||
} else if (surface.surface_type == stInternal) {
|
||||
Surface tmp(surface, {});
|
||||
for (const ExPolygon &expoly : diff_ex(surface.expolygon, cut_from_infill)) {
|
||||
new_surfaces.emplace_back(tmp, expoly);
|
||||
}
|
||||
surface.clear();
|
||||
}
|
||||
}
|
||||
}
|
||||
region->m_fill_surfaces.surfaces.insert(region->m_fill_surfaces.surfaces.end(),
|
||||
new_surfaces.begin(), new_surfaces.end());
|
||||
std::remove_if(region->m_fill_surfaces.begin(), region->m_fill_surfaces.end(),
|
||||
[](const Surface &s) { return s.empty(); });
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
BOOST_LOG_TRIVIAL(info) << "Bridge over infill - End" << log_memory_info();
|
||||
|
||||
} // void PrintObject::bridge_over_infill()
|
||||
|
||||
void a()
|
||||
{
|
||||
std::vector<int> sparse_infill_regions;
|
||||
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id)
|
||||
if (const PrintRegion ®ion = this->printing_region(region_id); region.config().fill_density.value < 100)
|
||||
sparse_infill_regions.emplace_back(region_id);
|
||||
if (this->layer_count() < 2 || sparse_infill_regions.empty())
|
||||
return;
|
||||
// void a()
|
||||
// {
|
||||
// std::vector<int> sparse_infill_regions;
|
||||
// for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id)
|
||||
// if (const PrintRegion ®ion = this->printing_region(region_id); region.config().fill_density.value < 100)
|
||||
// sparse_infill_regions.emplace_back(region_id);
|
||||
// if (this->layer_count() < 2 || sparse_infill_regions.empty())
|
||||
// return;
|
||||
|
||||
// Collect sum of all internal (sparse infill) regions, because
|
||||
// 1) layerm->fill_surfaces.will be modified in parallel.
|
||||
// 2) the parallel loop works on a sum of surfaces over regions anyways, thus collecting the sparse infill surfaces
|
||||
// up front is an optimization.
|
||||
std::vector<Polygons> internals;
|
||||
internals.reserve(this->layer_count());
|
||||
for (Layer *layer : m_layers) {
|
||||
Polygons sum;
|
||||
for (const LayerRegion *layerm : layer->m_regions)
|
||||
layerm->fill_surfaces().filter_by_type(stInternal, &sum);
|
||||
internals.emplace_back(std::move(sum));
|
||||
}
|
||||
// // Collect sum of all internal (sparse infill) regions, because
|
||||
// // 1) layerm->fill_surfaces.will be modified in parallel.
|
||||
// // 2) the parallel loop works on a sum of surfaces over regions anyways, thus collecting the sparse infill surfaces
|
||||
// // up front is an optimization.
|
||||
// std::vector<Polygons> internals;
|
||||
// internals.reserve(this->layer_count());
|
||||
// for (Layer *layer : m_layers) {
|
||||
// Polygons sum;
|
||||
// for (const LayerRegion *layerm : layer->m_regions)
|
||||
// layerm->fill_surfaces().filter_by_type(stInternal, &sum);
|
||||
// internals.emplace_back(std::move(sum));
|
||||
// }
|
||||
|
||||
// Process all regions and layers in parallel.
|
||||
tbb::parallel_for(tbb::blocked_range<size_t>(0, sparse_infill_regions.size() * (this->layer_count() - 1), sparse_infill_regions.size()),
|
||||
[this, &sparse_infill_regions, &internals]
|
||||
(const tbb::blocked_range<size_t> &range) {
|
||||
for (size_t task_id = range.begin(); task_id != range.end(); ++ task_id) {
|
||||
const size_t layer_id = (task_id / sparse_infill_regions.size()) + 1;
|
||||
const size_t region_id = sparse_infill_regions[task_id % sparse_infill_regions.size()];
|
||||
Layer *layer = this->get_layer(layer_id);
|
||||
LayerRegion *layerm = layer->m_regions[region_id];
|
||||
Flow bridge_flow = layerm->bridging_flow(frSolidInfill);
|
||||
// // Process all regions and layers in parallel.
|
||||
// tbb::parallel_for(tbb::blocked_range<size_t>(0, sparse_infill_regions.size() * (this->layer_count() - 1), sparse_infill_regions.size()),
|
||||
// [this, &sparse_infill_regions, &internals]
|
||||
// (const tbb::blocked_range<size_t> &range) {
|
||||
// for (size_t task_id = range.begin(); task_id != range.end(); ++ task_id) {
|
||||
// const size_t layer_id = (task_id / sparse_infill_regions.size()) + 1;
|
||||
// const size_t region_id = sparse_infill_regions[task_id % sparse_infill_regions.size()];
|
||||
// Layer *layer = this->get_layer(layer_id);
|
||||
// LayerRegion *layerm = layer->m_regions[region_id];
|
||||
// Flow bridge_flow = layerm->bridging_flow(frSolidInfill);
|
||||
|
||||
// Extract the stInternalSolid surfaces that might be transformed into bridges.
|
||||
ExPolygons internal_solid;
|
||||
layerm->m_fill_surfaces.remove_type(stInternalSolid, &internal_solid);
|
||||
if (internal_solid.empty())
|
||||
// No internal solid -> no new bridges for this layer region.
|
||||
continue;
|
||||
// // Extract the stInternalSolid surfaces that might be transformed into bridges.
|
||||
// ExPolygons internal_solid;
|
||||
// layerm->m_fill_surfaces.remove_type(stInternalSolid, &internal_solid);
|
||||
// if (internal_solid.empty())
|
||||
// // No internal solid -> no new bridges for this layer region.
|
||||
// continue;
|
||||
|
||||
// check whether the lower area is deep enough for absorbing the extra flow
|
||||
// (for obvious physical reasons but also for preventing the bridge extrudates
|
||||
// from overflowing in 3D preview)
|
||||
ExPolygons to_bridge;
|
||||
{
|
||||
Polygons to_bridge_pp = to_polygons(internal_solid);
|
||||
// Iterate through lower layers spanned by bridge_flow.
|
||||
double bottom_z = layer->print_z - bridge_flow.height() - EPSILON;
|
||||
for (auto i = int(layer_id) - 1; i >= 0; -- i) {
|
||||
// Stop iterating if layer is lower than bottom_z.
|
||||
if (m_layers[i]->print_z < bottom_z)
|
||||
break;
|
||||
// Intersect lower sparse infills with the candidate solid surfaces.
|
||||
to_bridge_pp = intersection(to_bridge_pp, internals[i]);
|
||||
}
|
||||
// there's no point in bridging too thin/short regions
|
||||
//FIXME Vojtech: The offset2 function is not a geometric offset,
|
||||
// therefore it may create 1) gaps, and 2) sharp corners, which are outside the original contour.
|
||||
// The gaps will be filled by a separate region, which makes the infill less stable and it takes longer.
|
||||
{
|
||||
float min_width = float(bridge_flow.scaled_width()) * 3.f;
|
||||
to_bridge_pp = opening(to_bridge_pp, min_width);
|
||||
}
|
||||
// // check whether the lower area is deep enough for absorbing the extra flow
|
||||
// // (for obvious physical reasons but also for preventing the bridge extrudates
|
||||
// // from overflowing in 3D preview)
|
||||
// ExPolygons to_bridge;
|
||||
// {
|
||||
// Polygons to_bridge_pp = to_polygons(internal_solid);
|
||||
// // Iterate through lower layers spanned by bridge_flow.
|
||||
// double bottom_z = layer->print_z - bridge_flow.height() - EPSILON;
|
||||
// for (auto i = int(layer_id) - 1; i >= 0; -- i) {
|
||||
// // Stop iterating if layer is lower than bottom_z.
|
||||
// if (m_layers[i]->print_z < bottom_z)
|
||||
// break;
|
||||
// // Intersect lower sparse infills with the candidate solid surfaces.
|
||||
// to_bridge_pp = intersection(to_bridge_pp, internals[i]);
|
||||
// }
|
||||
// // there's no point in bridging too thin/short regions
|
||||
// //FIXME Vojtech: The offset2 function is not a geometric offset,
|
||||
// // therefore it may create 1) gaps, and 2) sharp corners, which are outside the original contour.
|
||||
// // The gaps will be filled by a separate region, which makes the infill less stable and it takes longer.
|
||||
// {
|
||||
// float min_width = float(bridge_flow.scaled_width()) * 3.f;
|
||||
// to_bridge_pp = opening(to_bridge_pp, min_width);
|
||||
// }
|
||||
|
||||
if (to_bridge_pp.empty()) {
|
||||
// Restore internal_solid surfaces.
|
||||
for (ExPolygon &ex : internal_solid)
|
||||
layerm->m_fill_surfaces.surfaces.push_back(Surface(stInternalSolid, std::move(ex)));
|
||||
continue;
|
||||
}
|
||||
// convert into ExPolygons
|
||||
to_bridge = union_ex(to_bridge_pp);
|
||||
}
|
||||
// if (to_bridge_pp.empty()) {
|
||||
// // Restore internal_solid surfaces.
|
||||
// for (ExPolygon &ex : internal_solid)
|
||||
// layerm->m_fill_surfaces.surfaces.push_back(Surface(stInternalSolid, std::move(ex)));
|
||||
// continue;
|
||||
// }
|
||||
// // convert into ExPolygons
|
||||
// to_bridge = union_ex(to_bridge_pp);
|
||||
// }
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
printf("Bridging %zu internal areas at layer %zu\n", to_bridge.size(), layer->id());
|
||||
#endif
|
||||
// #ifdef SLIC3R_DEBUG
|
||||
// printf("Bridging %zu internal areas at layer %zu\n", to_bridge.size(), layer->id());
|
||||
// #endif
|
||||
|
||||
// compute the remaning internal solid surfaces as difference
|
||||
ExPolygons not_to_bridge = diff_ex(internal_solid, to_bridge, ApplySafetyOffset::Yes);
|
||||
to_bridge = intersection_ex(to_bridge, internal_solid, ApplySafetyOffset::Yes);
|
||||
// build the new collection of fill_surfaces
|
||||
for (ExPolygon &ex : to_bridge)
|
||||
layerm->m_fill_surfaces.surfaces.push_back(Surface(stInternalBridge, std::move(ex)));
|
||||
for (ExPolygon &ex : not_to_bridge)
|
||||
layerm->m_fill_surfaces.surfaces.push_back(Surface(stInternalSolid, std::move(ex)));
|
||||
/*
|
||||
# exclude infill from the layers below if needed
|
||||
# see discussion at https://github.com/alexrj/Slic3r/issues/240
|
||||
# Update: do not exclude any infill. Sparse infill is able to absorb the excess material.
|
||||
if (0) {
|
||||
my $excess = $layerm->extruders->{infill}->bridge_flow->width - $layerm->height;
|
||||
for (my $i = $layer_id-1; $excess >= $self->get_layer($i)->height; $i--) {
|
||||
Slic3r::debugf " skipping infill below those areas at layer %d\n", $i;
|
||||
foreach my $lower_layerm (@{$self->get_layer($i)->regions}) {
|
||||
my @new_surfaces = ();
|
||||
# subtract the area from all types of surfaces
|
||||
foreach my $group (@{$lower_layerm->fill_surfaces->group}) {
|
||||
push @new_surfaces, map $group->[0]->clone(expolygon => $_),
|
||||
@{diff_ex(
|
||||
[ map $_->p, @$group ],
|
||||
[ map @$_, @$to_bridge ],
|
||||
)};
|
||||
push @new_surfaces, map Slic3r::Surface->new(
|
||||
expolygon => $_,
|
||||
surface_type => stInternalVoid,
|
||||
), @{intersection_ex(
|
||||
[ map $_->p, @$group ],
|
||||
[ map @$_, @$to_bridge ],
|
||||
)};
|
||||
}
|
||||
$lower_layerm->fill_surfaces->clear;
|
||||
$lower_layerm->fill_surfaces->append($_) for @new_surfaces;
|
||||
}
|
||||
|
||||
$excess -= $self->get_layer($i)->height;
|
||||
}
|
||||
}
|
||||
*/
|
||||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||||
layerm->export_region_slices_to_svg_debug("7_bridge_over_infill");
|
||||
layerm->export_region_fill_surfaces_to_svg_debug("7_bridge_over_infill");
|
||||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||||
m_print->throw_if_canceled();
|
||||
}
|
||||
});
|
||||
// // compute the remaning internal solid surfaces as difference
|
||||
// ExPolygons not_to_bridge = diff_ex(internal_solid, to_bridge, ApplySafetyOffset::Yes);
|
||||
// to_bridge = intersection_ex(to_bridge, internal_solid, ApplySafetyOffset::Yes);
|
||||
// // build the new collection of fill_surfaces
|
||||
// for (ExPolygon &ex : to_bridge)
|
||||
// layerm->m_fill_surfaces.surfaces.push_back(Surface(stInternalBridge, std::move(ex)));
|
||||
// for (ExPolygon &ex : not_to_bridge)
|
||||
// layerm->m_fill_surfaces.surfaces.push_back(Surface(stInternalSolid, std::move(ex)));
|
||||
// /*
|
||||
// # exclude infill from the layers below if needed
|
||||
// # see discussion at https://github.com/alexrj/Slic3r/issues/240
|
||||
// # Update: do not exclude any infill. Sparse infill is able to absorb the excess material.
|
||||
// if (0) {
|
||||
// my $excess = $layerm->extruders->{infill}->bridge_flow->width - $layerm->height;
|
||||
// for (my $i = $layer_id-1; $excess >= $self->get_layer($i)->height; $i--) {
|
||||
// Slic3r::debugf " skipping infill below those areas at layer %d\n", $i;
|
||||
// foreach my $lower_layerm (@{$self->get_layer($i)->regions}) {
|
||||
// my @new_surfaces = ();
|
||||
// # subtract the area from all types of surfaces
|
||||
// foreach my $group (@{$lower_layerm->fill_surfaces->group}) {
|
||||
// push @new_surfaces, map $group->[0]->clone(expolygon => $_),
|
||||
// @{diff_ex(
|
||||
// [ map $_->p, @$group ],
|
||||
// [ map @$_, @$to_bridge ],
|
||||
// )};
|
||||
// push @new_surfaces, map Slic3r::Surface->new(
|
||||
// expolygon => $_,
|
||||
// surface_type => stInternalVoid,
|
||||
// ), @{intersection_ex(
|
||||
// [ map $_->p, @$group ],
|
||||
// [ map @$_, @$to_bridge ],
|
||||
// )};
|
||||
// }
|
||||
// $lower_layerm->fill_surfaces->clear;
|
||||
// $lower_layerm->fill_surfaces->append($_) for @new_surfaces;
|
||||
// }
|
||||
|
||||
} // void PrintObject::bridge_over_infill()
|
||||
// $excess -= $self->get_layer($i)->height;
|
||||
// }
|
||||
// }
|
||||
// */
|
||||
// #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||||
// layerm->export_region_slices_to_svg_debug("7_bridge_over_infill");
|
||||
// layerm->export_region_fill_surfaces_to_svg_debug("7_bridge_over_infill");
|
||||
// #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||||
// m_print->throw_if_canceled();
|
||||
// }
|
||||
// });
|
||||
|
||||
// } // void PrintObject::bridge_over_infill()
|
||||
|
||||
static void clamp_exturder_to_default(ConfigOptionInt &opt, size_t num_extruders)
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user