reconstruction of polygon from vertical slices TODO

This commit is contained in:
Pavel Mikus 2023-02-10 20:15:12 +01:00 committed by PavelMikus
parent ebcedca211
commit a57f98961e

View File

@ -2,6 +2,7 @@
#include "BridgeDetector.hpp"
#include "ExPolygon.hpp"
#include "Exception.hpp"
#include "Flow.hpp"
#include "KDTreeIndirect.hpp"
#include "Point.hpp"
#include "Polygon.hpp"
@ -1533,185 +1534,272 @@ void PrintObject::bridge_over_infill()
{
BOOST_LOG_TRIVIAL(info) << "Bridge over infill - Start" << log_memory_info();
tbb::parallel_for(tbb::blocked_range<size_t>(0, this->layers().size()), [po = this](tbb::blocked_range<size_t> r) {
for (size_t lidx = r.begin(); lidx < r.end(); lidx++) {
const Layer *layer = po->get_layer(lidx);
tbb::parallel_for(
tbb::blocked_range<size_t>(0, this->layers().size()),
[po = this](tbb::blocked_range<size_t> r) {
for (size_t lidx = r.begin(); lidx < r.end(); lidx++) {
const Layer *layer = po->get_layer(lidx);
// gather also sparse infill surfaces on this layer, to which we can expand the bridges for anchoring
// gather potential internal bridging surfaces for the current layer
// pair of LayerSlice idx and surfaces. The LayerSlice idx simplifies the processing, since we cannot expand beyond it
std::unordered_map<const LayerSlice *, SurfacesPtr> bridging_surface_candidates;
std::unordered_map<const LayerSlice *, SurfacesPtr> expansion_space;
std::unordered_map<const LayerSlice *, float> max_bridge_flow_height;
std::unordered_map<const LayerSlice *, float> max_bridge_flow_width;
for (const LayerSlice &slice : layer->lslices_ex) {
std::unordered_set<size_t> regions_to_check;
for (const LayerIsland &island : slice.islands) {
regions_to_check.insert(island.perimeters.region());
if (!island.fill_expolygons_composite()) {
regions_to_check.insert(island.fill_region_id);
}
}
for (size_t region_idx : regions_to_check) {
const LayerRegion *region = layer->get_region(region_idx);
auto region_internal_solids = region->fill_surfaces().filter_by_type(stInternalSolid);
if (!region_internal_solids.empty()) {
max_bridge_flow_height[&slice] = std::max(max_bridge_flow_height[&slice],
region->bridging_flow(frSolidInfill).height());
max_bridge_flow_width[&slice] = std::max(max_bridge_flow_width[&slice],
region->bridging_flow(frSolidInfill).width());
}
bridging_surface_candidates[&slice].insert(bridging_surface_candidates[&slice].end(), region_internal_solids.begin(),
region_internal_solids.end());
auto region_sparse_infill = region->fill_surfaces().filter_by_type(stInternal);
expansion_space[&slice].insert(expansion_space[&slice].end(), region_sparse_infill.begin(), region_sparse_infill.end());
}
}
// if there are none briding candidates, exit now, before making infill for the previous layer
if (std::all_of(bridging_surface_candidates.begin(), bridging_surface_candidates.end(),
[](const std::pair<const LayerSlice *, SurfacesPtr> &candidates) { return candidates.second.empty(); })) {
continue;
}
// Now, temporarily fill the previous layer and extract the extrusions.
// TODO - the make_fills function does a lot of work, some of it is not needed (e.g. sorting the paths)
// It would be nice to have a function that only creates the fill polylines, ideally without modifying the global state
po->get_layer(lidx)->lower_layer->make_fills(nullptr, nullptr, nullptr);
Polylines lower_layer_polylines;
for (const LayerRegion *region : layer->lower_layer->m_regions) {
for (const ExtrusionEntity *ee : region->fills().entities) {
assert(ee->is_collection());
auto region_polylines = dynamic_cast<const ExtrusionEntityCollection *>(ee)->as_polylines();
lower_layer_polylines.insert(lower_layer_polylines.end(), region_polylines.begin(), region_polylines.end());
}
}
for (const std::pair<const LayerSlice *, SurfacesPtr> candidates : bridging_surface_candidates) {
if (candidates.second.empty()) {
continue;
};
// Gather lower layers sparse infill areas, to depth defined by used bridge flow
Polygons lower_layers_sparse_infill;
double bottom_z = layer->print_z - max_bridge_flow_height[candidates.first] - EPSILON;
LayerSlice::Links current_links = candidates.first->overlaps_below;
LayerSlice::Links next_links{};
for (auto i = int(lidx) - 1; i >= 0; --i) {
// Stop iterating if layer is lower than bottom_z.
if (po->get_layer(i)->print_z < bottom_z)
break;
for (const auto &link : current_links) {
const LayerSlice &slice_below = po->get_layer(i)->lslices_ex[link.slice_idx];
next_links.insert(next_links.end(), slice_below.overlaps_below.begin(), slice_below.overlaps_below.end());
std::unordered_set<size_t> regions_under_to_check;
for (const LayerIsland &island : slice_below.islands) {
regions_under_to_check.insert(island.perimeters.region());
if (!island.fill_expolygons_composite()) {
regions_under_to_check.insert(island.fill_region_id);
}
}
for (size_t region_idx : regions_under_to_check) {
const LayerRegion *region = layer->get_region(region_idx);
for (const Surface *surface : region->fill_surfaces().filter_by_type(stInternal)) {
Polygons p = to_polygons(surface->expolygon);
lower_layers_sparse_infill.insert(lower_layers_sparse_infill.end(), p.begin(), p.end());
}
// gather also sparse infill surfaces on this layer, to which we can expand the bridges for anchoring
// gather potential internal bridging surfaces for the current layer
// pair of LayerSlice idx and surfaces. The LayerSlice idx simplifies the processing, since we cannot expand beyond it
std::unordered_map<const LayerSlice *, SurfacesPtr> bridging_surface_candidates;
std::unordered_map<const LayerSlice *, SurfacesPtr> expansion_space;
std::unordered_map<const LayerSlice *, float> max_bridge_flow_height;
std::unordered_map<const Surface *, const LayerRegion *> surface_to_region;
for (const LayerSlice &slice : layer->lslices_ex) {
std::unordered_set<size_t> regions_to_check;
for (const LayerIsland &island : slice.islands) {
regions_to_check.insert(island.perimeters.region());
if (!island.fill_expolygons_composite()) {
regions_to_check.insert(island.fill_region_id);
}
}
current_links = next_links;
for (size_t region_idx : regions_to_check) {
const LayerRegion *region = layer->get_region(region_idx);
auto region_internal_solids = region->fill_surfaces().filter_by_type(stInternalSolid);
if (!region_internal_solids.empty()) {
max_bridge_flow_height[&slice] = std::max(max_bridge_flow_height[&slice],
region->bridging_flow(frSolidInfill).height());
}
for (const Surface *s : region_internal_solids) {
surface_to_region[s] = region;
}
bridging_surface_candidates[&slice].insert(bridging_surface_candidates[&slice].end(),
region_internal_solids.begin(), region_internal_solids.end());
auto region_sparse_infill = region->fill_surfaces().filter_by_type(stInternal);
expansion_space[&slice].insert(expansion_space[&slice].end(), region_sparse_infill.begin(),
region_sparse_infill.end());
}
}
if (lower_layers_sparse_infill.empty()) {
// if there are none briding candidates, exit now, before making infill for the previous layer
if (std::all_of(bridging_surface_candidates.begin(), bridging_surface_candidates.end(),
[](const std::pair<const LayerSlice *, SurfacesPtr> &candidates) { return candidates.second.empty(); })) {
continue;
}
lower_layers_sparse_infill = union_(lower_layers_sparse_infill);
Polygons expand_area;
for (const Surface *sparse_infill : expansion_space[candidates.first]) {
assert(sparse_infill->surface_type == stInternal);
Polygons a = to_polygons(sparse_infill->expolygon);
expand_area.insert(expand_area.end(), a.begin(), a.end());
// Now, temporarily fill the previous layer and extract the extrusions.
// TODO - the make_fills function does a lot of work, some of it is not needed (e.g. sorting the paths)
// It would be nice to have a function that only creates the fill polylines, ideally without modifying the global state
po->get_layer(lidx)->lower_layer->make_fills(nullptr, nullptr, nullptr);
Polylines lower_layer_polylines;
for (const LayerRegion *region : layer->lower_layer->m_regions) {
for (const ExtrusionEntity *ee : region->fills().entities) {
assert(ee->is_collection());
auto region_polylines = dynamic_cast<const ExtrusionEntityCollection *>(ee)->as_polylines();
lower_layer_polylines.insert(lower_layer_polylines.end(), region_polylines.begin(), region_polylines.end());
}
}
// Lower layers sparse infill sections gathered
// now we can intersected them with bridging surface candidates to get actual areas that need and can accumulate
// bridging. These areas we then expand (within the surrounding sparse infill only!)
// to touch the infill polylines on previous layer.
for (const Surface *candidate : candidates.second) {
assert(candidate->surface_type == stInternalSolid);
Polygons bridged_area = to_polygons(candidate->expolygon);
bridged_area =
intersection(bridged_area,
lower_layers_sparse_infill); // cut off parts which are not over sparse infill - material overflow
if (bridged_area.empty()) {
for (const std::pair<const LayerSlice *, SurfacesPtr> candidates : bridging_surface_candidates) {
if (candidates.second.empty()) {
continue;
}
};
Polygons max_area = expand_area;
max_area.insert(max_area.end(), bridged_area.begin(), bridged_area.end());
closing(max_area, max_bridge_flow_width[candidates.first]);
// Gather lower layers sparse infill areas, to depth defined by used bridge flow
Polygons lower_layers_sparse_infill;
double bottom_z = layer->print_z - max_bridge_flow_height[candidates.first] - EPSILON;
LayerSlice::Links current_links = candidates.first->overlaps_below;
LayerSlice::Links next_links{};
for (auto i = int(lidx) - 1; i >= 0; --i) {
// Stop iterating if layer is lower than bottom_z.
if (po->get_layer(i)->print_z < bottom_z)
break;
for (const auto &link : current_links) {
const LayerSlice &slice_below = po->get_layer(i)->lslices_ex[link.slice_idx];
next_links.insert(next_links.end(), slice_below.overlaps_below.begin(), slice_below.overlaps_below.end());
std::unordered_set<size_t> regions_under_to_check;
for (const LayerIsland &island : slice_below.islands) {
regions_under_to_check.insert(island.perimeters.region());
if (!island.fill_expolygons_composite()) {
regions_under_to_check.insert(island.fill_region_id);
}
}
Polylines anchors = intersection_pl(lower_layer_polylines, max_area);
anchors = diff_pl(anchors, shrink(bridged_area, scale_(max_bridge_flow_width[candidates.first])));
AABBTreeLines::LinesDistancer<Line> anchors_and_walls;
{
Lines tmp = to_lines(anchors);
Lines tmp2 = to_lines(max_area);
tmp.insert(tmp.end(), tmp.begin(), tmp.end());
anchors_and_walls = AABBTreeLines::LinesDistancer<Line>{tmp};
}
double bridging_dir = 0;
{
std::vector<std::pair<double,double>> directions_with_distances;
for (const Polygon &p : bridged_area) {
for (int point_idx = 0; point_idx < int(p.points.size()) - 1; ++point_idx) {
Vec2d start = p.points[point_idx].cast<double>();
Vec2d next = p.points[point_idx + 1].cast<double>();
Vec2d v = next - start; // vector from next to current
double dist_to_next = v.norm();
v.normalize();
int lines_count = int(std::ceil(dist_to_next / scaled(3.0)));
float step_size = dist_to_next / lines_count;
for (int i = 0; i < lines_count; ++i) {
Point a(start + v * (i * step_size));
auto [distance, index, p] = anchors_and_walls.distance_from_lines_extra<false>(a);
const Line& l = anchors_and_walls.get_line(index);
directions_with_distances.emplace_back(PI - l.direction(), unscaled(distance));
for (size_t region_idx : regions_under_to_check) {
const LayerRegion *region = layer->get_region(region_idx);
for (const Surface *surface : region->fill_surfaces().filter_by_type(stInternal)) {
Polygons p = to_polygons(surface->expolygon);
lower_layers_sparse_infill.insert(lower_layers_sparse_infill.end(), p.begin(), p.end());
}
}
}
double max_dist = directions_with_distances[0].second;
for (const auto& dir :directions_with_distances) {
max_dist = std::max(max_dist, dir.second);
}
double acc = 0;
for (const auto& dir : directions_with_distances) {
bridging_dir += dir.first * (max_dist - dir.second);
acc += (max_dist - dir.second);
}
bridging_dir /= acc;
current_links = next_links;
}
if (lower_layers_sparse_infill.empty()) {
continue;
}
lower_layers_sparse_infill = union_(lower_layers_sparse_infill);
Polygons expand_area;
for (const Surface *sparse_infill : expansion_space[candidates.first]) {
assert(sparse_infill->surface_type == stInternal);
Polygons a = to_polygons(sparse_infill->expolygon);
expand_area.insert(expand_area.end(), a.begin(), a.end());
}
//TODO use get_extens_rotated on the bridged_area polygons, generate vertical lines of the box,
// OR maybe get extens of rotated max_area, then fill with vertical lines, make AABB tree rotated for anchors and walls and also
// Lower layers sparse infill sections gathered
// now we can intersected them with bridging surface candidates to get actual areas that need and can accumulate
// bridging. These areas we then expand (within the surrounding sparse infill only!)
// to touch the infill polylines on previous layer.
for (const Surface *candidate : candidates.second) {
const Flow &flow = surface_to_region[candidate]->bridging_flow(frSolidInfill);
assert(candidate->surface_type == stInternalSolid);
Polygons bridged_area = to_polygons(candidate->expolygon);
bridged_area =
intersection(bridged_area,
lower_layers_sparse_infill); // cut off parts which are not over sparse infill - material overflow
if (bridged_area.empty()) {
continue;
}
Polygons max_area = expand_area;
max_area.insert(max_area.end(), bridged_area.begin(), bridged_area.end());
closing(max_area, flow.scaled_width());
Polylines anchors = intersection_pl(lower_layer_polylines, max_area);
anchors = diff_pl(anchors, shrink(bridged_area, flow.scaled_width()));
Lines anchors_and_walls = to_lines(anchors);
Lines tmp = to_lines(max_area);
tmp.insert(anchors_and_walls.end(), tmp.begin(), tmp.end());
double bridging_angle = 0;
{
AABBTreeLines::LinesDistancer<Line> lines_tree{anchors_and_walls};
std::vector<std::pair<double, double>> directions_with_distances;
for (const Polygon &p : bridged_area) {
for (int point_idx = 0; point_idx < int(p.points.size()) - 1; ++point_idx) {
Vec2d start = p.points[point_idx].cast<double>();
Vec2d next = p.points[point_idx + 1].cast<double>();
Vec2d v = next - start; // vector from next to current
double dist_to_next = v.norm();
v.normalize();
int lines_count = int(std::ceil(dist_to_next / scaled(3.0)));
float step_size = dist_to_next / lines_count;
for (int i = 0; i < lines_count; ++i) {
Point a(start + v * (i * step_size));
auto [distance, index, p] = lines_tree.distance_from_lines_extra<false>(a);
const Line &l = lines_tree.get_line(index);
directions_with_distances.emplace_back(PI - l.direction(), unscaled(distance));
}
}
}
double max_dist = directions_with_distances[0].second;
for (const auto &dir : directions_with_distances) {
max_dist = std::max(max_dist, dir.second);
}
double acc = 0;
for (const auto &dir : directions_with_distances) {
bridging_angle += dir.first * (max_dist - dir.second);
acc += (max_dist - dir.second);
}
bridging_angle /= acc;
}
// TODO maybe get extens of rotated max_area, then fill with vertical lines, make AABB tree rotated for anchors and
// walls and also
// for bridged area
// then cut off the vertical lines, compose the final polygon, and rotate back
// then cut off the vertical lines, compose the final polygon, and rotate back
auto lines_rotate = [](Lines &lines, double cos_angle, double sin_angle) {
for (Line &l : lines) {
double ax = double(l.a.x());
double ay = double(l.a.y());
l.a.x() = coord_t(round(cos_angle * ax - sin_angle * ay));
l.a.y() = coord_t(round(cos_angle * ay + sin_angle * ax));
double bx = double(l.b.x());
double by = double(l.b.y());
l.b.x() = coord_t(round(cos_angle * bx - sin_angle * by));
l.b.y() = coord_t(round(cos_angle * by + sin_angle * bx));
}
};
Polygons expanded_bridged_area{};
{
polygons_rotate(bridged_area, bridging_angle);
lines_rotate(anchors_and_walls, cos(bridging_angle), sin(bridging_angle));
BoundingBox bb_x = get_extents(bridged_area);
BoundingBox bb_y = get_extents(anchors_and_walls);
const size_t n_vlines = (bb_x.max.x() - bb_x.min.x() + flow.scaled_spacing() - 1) / flow.scaled_spacing();
std::vector<Line> vertical_lines(n_vlines);
for (size_t i = 0; i < n_vlines; i++) {
coord_t x = bb_x.min.x() + i * flow.scaled_spacing();
coord_t y_min = bb_y.min.y() - flow.scaled_spacing();
coord_t y_max = bb_y.max.y() + flow.scaled_spacing();
vertical_lines[i].a = Point{x, y_min};
vertical_lines[i].b = Point{x, y_max};
}
auto anchors_and_walls_tree = AABBTreeLines::LinesDistancer<Line>{std::move(anchors_and_walls)};
auto bridged_area_tree = AABBTreeLines::LinesDistancer<Line>{to_lines(bridged_area)};
std::vector<std::vector<std::pair<Point, Point>>> polygon_sections(n_vlines);
for (size_t i = 0; i < n_vlines; i++) {
auto area_intersections = bridged_area_tree.intersections_with_line<true>(vertical_lines[i]);
if (area_intersections.size() < 2) {
if (area_intersections.size() > 0) {
polygon_sections[i].emplace_back(area_intersections[0].first, area_intersections[0].first);
}
continue;
}
auto anchors_intersections = anchors_and_walls_tree.intersections_with_line<true>(vertical_lines[i]);
for (const auto &intersection : area_intersections) {
auto high_b = std::upper_bound(anchors_intersections.begin(), anchors_intersections.end(), intersection,
[](const std::pair<Point, size_t> left,
const std::pair<Point, size_t> right) {
return left.first.y() > right.first.y();
});
Point low, high;
if (high_b == anchors_intersections.end()) {
assert(false); // should not happen
continue;
} else if (high_b == anchors_intersections.begin()) {
low = high_b->first;
high = (++high_b)->first;
} else {
low = (--high_b)->first;
high = high_b->first;
}
if (polygon_sections[i].size() > 0 && polygon_sections[i].back().second.y() >= low.y()) {
polygon_sections[i].back().second = high;
} else {
polygon_sections[i].emplace_back(low, high);
}
}
}
//reconstruct polygon from polygon sections
struct TracedPoly {
std::vector<Point> lows;
std::vector<Point> highs;
};
std::vector<TracedPoly> traced_polys;
for (const auto& layer : polygon_sections) {
for ()
}
}
}
} // surface iteration end
} // island iteration end
} // layer iteration end
});
);
BOOST_LOG_TRIVIAL(info) << "Bridge over infill - End" << log_memory_info();
} // void PrintObject::bridge_over_infill()
void a(){
void a()
{
std::vector<int> sparse_infill_regions;
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id)
if (const PrintRegion &region = this->printing_region(region_id); region.config().fill_density.value < 100)