WIP TreeSupports: Experimental code draw_branches() to produce

trees with circular cross section
This commit is contained in:
Vojtech Bubnik 2022-10-10 14:19:06 +02:00
parent 5cba1e8319
commit 5cb4b63325

View File

@ -19,6 +19,9 @@
#include "Polyline.hpp"
#include "MutablePolygon.hpp"
#include "SupportMaterial.hpp"
#include "TriangleMeshSlicer.hpp"
#include "OpenVDBUtils.hpp"
#include <openvdb/tools/VolumeToSpheres.h>
#include <cassert>
#include <chrono>
@ -26,6 +29,7 @@
#include <optional>
#include <stdio.h>
#include <string>
#include <string_view>
#ifdef _WIN32
#include <windows.h> //todo Remove! ONLY FOR PUBLIC BETA!!
#endif // _WIN32
@ -97,6 +101,20 @@ static inline void validate_range(const LineInformations &lines)
validate_range(l);
}
static inline void check_self_intersections(const Polygons &polygons, const std::string_view message)
{
#ifdef _WIN32
if (!intersecting_edges(polygons).empty())
::MessageBoxA(nullptr, (std::string("TreeSupport infill self intersections: ") + std::string(message)).c_str(), "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING);
#endif // _WIN32
}
static inline void check_self_intersections(const ExPolygon &expoly, const std::string_view message)
{
#ifdef _WIN32
check_self_intersections(to_polygons(expoly), message);
#endif // _WIN32
}
static inline void clip_for_diff(const Polygon &src, const BoundingBox &bbox, Polygon &out)
{
out.clear();
@ -323,6 +341,7 @@ void tree_supports_show_error(std::string message, bool critical)
lower_layer.lslices);
overhangs = overhangs.empty() ? std::move(enforced_overhangs) : union_(overhangs, enforced_overhangs);
}
check_self_intersections(overhangs, "generate_overhangs");
out[layer_id] = std::move(overhangs);
}
});
@ -675,7 +694,10 @@ static std::optional<std::pair<Point, size_t>> polyline_sample_next_point_at_dis
return lines;
#else
#ifdef _WIN32
if (! BoundingBox(Point::new_scale(-170., -170.), Point::new_scale(170., 170.)).contains(get_extents(polygon)))
// Max dimensions for MK3
// if (! BoundingBox(Point::new_scale(-170., -170.), Point::new_scale(170., 170.)).contains(get_extents(polygon)))
// Max dimensions for XL
if (! BoundingBox(Point::new_scale(-250., -250.), Point::new_scale(250., 250.)).contains(get_extents(polygon)))
::MessageBoxA(nullptr, "TreeSupport infill kravsky", "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING);
#endif // _WIN32
@ -702,10 +724,7 @@ static std::optional<std::pair<Point, size_t>> polyline_sample_next_point_at_dis
::MessageBoxA(nullptr, "TreeSupport infill negative area", "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING);
#endif // _WIN32
assert(intersecting_edges(to_polygons(expoly)).empty());
#ifdef _WIN32
if (! intersecting_edges(to_polygons(expoly)).empty())
::MessageBoxA(nullptr, "TreeSupport infill self intersections", "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING);
#endif // _WIN32
check_self_intersections(expoly, "generate_support_infill_lines");
Surface surface(stInternal, std::move(expoly));
try {
Polylines pl = filler->fill_surface(&surface, fill_params);
@ -831,6 +850,11 @@ static std::optional<std::pair<Point, size_t>> polyline_sample_next_point_at_dis
return union_(ret);
}
static double layer_z(const SlicingParameters &slicing_params, const size_t layer_idx)
{
return slicing_params.object_print_z_min + slicing_params.first_object_layer_height + layer_idx * slicing_params.layer_height;
}
static inline SupportGeneratorLayer& layer_initialize(
SupportGeneratorLayer &layer_new,
const SupporLayerType layer_type,
@ -838,7 +862,7 @@ static inline SupportGeneratorLayer& layer_initialize(
const size_t layer_idx)
{
layer_new.layer_type = layer_type;
layer_new.print_z = slicing_params.object_print_z_min + slicing_params.first_object_layer_height + layer_idx * slicing_params.layer_height;
layer_new.print_z = layer_z(slicing_params, layer_idx);
layer_new.height = layer_idx == 0 ? slicing_params.first_object_layer_height : slicing_params.layer_height;
layer_new.bottom_z = layer_idx == 0 ? slicing_params.object_print_z_min : layer_new.print_z - layer_new.height;
return layer_new;
@ -1082,6 +1106,8 @@ static void generate_initial_areas(
overhang_regular = mesh_group_settings.support_offset == 0 ?
overhang_raw :
safe_offset_inc(overhang_raw, mesh_group_settings.support_offset, relevant_forbidden, mesh_config.min_radius * 1.75 + mesh_config.xy_min_distance, 0, 1);
check_self_intersections(overhang_regular, "overhang_regular1");
// offset ensures that areas that could be supported by a part of a support line, are not considered unsupported overhang
Polygons remaining_overhang = intersection(
diff(mesh_group_settings.support_offset == 0 ?
@ -1108,6 +1134,7 @@ static void generate_initial_areas(
remaining_overhang = diff(remaining_overhang, safe_offset_inc(overhang_regular, 1.5 * extra_total_offset_acc, raw_collision, offset_step, 0, 1));
// Extending the overhangs by the inflated remaining overhangs.
overhang_regular = union_(overhang_regular, diff(safe_offset_inc(remaining_overhang, extra_total_offset_acc, raw_collision, offset_step, 0, 1), relevant_forbidden));
check_self_intersections(overhang_regular, "overhang_regular2");
}
// If the xy distance overrides the z distance, some support needs to be inserted further down.
//=> Analyze which support points do not fit on this layer and check if they will fit a few layers down (while adding them an infinite amount of layers down would technically be closer the the setting description, it would not produce reasonable results. )
@ -1159,6 +1186,7 @@ static void generate_initial_areas(
if (mesh_group_settings.minimum_support_area > 0)
remove_small(overhang_roofs, mesh_group_settings.minimum_roof_area);
overhang_regular = diff(overhang_regular, overhang_roofs, ApplySafetyOffset::Yes);
check_self_intersections(overhang_regular, "overhang_regular3");
for (ExPolygon &roof_part : union_ex(overhang_roofs))
overhang_processing.emplace_back(std::move(roof_part), true);
}
@ -3044,6 +3072,475 @@ static void draw_areas(
"finalize_interface_and_support_areas " << dur_finalize << " ms";
}
#if 1
// Test whether two circles, each on its own plane in 3D intersect.
// Circles are considered intersecting, if the lowest point on one circle is below the other circle's plane.
// Assumption: The two planes are oriented the same way.
static bool circles_intersect(
const Vec3d &p1, const Vec3d &n1, const double r1,
const Vec3d &p2, const Vec3d &n2, const double r2)
{
assert(n1.dot(n2) >= 0);
const Vec3d z = n1.cross(n2);
const Vec3d dir1 = z.cross(n1);
const Vec3d lowest_point1 = p1 + dir1 * (r1 / dir1.norm());
assert(n2.dot(p1) >= n2.dot(lowest_point1));
if (n2.dot(lowest_point1) <= 0)
return true;
const Vec3d dir2 = z.cross(n2);
const Vec3d lowest_point2 = p2 + dir2 * (r2 / dir2.norm());
assert(n1.dot(p2) >= n1.dot(lowest_point2));
return n1.dot(lowest_point2) <= 0;
}
template<bool flip_normals>
void triangulate_fan(indexed_triangle_set &its, int ifan, int ibegin, int iend)
{
// at least 3 vertices, increasing order.
assert(ibegin + 3 <= iend);
assert(ibegin >= 0 && iend <= its.vertices.size());
assert(ifan >= 0 && ifan < its.vertices.size());
int num_faces = iend - ibegin;
its.indices.reserve(its.indices.size() + num_faces * 3);
for (int v = ibegin, u = iend - 1; v < iend; u = v ++) {
if (flip_normals)
its.indices.push_back({ ifan, u, v });
else
its.indices.push_back({ ifan, v, u });
}
}
static void triangulate_strip(indexed_triangle_set &its, int ibegin1, int iend1, int ibegin2, int iend2)
{
// at least 3 vertices, increasing order.
assert(ibegin1 + 3 <= iend1);
assert(ibegin1 >= 0 && iend1 <= its.vertices.size());
assert(ibegin2 + 3 <= iend2);
assert(ibegin2 >= 0 && iend2 <= its.vertices.size());
int n1 = iend1 - ibegin1;
int n2 = iend2 - ibegin2;
its.indices.reserve(its.indices.size() + (n1 + n2) * 3);
// For the first vertex of 1st strip, find the closest vertex on the 2nd strip.
int istart2 = ibegin2;
{
const Vec3f &p1 = its.vertices[ibegin1];
auto d2min = std::numeric_limits<float>::max();
for (int i = ibegin2; i < iend2; ++ i) {
const Vec3f &p2 = its.vertices[i];
const float d2 = (p2 - p1).squaredNorm();
if (d2 < d2min) {
d2min = d2;
istart2 = i;
}
}
}
// Now triangulate the strip zig-zag fashion taking always the shortest connection if possible.
for (int u = ibegin1, v = istart2; n1 > 0 || n2 > 0;) {
bool take_first;
int u2, v2;
auto update_u2 = [&u2, u, ibegin1, iend1]() {
u2 = u;
if (++ u2 == iend1)
u2 = ibegin1;
};
auto update_v2 = [&v2, v, ibegin2, iend2]() {
v2 = v;
if (++ v2 == iend2)
v2 = ibegin2;
};
if (n1 == 0) {
take_first = false;
update_v2();
} else if (n2 == 0) {
take_first = true;
update_u2();
} else {
update_u2();
update_v2();
float l1 = (its.vertices[u2] - its.vertices[v]).squaredNorm();
float l2 = (its.vertices[v2] - its.vertices[u]).squaredNorm();
take_first = l1 < l2;
}
if (take_first) {
its.indices.push_back({ u, u2, v });
-- n1;
u = u2;
} else {
its.indices.push_back({ u, v2, v });
-- n2;
v = v2;
}
}
}
// Discretize 3D circle, append to output vector, return ranges of indices of the points added.
static std::pair<int, int> discretize_circle(const Vec3f &center, const Vec3f &normal, const float radius, const float eps, std::vector<Vec3f> &pts)
{
// Calculate discretization step and number of steps.
float angle_step = 2. * acos(1. - eps / radius);
auto nsteps = int(ceil(2 * M_PI / angle_step));
angle_step = 2 * M_PI / nsteps;
// Prepare coordinate system for the circle plane.
Vec3f x = normal.cross(Vec3f(0.f, -1.f, 0.f)).normalized();
Vec3f y = normal.cross(x).normalized();
assert(std::abs(x.cross(y).dot(normal) - 1.f) < EPSILON);
// Discretize the circle.
int begin = int(pts.size());
pts.reserve(pts.size() + nsteps);
float angle = 0;
x *= radius;
y *= radius;
for (int i = 0; i < nsteps; ++ i) {
pts.emplace_back(center + x * cos(angle) + y * sin(angle));
angle += angle_step;
}
return { begin, int(pts.size()) };
}
static void extrude_branch(
const std::vector<SupportElement*> &path,
const TreeSupportSettings &config,
const SlicingParameters &slicing_params,
const std::vector<SupportElements> &move_bounds,
indexed_triangle_set &result)
{
Vec3d p1, p2, p3;
Vec3d v1, v2;
Vec3d nprev;
Vec3d ncurrent;
assert(path.size() >= 2);
static constexpr const float eps = 0.015f;
std::pair<int, int> prev_strip;
// char fname[2048];
// static int irun = 0;
for (size_t ipath = 1; ipath < path.size(); ++ ipath) {
const SupportElement &prev = *path[ipath - 1];
const SupportElement &current = *path[ipath];
assert(prev.state.layer_idx + 1 == current.state.layer_idx);
p1 = to_3d(unscaled<double>(prev .state.result_on_layer), layer_z(slicing_params, prev .state.layer_idx));
p2 = to_3d(unscaled<double>(current.state.result_on_layer), layer_z(slicing_params, current.state.layer_idx));
v1 = (p2 - p1).normalized();
if (ipath == 1) {
nprev = v1;
// Extrude the bottom half sphere.
float radius = unscaled<float>(config.getRadius(prev.state));
float angle_step = 2. * acos(1. - eps / radius);
auto nsteps = int(ceil(M_PI / (2. * angle_step)));
angle_step = M_PI / (2. * nsteps);
int ifan = int(result.vertices.size());
result.vertices.emplace_back((p1 - nprev * radius).cast<float>());
float angle = angle_step;
for (int i = 1; i < nsteps; ++ i, angle += angle_step) {
std::pair<int, int> strip = discretize_circle((p1 - nprev * radius * cos(angle)).cast<float>(), nprev.cast<float>(), radius * sin(angle), eps, result.vertices);
if (i == 1)
triangulate_fan<false>(result, ifan, strip.first, strip.second);
else
triangulate_strip(result, prev_strip.first, prev_strip.second, strip.first, strip.second);
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun);
// its_write_obj(result, fname);
prev_strip = strip;
}
}
if (ipath + 1 == path.size()) {
// End of the tube.
ncurrent = v1;
// Extrude the top half sphere.
float radius = unscaled<float>(config.getRadius(current.state));
float angle_step = 2. * acos(1. - eps / radius);
auto nsteps = int(ceil(M_PI / (2. * angle_step)));
angle_step = M_PI / (2. * nsteps);
float angle = M_PI / 2.;
for (int i = 0; i < nsteps; ++ i, angle -= angle_step) {
std::pair<int, int> strip = discretize_circle((p2 + ncurrent * radius * cos(angle)).cast<float>(), ncurrent.cast<float>(), radius * sin(angle), eps, result.vertices);
triangulate_strip(result, prev_strip.first, prev_strip.second, strip.first, strip.second);
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun);
// its_write_obj(result, fname);
prev_strip = strip;
}
int ifan = int(result.vertices.size());
result.vertices.emplace_back((p2 + ncurrent * radius).cast<float>());
triangulate_fan<true>(result, ifan, prev_strip.first, prev_strip.second);
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun);
// its_write_obj(result, fname);
} else {
const SupportElement &next = *path[ipath + 1];
assert(current.state.layer_idx + 1 == next.state.layer_idx);
p3 = to_3d(unscaled<double>(next.state.result_on_layer), layer_z(slicing_params, next.state.layer_idx));
v2 = (p3 - p2).normalized();
ncurrent = (v1 + v2).normalized();
float radius = unscaled<float>(config.getRadius(current.state));
std::pair<int, int> strip = discretize_circle(p2.cast<float>(), ncurrent.cast<float>(), radius, eps, result.vertices);
triangulate_strip(result, prev_strip.first, prev_strip.second, strip.first, strip.second);
prev_strip = strip;
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++irun);
// its_write_obj(result, fname);
}
#if 0
if (circles_intersect(p1, nprev, settings.getRadius(prev), p2, ncurrent, settings.getRadius(current))) {
// Cannot connect previous and current slice using a simple zig-zag triangulation,
// because the two circles intersect.
} else {
// Continue with chaining.
}
#endif
}
}
#endif
static void draw_branches(
PrintObject &print_object,
const TreeModelVolumes &volumes,
const TreeSupportSettings &config,
const std::vector<Polygons> &overhangs,
std::vector<SupportElements> &move_bounds,
SupportGeneratorLayersPtr &bottom_contacts,
SupportGeneratorLayersPtr &top_contacts,
SupportGeneratorLayersPtr &intermediate_layers,
SupportGeneratorLayerStorage &layer_storage)
{
static int irun = 0;
const SlicingParameters& slicing_params = print_object.slicing_parameters();
// All SupportElements are put into a layer independent storage to improve parallelization.
std::vector<std::pair<SupportElement*, int>> elements_with_link_down;
std::vector<size_t> linear_data_layers;
{
std::vector<std::pair<SupportElement*, int>> map_downwards_old;
std::vector<std::pair<SupportElement*, int>> map_downwards_new;
linear_data_layers.emplace_back(0);
for (LayerIndex layer_idx = 0; layer_idx < LayerIndex(move_bounds.size()); ++ layer_idx) {
SupportElements *layer_above = layer_idx + 1 < move_bounds.size() ? &move_bounds[layer_idx + 1] : nullptr;
map_downwards_new.clear();
std::sort(map_downwards_old.begin(), map_downwards_old.end(), [](auto& l, auto& r) { return l.first < r.first; });
SupportElements &layer = move_bounds[layer_idx];
for (size_t elem_idx = 0; elem_idx < layer.size(); ++ elem_idx) {
SupportElement &elem = layer[elem_idx];
int child = -1;
if (layer_idx > 0) {
auto it = std::lower_bound(map_downwards_old.begin(), map_downwards_old.end(), &elem, [](auto& l, const SupportElement* r) { return l.first < r; });
if (it != map_downwards_old.end() && it->first == &elem) {
child = it->second;
// Only one link points to a node above from below.
assert(!(++it != map_downwards_old.end() && it->first == &elem));
}
const SupportElement *pchild = child == -1 ? nullptr : &move_bounds[layer_idx - 1][child];
if ((! pchild && elem.state.target_height == layer_idx) || (pchild && ! pchild->state.result_on_layer_is_set()))
// We either come from nowhere at the final layer or we had invalid parents 2. should never happen but just to be sure
continue;
}
for (int32_t parent_idx : elem.parents) {
SupportElement &parent = (*layer_above)[parent_idx];
if (parent.state.result_on_layer_is_set())
map_downwards_new.emplace_back(&parent, elem_idx);
}
elements_with_link_down.push_back({ &elem, int(child) });
}
std::swap(map_downwards_old, map_downwards_new);
linear_data_layers.emplace_back(elements_with_link_down.size());
}
}
std::unique_ptr<openvdb::tools::ClosestSurfacePoint<openvdb::FloatGrid>> closest_surface_point;
{
TriangleMesh mesh = print_object.model_object()->raw_mesh();
mesh.transform(print_object.trafo_centered());
double scale = 10.;
openvdb::FloatGrid::Ptr grid = mesh_to_grid(mesh.its, {}, scale, 0., 0.);
closest_surface_point = openvdb::tools::ClosestSurfacePoint<openvdb::FloatGrid>::create(*grid);
std::vector<openvdb::Vec3R> pts, prev, projections;
std::vector<float> distances;
for (const std::pair<SupportElement*, int> &element : elements_with_link_down) {
Vec3d pt = to_3d(unscaled<double>(element.first->state.result_on_layer), layer_z(slicing_params, element.first->state.layer_idx)) * scale;
pts.push_back({ pt.x(), pt.y(), pt.z() });
}
const double collision_extra_gap = 1. * scale;
const double max_nudge_collision_avoidance = 2. * scale;
const double max_nudge_smoothing = 1. * scale;
for (size_t iter = 0; iter < 1000; ++ iter) {
prev = pts;
projections = pts;
distances.assign(pts.size(), std::numeric_limits<float>::max());
closest_surface_point->searchAndReplace(projections, distances);
size_t num_moved = 0;
for (size_t i = 0; i < projections.size(); ++ i) {
const SupportElement &element = *elements_with_link_down[i].first;
const int below = elements_with_link_down[i].second;
if (pts[i] != projections[i]) {
// Nudge the circle center away from the collision.
Vec3d v{ projections[i].x() - pts[i].x(), projections[i].y() - pts[i].y(), projections[i].z() - pts[i].z() };
double depth = v.norm();
assert(std::abs(distances[i] - depth) < EPSILON);
double radius = unscaled<double>(config.getRadius(element.state)) * scale;
if (depth < radius) {
// Collision detected to be removed.
++ num_moved;
double dxy = sqrt(sqr(radius) - sqr(v.z()));
double nudge_dist_max = dxy - std::hypot(v.x(), v.y())
//FIXME 1mm gap
+ collision_extra_gap;
// Shift by maximum 2mm.
double nudge_dist = std::min(std::max(0., nudge_dist_max), max_nudge_collision_avoidance);
Vec2d nudge_v = to_2d(v).normalized() * (- nudge_dist);
pts[i].x() += nudge_v.x();
pts[i].y() += nudge_v.y();
}
}
// Laplacian smoothing
if (! element.parents.empty() && (below != -1 || element.state.layer_idx == 0)) {
Vec2d avg{ 0, 0 };
const SupportElements &above = move_bounds[element.state.layer_idx + 1];
const size_t offset_above = linear_data_layers[element.state.layer_idx + 1];
for (auto iparent : element.parents) {
avg.x() += prev[offset_above + iparent].x();
avg.y() += prev[offset_above + iparent].y();
}
size_t cnt = element.parents.size();
if (below != -1) {
const size_t offset_below = linear_data_layers[element.state.layer_idx - 1];
avg.x() += prev[offset_below + below].x();
avg.y() += prev[offset_below + below].y();
++ cnt;
}
avg /= double(cnt);
static constexpr const double smoothing_factor = 0.5;
Vec2d old_pos{ pts[i].x(), pts[i].y() };
Vec2d new_pos = (1. - smoothing_factor) * old_pos + smoothing_factor * avg;
Vec2d shift = new_pos - old_pos;
double nudge_dist_max = shift.norm();
// Shift by maximum 1mm, less than the collision avoidance factor.
double nudge_dist = std::min(std::max(0., nudge_dist_max), max_nudge_smoothing);
Vec2d nudge_v = shift.normalized() * nudge_dist;
pts[i].x() += nudge_v.x();
pts[i].y() += nudge_v.y();
}
}
printf("iteration: %d, moved: %d\n", int(iter), int(num_moved));
if (num_moved == 0)
break;
}
#if 1
for (size_t i = 0; i < projections.size(); ++ i) {
elements_with_link_down[i].first->state.result_on_layer.x() = scaled<coord_t>(pts[i].x()) / scale;
elements_with_link_down[i].first->state.result_on_layer.y() = scaled<coord_t>(pts[i].y()) / scale;
}
#endif
}
std::vector<Polygons> support_layer_storage(move_bounds.size());
std::vector<Polygons> support_roof_storage(move_bounds.size());
// Unmark all nodes.
for (SupportElements &elements : move_bounds)
for (SupportElement &element : elements)
element.state.marked = false;
// Traverse all nodes, generate tubes.
// Traversal stack with nodes and thier current parent
std::vector<SupportElement*> path;
indexed_triangle_set cummulative_mesh;
indexed_triangle_set partial_mesh;
indexed_triangle_set temp_mesh;
for (LayerIndex layer_idx = 0; layer_idx + 1 < LayerIndex(move_bounds.size()); ++ layer_idx) {
SupportElements &layer = move_bounds[layer_idx];
SupportElements &layer_above = move_bounds[layer_idx + 1];
for (SupportElement &start_element : layer)
if (! start_element.state.marked && ! start_element.parents.empty()) {
// Collect elements up to a bifurcation above.
start_element.state.marked = true;
for (size_t parent_idx = 0; parent_idx < start_element.parents.size(); ++ parent_idx) {
path.clear();
path.emplace_back(&start_element);
// Traverse each branch until it branches again.
SupportElement &first_parent = layer_above[start_element.parents[parent_idx]];
assert(path.back()->state.layer_idx + 1 == first_parent.state.layer_idx);
path.emplace_back(&first_parent);
if (first_parent.parents.size() < 2)
first_parent.state.marked = true;
if (first_parent.parents.size() == 1) {
for (SupportElement *parent = &first_parent;;) {
SupportElement &next_parent = move_bounds[parent->state.layer_idx + 1][parent->parents.front()];
assert(path.back()->state.layer_idx + 1 == next_parent.state.layer_idx);
path.emplace_back(&next_parent);
if (next_parent.parents.size() > 1)
break;
next_parent.state.marked = true;
if (next_parent.parents.size() == 0)
break;
parent = &next_parent;
}
}
// Triangulate the tube.
partial_mesh.clear();
extrude_branch(path, config, slicing_params, move_bounds, partial_mesh);
#if 0
char fname[2048];
sprintf(fname, "d:\\temp\\meshes\\tree-raw-%d.obj", ++ irun);
its_write_obj(partial_mesh, fname);
#if 0
temp_mesh.clear();
cut_mesh(partial_mesh, layer_z(slicing_params, path.back()->state.layer_idx) + EPSILON, nullptr, &temp_mesh, false);
sprintf(fname, "d:\\temp\\meshes\\tree-trimmed1-%d.obj", irun);
its_write_obj(temp_mesh, fname);
partial_mesh.clear();
cut_mesh(temp_mesh, layer_z(slicing_params, path.front()->state.layer_idx) - EPSILON, &partial_mesh, nullptr, false);
sprintf(fname, "d:\\temp\\meshes\\tree-trimmed2-%d.obj", irun);
#endif
its_write_obj(partial_mesh, fname);
#endif
its_merge(cummulative_mesh, partial_mesh);
}
}
}
std::vector<float> slice_z;
for (size_t layer_idx = 0; layer_idx < move_bounds.size(); ++ layer_idx) {
double print_z = slicing_params.object_print_z_min + slicing_params.first_object_layer_height + layer_idx * slicing_params.layer_height;
double layer_height = layer_idx == 0 ? slicing_params.first_object_layer_height : slicing_params.layer_height;
slice_z.emplace_back(float(print_z - layer_height * 0.5));
}
// Remove the trailing slices.
while (! slice_z.empty())
if (move_bounds[slice_z.size() - 1].empty())
slice_z.pop_back();
else
break;
#if 0
its_write_obj(cummulative_mesh, "d:\\temp\\meshes\\tree.obj");
#endif
MeshSlicingParamsEx params;
params.closing_radius = float(print_object.config().slice_closing_radius.value);
params.mode = MeshSlicingParams::SlicingMode::Positive;
std::vector<ExPolygons> slices = slice_mesh_ex(cummulative_mesh, slice_z, params);
for (size_t layer_idx = 0; layer_idx < slice_z.size(); ++ layer_idx)
if (! slices[layer_idx].empty()) {
SupportGeneratorLayer *&l = intermediate_layers[layer_idx];
if (l == nullptr)
l = &layer_allocate(layer_storage, SupporLayerType::Base, slicing_params, layer_idx);
append(l->polygons, to_polygons(std::move(slices[layer_idx])));
}
finalize_interface_and_support_areas(print_object, volumes, config, overhangs, support_layer_storage, support_roof_storage,
bottom_contacts, top_contacts, intermediate_layers, layer_storage);
}
/*!
* \brief Create the areas that need support.
*
@ -3147,8 +3644,13 @@ static void generate_support_areas(Print &print, const BuildVolume &build_volume
auto t_place = std::chrono::high_resolution_clock::now();
// ### draw these points as circles
#if 0
draw_areas(*print.get_object(processing.second.front()), volumes, config, overhangs, move_bounds,
bottom_contacts, top_contacts, intermediate_layers, layer_storage);
#else
draw_branches(*print.get_object(processing.second.front()), volumes, config, overhangs, move_bounds,
bottom_contacts, top_contacts, intermediate_layers, layer_storage);
#endif
auto t_draw = std::chrono::high_resolution_clock::now();
auto dur_pre_gen = 0.001 * std::chrono::duration_cast<std::chrono::microseconds>(t_precalc - t_start).count();