WIP TreeSupports: Experimental code draw_branches() to produce
trees with circular cross section
This commit is contained in:
parent
5cba1e8319
commit
5cb4b63325
@ -19,6 +19,9 @@
|
||||
#include "Polyline.hpp"
|
||||
#include "MutablePolygon.hpp"
|
||||
#include "SupportMaterial.hpp"
|
||||
#include "TriangleMeshSlicer.hpp"
|
||||
#include "OpenVDBUtils.hpp"
|
||||
#include <openvdb/tools/VolumeToSpheres.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <chrono>
|
||||
@ -26,6 +29,7 @@
|
||||
#include <optional>
|
||||
#include <stdio.h>
|
||||
#include <string>
|
||||
#include <string_view>
|
||||
#ifdef _WIN32
|
||||
#include <windows.h> //todo Remove! ONLY FOR PUBLIC BETA!!
|
||||
#endif // _WIN32
|
||||
@ -97,6 +101,20 @@ static inline void validate_range(const LineInformations &lines)
|
||||
validate_range(l);
|
||||
}
|
||||
|
||||
static inline void check_self_intersections(const Polygons &polygons, const std::string_view message)
|
||||
{
|
||||
#ifdef _WIN32
|
||||
if (!intersecting_edges(polygons).empty())
|
||||
::MessageBoxA(nullptr, (std::string("TreeSupport infill self intersections: ") + std::string(message)).c_str(), "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING);
|
||||
#endif // _WIN32
|
||||
}
|
||||
static inline void check_self_intersections(const ExPolygon &expoly, const std::string_view message)
|
||||
{
|
||||
#ifdef _WIN32
|
||||
check_self_intersections(to_polygons(expoly), message);
|
||||
#endif // _WIN32
|
||||
}
|
||||
|
||||
static inline void clip_for_diff(const Polygon &src, const BoundingBox &bbox, Polygon &out)
|
||||
{
|
||||
out.clear();
|
||||
@ -323,6 +341,7 @@ void tree_supports_show_error(std::string message, bool critical)
|
||||
lower_layer.lslices);
|
||||
overhangs = overhangs.empty() ? std::move(enforced_overhangs) : union_(overhangs, enforced_overhangs);
|
||||
}
|
||||
check_self_intersections(overhangs, "generate_overhangs");
|
||||
out[layer_id] = std::move(overhangs);
|
||||
}
|
||||
});
|
||||
@ -675,7 +694,10 @@ static std::optional<std::pair<Point, size_t>> polyline_sample_next_point_at_dis
|
||||
return lines;
|
||||
#else
|
||||
#ifdef _WIN32
|
||||
if (! BoundingBox(Point::new_scale(-170., -170.), Point::new_scale(170., 170.)).contains(get_extents(polygon)))
|
||||
// Max dimensions for MK3
|
||||
// if (! BoundingBox(Point::new_scale(-170., -170.), Point::new_scale(170., 170.)).contains(get_extents(polygon)))
|
||||
// Max dimensions for XL
|
||||
if (! BoundingBox(Point::new_scale(-250., -250.), Point::new_scale(250., 250.)).contains(get_extents(polygon)))
|
||||
::MessageBoxA(nullptr, "TreeSupport infill kravsky", "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING);
|
||||
#endif // _WIN32
|
||||
|
||||
@ -702,10 +724,7 @@ static std::optional<std::pair<Point, size_t>> polyline_sample_next_point_at_dis
|
||||
::MessageBoxA(nullptr, "TreeSupport infill negative area", "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING);
|
||||
#endif // _WIN32
|
||||
assert(intersecting_edges(to_polygons(expoly)).empty());
|
||||
#ifdef _WIN32
|
||||
if (! intersecting_edges(to_polygons(expoly)).empty())
|
||||
::MessageBoxA(nullptr, "TreeSupport infill self intersections", "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING);
|
||||
#endif // _WIN32
|
||||
check_self_intersections(expoly, "generate_support_infill_lines");
|
||||
Surface surface(stInternal, std::move(expoly));
|
||||
try {
|
||||
Polylines pl = filler->fill_surface(&surface, fill_params);
|
||||
@ -831,6 +850,11 @@ static std::optional<std::pair<Point, size_t>> polyline_sample_next_point_at_dis
|
||||
return union_(ret);
|
||||
}
|
||||
|
||||
static double layer_z(const SlicingParameters &slicing_params, const size_t layer_idx)
|
||||
{
|
||||
return slicing_params.object_print_z_min + slicing_params.first_object_layer_height + layer_idx * slicing_params.layer_height;
|
||||
}
|
||||
|
||||
static inline SupportGeneratorLayer& layer_initialize(
|
||||
SupportGeneratorLayer &layer_new,
|
||||
const SupporLayerType layer_type,
|
||||
@ -838,7 +862,7 @@ static inline SupportGeneratorLayer& layer_initialize(
|
||||
const size_t layer_idx)
|
||||
{
|
||||
layer_new.layer_type = layer_type;
|
||||
layer_new.print_z = slicing_params.object_print_z_min + slicing_params.first_object_layer_height + layer_idx * slicing_params.layer_height;
|
||||
layer_new.print_z = layer_z(slicing_params, layer_idx);
|
||||
layer_new.height = layer_idx == 0 ? slicing_params.first_object_layer_height : slicing_params.layer_height;
|
||||
layer_new.bottom_z = layer_idx == 0 ? slicing_params.object_print_z_min : layer_new.print_z - layer_new.height;
|
||||
return layer_new;
|
||||
@ -1082,6 +1106,8 @@ static void generate_initial_areas(
|
||||
overhang_regular = mesh_group_settings.support_offset == 0 ?
|
||||
overhang_raw :
|
||||
safe_offset_inc(overhang_raw, mesh_group_settings.support_offset, relevant_forbidden, mesh_config.min_radius * 1.75 + mesh_config.xy_min_distance, 0, 1);
|
||||
check_self_intersections(overhang_regular, "overhang_regular1");
|
||||
|
||||
// offset ensures that areas that could be supported by a part of a support line, are not considered unsupported overhang
|
||||
Polygons remaining_overhang = intersection(
|
||||
diff(mesh_group_settings.support_offset == 0 ?
|
||||
@ -1108,6 +1134,7 @@ static void generate_initial_areas(
|
||||
remaining_overhang = diff(remaining_overhang, safe_offset_inc(overhang_regular, 1.5 * extra_total_offset_acc, raw_collision, offset_step, 0, 1));
|
||||
// Extending the overhangs by the inflated remaining overhangs.
|
||||
overhang_regular = union_(overhang_regular, diff(safe_offset_inc(remaining_overhang, extra_total_offset_acc, raw_collision, offset_step, 0, 1), relevant_forbidden));
|
||||
check_self_intersections(overhang_regular, "overhang_regular2");
|
||||
}
|
||||
// If the xy distance overrides the z distance, some support needs to be inserted further down.
|
||||
//=> Analyze which support points do not fit on this layer and check if they will fit a few layers down (while adding them an infinite amount of layers down would technically be closer the the setting description, it would not produce reasonable results. )
|
||||
@ -1159,6 +1186,7 @@ static void generate_initial_areas(
|
||||
if (mesh_group_settings.minimum_support_area > 0)
|
||||
remove_small(overhang_roofs, mesh_group_settings.minimum_roof_area);
|
||||
overhang_regular = diff(overhang_regular, overhang_roofs, ApplySafetyOffset::Yes);
|
||||
check_self_intersections(overhang_regular, "overhang_regular3");
|
||||
for (ExPolygon &roof_part : union_ex(overhang_roofs))
|
||||
overhang_processing.emplace_back(std::move(roof_part), true);
|
||||
}
|
||||
@ -3044,6 +3072,475 @@ static void draw_areas(
|
||||
"finalize_interface_and_support_areas " << dur_finalize << " ms";
|
||||
}
|
||||
|
||||
#if 1
|
||||
// Test whether two circles, each on its own plane in 3D intersect.
|
||||
// Circles are considered intersecting, if the lowest point on one circle is below the other circle's plane.
|
||||
// Assumption: The two planes are oriented the same way.
|
||||
static bool circles_intersect(
|
||||
const Vec3d &p1, const Vec3d &n1, const double r1,
|
||||
const Vec3d &p2, const Vec3d &n2, const double r2)
|
||||
{
|
||||
assert(n1.dot(n2) >= 0);
|
||||
|
||||
const Vec3d z = n1.cross(n2);
|
||||
const Vec3d dir1 = z.cross(n1);
|
||||
const Vec3d lowest_point1 = p1 + dir1 * (r1 / dir1.norm());
|
||||
assert(n2.dot(p1) >= n2.dot(lowest_point1));
|
||||
if (n2.dot(lowest_point1) <= 0)
|
||||
return true;
|
||||
const Vec3d dir2 = z.cross(n2);
|
||||
const Vec3d lowest_point2 = p2 + dir2 * (r2 / dir2.norm());
|
||||
assert(n1.dot(p2) >= n1.dot(lowest_point2));
|
||||
return n1.dot(lowest_point2) <= 0;
|
||||
}
|
||||
|
||||
template<bool flip_normals>
|
||||
void triangulate_fan(indexed_triangle_set &its, int ifan, int ibegin, int iend)
|
||||
{
|
||||
// at least 3 vertices, increasing order.
|
||||
assert(ibegin + 3 <= iend);
|
||||
assert(ibegin >= 0 && iend <= its.vertices.size());
|
||||
assert(ifan >= 0 && ifan < its.vertices.size());
|
||||
int num_faces = iend - ibegin;
|
||||
its.indices.reserve(its.indices.size() + num_faces * 3);
|
||||
for (int v = ibegin, u = iend - 1; v < iend; u = v ++) {
|
||||
if (flip_normals)
|
||||
its.indices.push_back({ ifan, u, v });
|
||||
else
|
||||
its.indices.push_back({ ifan, v, u });
|
||||
}
|
||||
}
|
||||
|
||||
static void triangulate_strip(indexed_triangle_set &its, int ibegin1, int iend1, int ibegin2, int iend2)
|
||||
{
|
||||
// at least 3 vertices, increasing order.
|
||||
assert(ibegin1 + 3 <= iend1);
|
||||
assert(ibegin1 >= 0 && iend1 <= its.vertices.size());
|
||||
assert(ibegin2 + 3 <= iend2);
|
||||
assert(ibegin2 >= 0 && iend2 <= its.vertices.size());
|
||||
int n1 = iend1 - ibegin1;
|
||||
int n2 = iend2 - ibegin2;
|
||||
its.indices.reserve(its.indices.size() + (n1 + n2) * 3);
|
||||
|
||||
// For the first vertex of 1st strip, find the closest vertex on the 2nd strip.
|
||||
int istart2 = ibegin2;
|
||||
{
|
||||
const Vec3f &p1 = its.vertices[ibegin1];
|
||||
auto d2min = std::numeric_limits<float>::max();
|
||||
for (int i = ibegin2; i < iend2; ++ i) {
|
||||
const Vec3f &p2 = its.vertices[i];
|
||||
const float d2 = (p2 - p1).squaredNorm();
|
||||
if (d2 < d2min) {
|
||||
d2min = d2;
|
||||
istart2 = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Now triangulate the strip zig-zag fashion taking always the shortest connection if possible.
|
||||
for (int u = ibegin1, v = istart2; n1 > 0 || n2 > 0;) {
|
||||
bool take_first;
|
||||
int u2, v2;
|
||||
auto update_u2 = [&u2, u, ibegin1, iend1]() {
|
||||
u2 = u;
|
||||
if (++ u2 == iend1)
|
||||
u2 = ibegin1;
|
||||
};
|
||||
auto update_v2 = [&v2, v, ibegin2, iend2]() {
|
||||
v2 = v;
|
||||
if (++ v2 == iend2)
|
||||
v2 = ibegin2;
|
||||
};
|
||||
if (n1 == 0) {
|
||||
take_first = false;
|
||||
update_v2();
|
||||
} else if (n2 == 0) {
|
||||
take_first = true;
|
||||
update_u2();
|
||||
} else {
|
||||
update_u2();
|
||||
update_v2();
|
||||
float l1 = (its.vertices[u2] - its.vertices[v]).squaredNorm();
|
||||
float l2 = (its.vertices[v2] - its.vertices[u]).squaredNorm();
|
||||
take_first = l1 < l2;
|
||||
}
|
||||
if (take_first) {
|
||||
its.indices.push_back({ u, u2, v });
|
||||
-- n1;
|
||||
u = u2;
|
||||
} else {
|
||||
its.indices.push_back({ u, v2, v });
|
||||
-- n2;
|
||||
v = v2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Discretize 3D circle, append to output vector, return ranges of indices of the points added.
|
||||
static std::pair<int, int> discretize_circle(const Vec3f ¢er, const Vec3f &normal, const float radius, const float eps, std::vector<Vec3f> &pts)
|
||||
{
|
||||
// Calculate discretization step and number of steps.
|
||||
float angle_step = 2. * acos(1. - eps / radius);
|
||||
auto nsteps = int(ceil(2 * M_PI / angle_step));
|
||||
angle_step = 2 * M_PI / nsteps;
|
||||
|
||||
// Prepare coordinate system for the circle plane.
|
||||
Vec3f x = normal.cross(Vec3f(0.f, -1.f, 0.f)).normalized();
|
||||
Vec3f y = normal.cross(x).normalized();
|
||||
assert(std::abs(x.cross(y).dot(normal) - 1.f) < EPSILON);
|
||||
|
||||
// Discretize the circle.
|
||||
int begin = int(pts.size());
|
||||
pts.reserve(pts.size() + nsteps);
|
||||
float angle = 0;
|
||||
x *= radius;
|
||||
y *= radius;
|
||||
for (int i = 0; i < nsteps; ++ i) {
|
||||
pts.emplace_back(center + x * cos(angle) + y * sin(angle));
|
||||
angle += angle_step;
|
||||
}
|
||||
return { begin, int(pts.size()) };
|
||||
}
|
||||
|
||||
static void extrude_branch(
|
||||
const std::vector<SupportElement*> &path,
|
||||
const TreeSupportSettings &config,
|
||||
const SlicingParameters &slicing_params,
|
||||
const std::vector<SupportElements> &move_bounds,
|
||||
indexed_triangle_set &result)
|
||||
{
|
||||
Vec3d p1, p2, p3;
|
||||
Vec3d v1, v2;
|
||||
Vec3d nprev;
|
||||
Vec3d ncurrent;
|
||||
assert(path.size() >= 2);
|
||||
static constexpr const float eps = 0.015f;
|
||||
std::pair<int, int> prev_strip;
|
||||
|
||||
// char fname[2048];
|
||||
// static int irun = 0;
|
||||
|
||||
for (size_t ipath = 1; ipath < path.size(); ++ ipath) {
|
||||
const SupportElement &prev = *path[ipath - 1];
|
||||
const SupportElement ¤t = *path[ipath];
|
||||
assert(prev.state.layer_idx + 1 == current.state.layer_idx);
|
||||
p1 = to_3d(unscaled<double>(prev .state.result_on_layer), layer_z(slicing_params, prev .state.layer_idx));
|
||||
p2 = to_3d(unscaled<double>(current.state.result_on_layer), layer_z(slicing_params, current.state.layer_idx));
|
||||
v1 = (p2 - p1).normalized();
|
||||
if (ipath == 1) {
|
||||
nprev = v1;
|
||||
// Extrude the bottom half sphere.
|
||||
float radius = unscaled<float>(config.getRadius(prev.state));
|
||||
float angle_step = 2. * acos(1. - eps / radius);
|
||||
auto nsteps = int(ceil(M_PI / (2. * angle_step)));
|
||||
angle_step = M_PI / (2. * nsteps);
|
||||
int ifan = int(result.vertices.size());
|
||||
result.vertices.emplace_back((p1 - nprev * radius).cast<float>());
|
||||
float angle = angle_step;
|
||||
for (int i = 1; i < nsteps; ++ i, angle += angle_step) {
|
||||
std::pair<int, int> strip = discretize_circle((p1 - nprev * radius * cos(angle)).cast<float>(), nprev.cast<float>(), radius * sin(angle), eps, result.vertices);
|
||||
if (i == 1)
|
||||
triangulate_fan<false>(result, ifan, strip.first, strip.second);
|
||||
else
|
||||
triangulate_strip(result, prev_strip.first, prev_strip.second, strip.first, strip.second);
|
||||
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun);
|
||||
// its_write_obj(result, fname);
|
||||
prev_strip = strip;
|
||||
}
|
||||
}
|
||||
if (ipath + 1 == path.size()) {
|
||||
// End of the tube.
|
||||
ncurrent = v1;
|
||||
// Extrude the top half sphere.
|
||||
float radius = unscaled<float>(config.getRadius(current.state));
|
||||
float angle_step = 2. * acos(1. - eps / radius);
|
||||
auto nsteps = int(ceil(M_PI / (2. * angle_step)));
|
||||
angle_step = M_PI / (2. * nsteps);
|
||||
float angle = M_PI / 2.;
|
||||
for (int i = 0; i < nsteps; ++ i, angle -= angle_step) {
|
||||
std::pair<int, int> strip = discretize_circle((p2 + ncurrent * radius * cos(angle)).cast<float>(), ncurrent.cast<float>(), radius * sin(angle), eps, result.vertices);
|
||||
triangulate_strip(result, prev_strip.first, prev_strip.second, strip.first, strip.second);
|
||||
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun);
|
||||
// its_write_obj(result, fname);
|
||||
prev_strip = strip;
|
||||
}
|
||||
int ifan = int(result.vertices.size());
|
||||
result.vertices.emplace_back((p2 + ncurrent * radius).cast<float>());
|
||||
triangulate_fan<true>(result, ifan, prev_strip.first, prev_strip.second);
|
||||
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun);
|
||||
// its_write_obj(result, fname);
|
||||
} else {
|
||||
const SupportElement &next = *path[ipath + 1];
|
||||
assert(current.state.layer_idx + 1 == next.state.layer_idx);
|
||||
p3 = to_3d(unscaled<double>(next.state.result_on_layer), layer_z(slicing_params, next.state.layer_idx));
|
||||
v2 = (p3 - p2).normalized();
|
||||
ncurrent = (v1 + v2).normalized();
|
||||
float radius = unscaled<float>(config.getRadius(current.state));
|
||||
std::pair<int, int> strip = discretize_circle(p2.cast<float>(), ncurrent.cast<float>(), radius, eps, result.vertices);
|
||||
triangulate_strip(result, prev_strip.first, prev_strip.second, strip.first, strip.second);
|
||||
prev_strip = strip;
|
||||
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++irun);
|
||||
// its_write_obj(result, fname);
|
||||
}
|
||||
#if 0
|
||||
if (circles_intersect(p1, nprev, settings.getRadius(prev), p2, ncurrent, settings.getRadius(current))) {
|
||||
// Cannot connect previous and current slice using a simple zig-zag triangulation,
|
||||
// because the two circles intersect.
|
||||
|
||||
} else {
|
||||
// Continue with chaining.
|
||||
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
static void draw_branches(
|
||||
PrintObject &print_object,
|
||||
const TreeModelVolumes &volumes,
|
||||
const TreeSupportSettings &config,
|
||||
const std::vector<Polygons> &overhangs,
|
||||
std::vector<SupportElements> &move_bounds,
|
||||
|
||||
SupportGeneratorLayersPtr &bottom_contacts,
|
||||
SupportGeneratorLayersPtr &top_contacts,
|
||||
SupportGeneratorLayersPtr &intermediate_layers,
|
||||
SupportGeneratorLayerStorage &layer_storage)
|
||||
{
|
||||
static int irun = 0;
|
||||
|
||||
const SlicingParameters& slicing_params = print_object.slicing_parameters();
|
||||
|
||||
// All SupportElements are put into a layer independent storage to improve parallelization.
|
||||
std::vector<std::pair<SupportElement*, int>> elements_with_link_down;
|
||||
std::vector<size_t> linear_data_layers;
|
||||
{
|
||||
std::vector<std::pair<SupportElement*, int>> map_downwards_old;
|
||||
std::vector<std::pair<SupportElement*, int>> map_downwards_new;
|
||||
linear_data_layers.emplace_back(0);
|
||||
for (LayerIndex layer_idx = 0; layer_idx < LayerIndex(move_bounds.size()); ++ layer_idx) {
|
||||
SupportElements *layer_above = layer_idx + 1 < move_bounds.size() ? &move_bounds[layer_idx + 1] : nullptr;
|
||||
map_downwards_new.clear();
|
||||
std::sort(map_downwards_old.begin(), map_downwards_old.end(), [](auto& l, auto& r) { return l.first < r.first; });
|
||||
SupportElements &layer = move_bounds[layer_idx];
|
||||
for (size_t elem_idx = 0; elem_idx < layer.size(); ++ elem_idx) {
|
||||
SupportElement &elem = layer[elem_idx];
|
||||
int child = -1;
|
||||
if (layer_idx > 0) {
|
||||
auto it = std::lower_bound(map_downwards_old.begin(), map_downwards_old.end(), &elem, [](auto& l, const SupportElement* r) { return l.first < r; });
|
||||
if (it != map_downwards_old.end() && it->first == &elem) {
|
||||
child = it->second;
|
||||
// Only one link points to a node above from below.
|
||||
assert(!(++it != map_downwards_old.end() && it->first == &elem));
|
||||
}
|
||||
const SupportElement *pchild = child == -1 ? nullptr : &move_bounds[layer_idx - 1][child];
|
||||
if ((! pchild && elem.state.target_height == layer_idx) || (pchild && ! pchild->state.result_on_layer_is_set()))
|
||||
// We either come from nowhere at the final layer or we had invalid parents 2. should never happen but just to be sure
|
||||
continue;
|
||||
}
|
||||
for (int32_t parent_idx : elem.parents) {
|
||||
SupportElement &parent = (*layer_above)[parent_idx];
|
||||
if (parent.state.result_on_layer_is_set())
|
||||
map_downwards_new.emplace_back(&parent, elem_idx);
|
||||
}
|
||||
|
||||
elements_with_link_down.push_back({ &elem, int(child) });
|
||||
}
|
||||
std::swap(map_downwards_old, map_downwards_new);
|
||||
linear_data_layers.emplace_back(elements_with_link_down.size());
|
||||
}
|
||||
}
|
||||
|
||||
std::unique_ptr<openvdb::tools::ClosestSurfacePoint<openvdb::FloatGrid>> closest_surface_point;
|
||||
{
|
||||
TriangleMesh mesh = print_object.model_object()->raw_mesh();
|
||||
mesh.transform(print_object.trafo_centered());
|
||||
double scale = 10.;
|
||||
openvdb::FloatGrid::Ptr grid = mesh_to_grid(mesh.its, {}, scale, 0., 0.);
|
||||
closest_surface_point = openvdb::tools::ClosestSurfacePoint<openvdb::FloatGrid>::create(*grid);
|
||||
std::vector<openvdb::Vec3R> pts, prev, projections;
|
||||
std::vector<float> distances;
|
||||
for (const std::pair<SupportElement*, int> &element : elements_with_link_down) {
|
||||
Vec3d pt = to_3d(unscaled<double>(element.first->state.result_on_layer), layer_z(slicing_params, element.first->state.layer_idx)) * scale;
|
||||
pts.push_back({ pt.x(), pt.y(), pt.z() });
|
||||
}
|
||||
|
||||
const double collision_extra_gap = 1. * scale;
|
||||
const double max_nudge_collision_avoidance = 2. * scale;
|
||||
const double max_nudge_smoothing = 1. * scale;
|
||||
|
||||
for (size_t iter = 0; iter < 1000; ++ iter) {
|
||||
prev = pts;
|
||||
projections = pts;
|
||||
distances.assign(pts.size(), std::numeric_limits<float>::max());
|
||||
closest_surface_point->searchAndReplace(projections, distances);
|
||||
size_t num_moved = 0;
|
||||
for (size_t i = 0; i < projections.size(); ++ i) {
|
||||
const SupportElement &element = *elements_with_link_down[i].first;
|
||||
const int below = elements_with_link_down[i].second;
|
||||
if (pts[i] != projections[i]) {
|
||||
// Nudge the circle center away from the collision.
|
||||
Vec3d v{ projections[i].x() - pts[i].x(), projections[i].y() - pts[i].y(), projections[i].z() - pts[i].z() };
|
||||
double depth = v.norm();
|
||||
assert(std::abs(distances[i] - depth) < EPSILON);
|
||||
double radius = unscaled<double>(config.getRadius(element.state)) * scale;
|
||||
if (depth < radius) {
|
||||
// Collision detected to be removed.
|
||||
++ num_moved;
|
||||
double dxy = sqrt(sqr(radius) - sqr(v.z()));
|
||||
double nudge_dist_max = dxy - std::hypot(v.x(), v.y())
|
||||
//FIXME 1mm gap
|
||||
+ collision_extra_gap;
|
||||
// Shift by maximum 2mm.
|
||||
double nudge_dist = std::min(std::max(0., nudge_dist_max), max_nudge_collision_avoidance);
|
||||
Vec2d nudge_v = to_2d(v).normalized() * (- nudge_dist);
|
||||
pts[i].x() += nudge_v.x();
|
||||
pts[i].y() += nudge_v.y();
|
||||
}
|
||||
}
|
||||
// Laplacian smoothing
|
||||
if (! element.parents.empty() && (below != -1 || element.state.layer_idx == 0)) {
|
||||
Vec2d avg{ 0, 0 };
|
||||
const SupportElements &above = move_bounds[element.state.layer_idx + 1];
|
||||
const size_t offset_above = linear_data_layers[element.state.layer_idx + 1];
|
||||
for (auto iparent : element.parents) {
|
||||
avg.x() += prev[offset_above + iparent].x();
|
||||
avg.y() += prev[offset_above + iparent].y();
|
||||
}
|
||||
size_t cnt = element.parents.size();
|
||||
if (below != -1) {
|
||||
const size_t offset_below = linear_data_layers[element.state.layer_idx - 1];
|
||||
avg.x() += prev[offset_below + below].x();
|
||||
avg.y() += prev[offset_below + below].y();
|
||||
++ cnt;
|
||||
}
|
||||
avg /= double(cnt);
|
||||
static constexpr const double smoothing_factor = 0.5;
|
||||
Vec2d old_pos{ pts[i].x(), pts[i].y() };
|
||||
Vec2d new_pos = (1. - smoothing_factor) * old_pos + smoothing_factor * avg;
|
||||
Vec2d shift = new_pos - old_pos;
|
||||
double nudge_dist_max = shift.norm();
|
||||
// Shift by maximum 1mm, less than the collision avoidance factor.
|
||||
double nudge_dist = std::min(std::max(0., nudge_dist_max), max_nudge_smoothing);
|
||||
Vec2d nudge_v = shift.normalized() * nudge_dist;
|
||||
pts[i].x() += nudge_v.x();
|
||||
pts[i].y() += nudge_v.y();
|
||||
}
|
||||
}
|
||||
printf("iteration: %d, moved: %d\n", int(iter), int(num_moved));
|
||||
if (num_moved == 0)
|
||||
break;
|
||||
}
|
||||
|
||||
#if 1
|
||||
for (size_t i = 0; i < projections.size(); ++ i) {
|
||||
elements_with_link_down[i].first->state.result_on_layer.x() = scaled<coord_t>(pts[i].x()) / scale;
|
||||
elements_with_link_down[i].first->state.result_on_layer.y() = scaled<coord_t>(pts[i].y()) / scale;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
std::vector<Polygons> support_layer_storage(move_bounds.size());
|
||||
std::vector<Polygons> support_roof_storage(move_bounds.size());
|
||||
|
||||
// Unmark all nodes.
|
||||
for (SupportElements &elements : move_bounds)
|
||||
for (SupportElement &element : elements)
|
||||
element.state.marked = false;
|
||||
|
||||
// Traverse all nodes, generate tubes.
|
||||
// Traversal stack with nodes and thier current parent
|
||||
std::vector<SupportElement*> path;
|
||||
indexed_triangle_set cummulative_mesh;
|
||||
indexed_triangle_set partial_mesh;
|
||||
indexed_triangle_set temp_mesh;
|
||||
for (LayerIndex layer_idx = 0; layer_idx + 1 < LayerIndex(move_bounds.size()); ++ layer_idx) {
|
||||
SupportElements &layer = move_bounds[layer_idx];
|
||||
SupportElements &layer_above = move_bounds[layer_idx + 1];
|
||||
|
||||
for (SupportElement &start_element : layer)
|
||||
if (! start_element.state.marked && ! start_element.parents.empty()) {
|
||||
// Collect elements up to a bifurcation above.
|
||||
start_element.state.marked = true;
|
||||
for (size_t parent_idx = 0; parent_idx < start_element.parents.size(); ++ parent_idx) {
|
||||
path.clear();
|
||||
path.emplace_back(&start_element);
|
||||
// Traverse each branch until it branches again.
|
||||
SupportElement &first_parent = layer_above[start_element.parents[parent_idx]];
|
||||
assert(path.back()->state.layer_idx + 1 == first_parent.state.layer_idx);
|
||||
path.emplace_back(&first_parent);
|
||||
if (first_parent.parents.size() < 2)
|
||||
first_parent.state.marked = true;
|
||||
if (first_parent.parents.size() == 1) {
|
||||
for (SupportElement *parent = &first_parent;;) {
|
||||
SupportElement &next_parent = move_bounds[parent->state.layer_idx + 1][parent->parents.front()];
|
||||
assert(path.back()->state.layer_idx + 1 == next_parent.state.layer_idx);
|
||||
path.emplace_back(&next_parent);
|
||||
if (next_parent.parents.size() > 1)
|
||||
break;
|
||||
next_parent.state.marked = true;
|
||||
if (next_parent.parents.size() == 0)
|
||||
break;
|
||||
parent = &next_parent;
|
||||
}
|
||||
}
|
||||
// Triangulate the tube.
|
||||
partial_mesh.clear();
|
||||
extrude_branch(path, config, slicing_params, move_bounds, partial_mesh);
|
||||
#if 0
|
||||
char fname[2048];
|
||||
sprintf(fname, "d:\\temp\\meshes\\tree-raw-%d.obj", ++ irun);
|
||||
its_write_obj(partial_mesh, fname);
|
||||
#if 0
|
||||
temp_mesh.clear();
|
||||
cut_mesh(partial_mesh, layer_z(slicing_params, path.back()->state.layer_idx) + EPSILON, nullptr, &temp_mesh, false);
|
||||
sprintf(fname, "d:\\temp\\meshes\\tree-trimmed1-%d.obj", irun);
|
||||
its_write_obj(temp_mesh, fname);
|
||||
partial_mesh.clear();
|
||||
cut_mesh(temp_mesh, layer_z(slicing_params, path.front()->state.layer_idx) - EPSILON, &partial_mesh, nullptr, false);
|
||||
sprintf(fname, "d:\\temp\\meshes\\tree-trimmed2-%d.obj", irun);
|
||||
#endif
|
||||
its_write_obj(partial_mesh, fname);
|
||||
#endif
|
||||
its_merge(cummulative_mesh, partial_mesh);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<float> slice_z;
|
||||
for (size_t layer_idx = 0; layer_idx < move_bounds.size(); ++ layer_idx) {
|
||||
double print_z = slicing_params.object_print_z_min + slicing_params.first_object_layer_height + layer_idx * slicing_params.layer_height;
|
||||
double layer_height = layer_idx == 0 ? slicing_params.first_object_layer_height : slicing_params.layer_height;
|
||||
slice_z.emplace_back(float(print_z - layer_height * 0.5));
|
||||
}
|
||||
// Remove the trailing slices.
|
||||
while (! slice_z.empty())
|
||||
if (move_bounds[slice_z.size() - 1].empty())
|
||||
slice_z.pop_back();
|
||||
else
|
||||
break;
|
||||
|
||||
#if 0
|
||||
its_write_obj(cummulative_mesh, "d:\\temp\\meshes\\tree.obj");
|
||||
#endif
|
||||
|
||||
MeshSlicingParamsEx params;
|
||||
params.closing_radius = float(print_object.config().slice_closing_radius.value);
|
||||
params.mode = MeshSlicingParams::SlicingMode::Positive;
|
||||
std::vector<ExPolygons> slices = slice_mesh_ex(cummulative_mesh, slice_z, params);
|
||||
for (size_t layer_idx = 0; layer_idx < slice_z.size(); ++ layer_idx)
|
||||
if (! slices[layer_idx].empty()) {
|
||||
SupportGeneratorLayer *&l = intermediate_layers[layer_idx];
|
||||
if (l == nullptr)
|
||||
l = &layer_allocate(layer_storage, SupporLayerType::Base, slicing_params, layer_idx);
|
||||
append(l->polygons, to_polygons(std::move(slices[layer_idx])));
|
||||
}
|
||||
|
||||
finalize_interface_and_support_areas(print_object, volumes, config, overhangs, support_layer_storage, support_roof_storage,
|
||||
bottom_contacts, top_contacts, intermediate_layers, layer_storage);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Create the areas that need support.
|
||||
*
|
||||
@ -3147,8 +3644,13 @@ static void generate_support_areas(Print &print, const BuildVolume &build_volume
|
||||
auto t_place = std::chrono::high_resolution_clock::now();
|
||||
|
||||
// ### draw these points as circles
|
||||
#if 0
|
||||
draw_areas(*print.get_object(processing.second.front()), volumes, config, overhangs, move_bounds,
|
||||
bottom_contacts, top_contacts, intermediate_layers, layer_storage);
|
||||
#else
|
||||
draw_branches(*print.get_object(processing.second.front()), volumes, config, overhangs, move_bounds,
|
||||
bottom_contacts, top_contacts, intermediate_layers, layer_storage);
|
||||
#endif
|
||||
|
||||
auto t_draw = std::chrono::high_resolution_clock::now();
|
||||
auto dur_pre_gen = 0.001 * std::chrono::duration_cast<std::chrono::microseconds>(t_precalc - t_start).count();
|
||||
|
Loading…
Reference in New Issue
Block a user