Prepare integration for arbitrary shaped print beds.
This commit is contained in:
commit
6cdec7ac9a
@ -1,5 +1,5 @@
|
|||||||
min_slic3r_version = 1.41.0-alpha
|
min_slic3r_version = 1.41.0-alpha
|
||||||
0.2.0-alpha3
|
0.2.0-alpha3 Adjusted machine limits for time estimates, added filament density and cost,
|
||||||
0.2.0-alpha2 Renamed the key MK3SMMU to MK3MMU2, added a generic PLA MMU2 material
|
0.2.0-alpha2 Renamed the key MK3SMMU to MK3MMU2, added a generic PLA MMU2 material
|
||||||
0.2.0-alpha1 added initial profiles for the i3 MK3 Multi Material Upgrade 2.0
|
0.2.0-alpha1 added initial profiles for the i3 MK3 Multi Material Upgrade 2.0
|
||||||
0.2.0-alpha moved machine limits from the start G-code to the new print profile parameters
|
0.2.0-alpha moved machine limits from the start G-code to the new print profile parameters
|
||||||
|
@ -136,6 +136,7 @@ add_library(libslic3r STATIC
|
|||||||
${LIBDIR}/libslic3r/Line.hpp
|
${LIBDIR}/libslic3r/Line.hpp
|
||||||
${LIBDIR}/libslic3r/Model.cpp
|
${LIBDIR}/libslic3r/Model.cpp
|
||||||
${LIBDIR}/libslic3r/Model.hpp
|
${LIBDIR}/libslic3r/Model.hpp
|
||||||
|
${LIBDIR}/libslic3r/ModelArrange.hpp
|
||||||
${LIBDIR}/libslic3r/MotionPlanner.cpp
|
${LIBDIR}/libslic3r/MotionPlanner.cpp
|
||||||
${LIBDIR}/libslic3r/MotionPlanner.hpp
|
${LIBDIR}/libslic3r/MotionPlanner.hpp
|
||||||
${LIBDIR}/libslic3r/MultiPoint.cpp
|
${LIBDIR}/libslic3r/MultiPoint.cpp
|
||||||
@ -729,6 +730,7 @@ set(LIBNEST2D_UNITTESTS ON CACHE BOOL "Force generating unittests for libnest2d"
|
|||||||
|
|
||||||
add_subdirectory(${LIBDIR}/libnest2d)
|
add_subdirectory(${LIBDIR}/libnest2d)
|
||||||
target_include_directories(libslic3r PUBLIC BEFORE ${LIBNEST2D_INCLUDES})
|
target_include_directories(libslic3r PUBLIC BEFORE ${LIBNEST2D_INCLUDES})
|
||||||
|
target_include_directories(libslic3r_gui PUBLIC BEFORE ${LIBNEST2D_INCLUDES})
|
||||||
|
|
||||||
message(STATUS "Libnest2D Libraries: ${LIBNEST2D_LIBRARIES}")
|
message(STATUS "Libnest2D Libraries: ${LIBNEST2D_LIBRARIES}")
|
||||||
target_link_libraries(libslic3r ${LIBNEST2D_LIBRARIES})
|
target_link_libraries(libslic3r ${LIBNEST2D_LIBRARIES})
|
||||||
|
@ -544,25 +544,25 @@ void arrangeRectangles() {
|
|||||||
// input.insert(input.end(), proba.begin(), proba.end());
|
// input.insert(input.end(), proba.begin(), proba.end());
|
||||||
// input.insert(input.end(), crasher.begin(), crasher.end());
|
// input.insert(input.end(), crasher.begin(), crasher.end());
|
||||||
|
|
||||||
// Box bin(250*SCALE, 210*SCALE);
|
Box bin(250*SCALE, 210*SCALE);
|
||||||
PolygonImpl bin = {
|
// PolygonImpl bin = {
|
||||||
{
|
// {
|
||||||
{25*SCALE, 0},
|
// {25*SCALE, 0},
|
||||||
{0, 25*SCALE},
|
// {0, 25*SCALE},
|
||||||
{0, 225*SCALE},
|
// {0, 225*SCALE},
|
||||||
{25*SCALE, 250*SCALE},
|
// {25*SCALE, 250*SCALE},
|
||||||
{225*SCALE, 250*SCALE},
|
// {225*SCALE, 250*SCALE},
|
||||||
{250*SCALE, 225*SCALE},
|
// {250*SCALE, 225*SCALE},
|
||||||
{250*SCALE, 25*SCALE},
|
// {250*SCALE, 25*SCALE},
|
||||||
{225*SCALE, 0},
|
// {225*SCALE, 0},
|
||||||
{25*SCALE, 0}
|
// {25*SCALE, 0}
|
||||||
},
|
// },
|
||||||
{}
|
// {}
|
||||||
};
|
// };
|
||||||
|
|
||||||
auto min_obj_distance = static_cast<Coord>(0*SCALE);
|
auto min_obj_distance = static_cast<Coord>(0*SCALE);
|
||||||
|
|
||||||
using Placer = strategies::_NofitPolyPlacer<PolygonImpl, PolygonImpl>;
|
using Placer = strategies::_NofitPolyPlacer<PolygonImpl, Box>;
|
||||||
using Packer = Arranger<Placer, FirstFitSelection>;
|
using Packer = Arranger<Placer, FirstFitSelection>;
|
||||||
|
|
||||||
Packer arrange(bin, min_obj_distance);
|
Packer arrange(bin, min_obj_distance);
|
||||||
@ -571,102 +571,102 @@ void arrangeRectangles() {
|
|||||||
pconf.alignment = Placer::Config::Alignment::CENTER;
|
pconf.alignment = Placer::Config::Alignment::CENTER;
|
||||||
pconf.starting_point = Placer::Config::Alignment::CENTER;
|
pconf.starting_point = Placer::Config::Alignment::CENTER;
|
||||||
pconf.rotations = {0.0/*, Pi/2.0, Pi, 3*Pi/2*/};
|
pconf.rotations = {0.0/*, Pi/2.0, Pi, 3*Pi/2*/};
|
||||||
pconf.accuracy = 1.0;
|
pconf.accuracy = 0.5f;
|
||||||
|
|
||||||
auto bincenter = ShapeLike::boundingBox(bin).center();
|
// auto bincenter = ShapeLike::boundingBox(bin).center();
|
||||||
pconf.object_function = [&bin, bincenter](
|
// pconf.object_function = [&bin, bincenter](
|
||||||
Placer::Pile pile, const Item& item,
|
// Placer::Pile pile, const Item& item,
|
||||||
double /*area*/, double norm, double penality) {
|
// double /*area*/, double norm, double penality) {
|
||||||
|
|
||||||
using pl = PointLike;
|
// using pl = PointLike;
|
||||||
|
|
||||||
static const double BIG_ITEM_TRESHOLD = 0.2;
|
// static const double BIG_ITEM_TRESHOLD = 0.2;
|
||||||
static const double GRAVITY_RATIO = 0.5;
|
// static const double GRAVITY_RATIO = 0.5;
|
||||||
static const double DENSITY_RATIO = 1.0 - GRAVITY_RATIO;
|
// static const double DENSITY_RATIO = 1.0 - GRAVITY_RATIO;
|
||||||
|
|
||||||
// We will treat big items (compared to the print bed) differently
|
// // We will treat big items (compared to the print bed) differently
|
||||||
NfpPlacer::Pile bigs;
|
// NfpPlacer::Pile bigs;
|
||||||
bigs.reserve(pile.size());
|
// bigs.reserve(pile.size());
|
||||||
for(auto& p : pile) {
|
// for(auto& p : pile) {
|
||||||
auto pbb = ShapeLike::boundingBox(p);
|
// auto pbb = ShapeLike::boundingBox(p);
|
||||||
auto na = std::sqrt(pbb.width()*pbb.height())/norm;
|
// auto na = std::sqrt(pbb.width()*pbb.height())/norm;
|
||||||
if(na > BIG_ITEM_TRESHOLD) bigs.emplace_back(p);
|
// if(na > BIG_ITEM_TRESHOLD) bigs.emplace_back(p);
|
||||||
}
|
// }
|
||||||
|
|
||||||
// Candidate item bounding box
|
// // Candidate item bounding box
|
||||||
auto ibb = item.boundingBox();
|
// auto ibb = item.boundingBox();
|
||||||
|
|
||||||
// Calculate the full bounding box of the pile with the candidate item
|
// // Calculate the full bounding box of the pile with the candidate item
|
||||||
pile.emplace_back(item.transformedShape());
|
// pile.emplace_back(item.transformedShape());
|
||||||
auto fullbb = ShapeLike::boundingBox(pile);
|
// auto fullbb = ShapeLike::boundingBox(pile);
|
||||||
pile.pop_back();
|
// pile.pop_back();
|
||||||
|
|
||||||
// The bounding box of the big items (they will accumulate in the center
|
// // The bounding box of the big items (they will accumulate in the center
|
||||||
// of the pile
|
// // of the pile
|
||||||
auto bigbb = bigs.empty()? fullbb : ShapeLike::boundingBox(bigs);
|
// auto bigbb = bigs.empty()? fullbb : ShapeLike::boundingBox(bigs);
|
||||||
|
|
||||||
// The size indicator of the candidate item. This is not the area,
|
// // The size indicator of the candidate item. This is not the area,
|
||||||
// but almost...
|
// // but almost...
|
||||||
auto itemnormarea = std::sqrt(ibb.width()*ibb.height())/norm;
|
// auto itemnormarea = std::sqrt(ibb.width()*ibb.height())/norm;
|
||||||
|
|
||||||
// Will hold the resulting score
|
// // Will hold the resulting score
|
||||||
double score = 0;
|
// double score = 0;
|
||||||
|
|
||||||
if(itemnormarea > BIG_ITEM_TRESHOLD) {
|
// if(itemnormarea > BIG_ITEM_TRESHOLD) {
|
||||||
// This branch is for the bigger items..
|
// // This branch is for the bigger items..
|
||||||
// Here we will use the closest point of the item bounding box to
|
// // Here we will use the closest point of the item bounding box to
|
||||||
// the already arranged pile. So not the bb center nor the a choosen
|
// // the already arranged pile. So not the bb center nor the a choosen
|
||||||
// corner but whichever is the closest to the center. This will
|
// // corner but whichever is the closest to the center. This will
|
||||||
// prevent unwanted strange arrangements.
|
// // prevent unwanted strange arrangements.
|
||||||
|
|
||||||
auto minc = ibb.minCorner(); // bottom left corner
|
// auto minc = ibb.minCorner(); // bottom left corner
|
||||||
auto maxc = ibb.maxCorner(); // top right corner
|
// auto maxc = ibb.maxCorner(); // top right corner
|
||||||
|
|
||||||
// top left and bottom right corners
|
// // top left and bottom right corners
|
||||||
auto top_left = PointImpl{getX(minc), getY(maxc)};
|
// auto top_left = PointImpl{getX(minc), getY(maxc)};
|
||||||
auto bottom_right = PointImpl{getX(maxc), getY(minc)};
|
// auto bottom_right = PointImpl{getX(maxc), getY(minc)};
|
||||||
|
|
||||||
auto cc = fullbb.center(); // The gravity center
|
// auto cc = fullbb.center(); // The gravity center
|
||||||
|
|
||||||
// Now the distnce of the gravity center will be calculated to the
|
// // Now the distnce of the gravity center will be calculated to the
|
||||||
// five anchor points and the smallest will be chosen.
|
// // five anchor points and the smallest will be chosen.
|
||||||
std::array<double, 5> dists;
|
// std::array<double, 5> dists;
|
||||||
dists[0] = pl::distance(minc, cc);
|
// dists[0] = pl::distance(minc, cc);
|
||||||
dists[1] = pl::distance(maxc, cc);
|
// dists[1] = pl::distance(maxc, cc);
|
||||||
dists[2] = pl::distance(ibb.center(), cc);
|
// dists[2] = pl::distance(ibb.center(), cc);
|
||||||
dists[3] = pl::distance(top_left, cc);
|
// dists[3] = pl::distance(top_left, cc);
|
||||||
dists[4] = pl::distance(bottom_right, cc);
|
// dists[4] = pl::distance(bottom_right, cc);
|
||||||
|
|
||||||
auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
|
// auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
|
||||||
|
|
||||||
// Density is the pack density: how big is the arranged pile
|
// // Density is the pack density: how big is the arranged pile
|
||||||
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
// auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
||||||
|
|
||||||
// The score is a weighted sum of the distance from pile center
|
// // The score is a weighted sum of the distance from pile center
|
||||||
// and the pile size
|
// // and the pile size
|
||||||
score = GRAVITY_RATIO * dist + DENSITY_RATIO * density;
|
// score = GRAVITY_RATIO * dist + DENSITY_RATIO * density;
|
||||||
|
|
||||||
} else if(itemnormarea < BIG_ITEM_TRESHOLD && bigs.empty()) {
|
// } else if(itemnormarea < BIG_ITEM_TRESHOLD && bigs.empty()) {
|
||||||
// If there are no big items, only small, we should consider the
|
// // If there are no big items, only small, we should consider the
|
||||||
// density here as well to not get silly results
|
// // density here as well to not get silly results
|
||||||
auto bindist = pl::distance(ibb.center(), bincenter) / norm;
|
// auto bindist = pl::distance(ibb.center(), bincenter) / norm;
|
||||||
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
// auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
||||||
score = GRAVITY_RATIO * bindist + DENSITY_RATIO * density;
|
// score = GRAVITY_RATIO * bindist + DENSITY_RATIO * density;
|
||||||
} else {
|
// } else {
|
||||||
// Here there are the small items that should be placed around the
|
// // Here there are the small items that should be placed around the
|
||||||
// already processed bigger items.
|
// // already processed bigger items.
|
||||||
// No need to play around with the anchor points, the center will be
|
// // No need to play around with the anchor points, the center will be
|
||||||
// just fine for small items
|
// // just fine for small items
|
||||||
score = pl::distance(ibb.center(), bigbb.center()) / norm;
|
// score = pl::distance(ibb.center(), bigbb.center()) / norm;
|
||||||
}
|
// }
|
||||||
|
|
||||||
// If it does not fit into the print bed we will beat it
|
// // If it does not fit into the print bed we will beat it
|
||||||
// with a large penality. If we would not do this, there would be only
|
// // with a large penality. If we would not do this, there would be only
|
||||||
// one big pile that doesn't care whether it fits onto the print bed.
|
// // one big pile that doesn't care whether it fits onto the print bed.
|
||||||
if(!NfpPlacer::wouldFit(fullbb, bin)) score = 2*penality - score;
|
// if(!NfpPlacer::wouldFit(fullbb, bin)) score = 2*penality - score;
|
||||||
|
|
||||||
return score;
|
// return score;
|
||||||
};
|
// };
|
||||||
|
|
||||||
Packer::SelectionConfig sconf;
|
Packer::SelectionConfig sconf;
|
||||||
// sconf.allow_parallel = false;
|
// sconf.allow_parallel = false;
|
||||||
@ -707,7 +707,7 @@ void arrangeRectangles() {
|
|||||||
std::vector<double> eff;
|
std::vector<double> eff;
|
||||||
eff.reserve(result.size());
|
eff.reserve(result.size());
|
||||||
|
|
||||||
auto bin_area = ShapeLike::area(bin);
|
auto bin_area = ShapeLike::area<PolygonImpl>(bin);
|
||||||
for(auto& r : result) {
|
for(auto& r : result) {
|
||||||
double a = 0;
|
double a = 0;
|
||||||
std::for_each(r.begin(), r.end(), [&a] (Item& e ){ a += e.area(); });
|
std::for_each(r.begin(), r.end(), [&a] (Item& e ){ a += e.area(); });
|
||||||
|
@ -6,7 +6,7 @@
|
|||||||
#include <libnest2d/clipper_backend/clipper_backend.hpp>
|
#include <libnest2d/clipper_backend/clipper_backend.hpp>
|
||||||
|
|
||||||
// We include the stock optimizers for local and global optimization
|
// We include the stock optimizers for local and global optimization
|
||||||
#include <libnest2d/optimizers/simplex.hpp> // Local simplex for NfpPlacer
|
#include <libnest2d/optimizers/subplex.hpp> // Local subplex for NfpPlacer
|
||||||
#include <libnest2d/optimizers/genetic.hpp> // Genetic for min. bounding box
|
#include <libnest2d/optimizers/genetic.hpp> // Genetic for min. bounding box
|
||||||
|
|
||||||
#include <libnest2d/libnest2d.hpp>
|
#include <libnest2d/libnest2d.hpp>
|
||||||
|
@ -53,8 +53,8 @@ class _Item {
|
|||||||
|
|
||||||
enum class Convexity: char {
|
enum class Convexity: char {
|
||||||
UNCHECKED,
|
UNCHECKED,
|
||||||
TRUE,
|
C_TRUE,
|
||||||
FALSE
|
C_FALSE
|
||||||
};
|
};
|
||||||
|
|
||||||
mutable Convexity convexity_ = Convexity::UNCHECKED;
|
mutable Convexity convexity_ = Convexity::UNCHECKED;
|
||||||
@ -213,10 +213,10 @@ public:
|
|||||||
switch(convexity_) {
|
switch(convexity_) {
|
||||||
case Convexity::UNCHECKED:
|
case Convexity::UNCHECKED:
|
||||||
ret = sl::isConvex<RawShape>(sl::getContour(transformedShape()));
|
ret = sl::isConvex<RawShape>(sl::getContour(transformedShape()));
|
||||||
convexity_ = ret? Convexity::TRUE : Convexity::FALSE;
|
convexity_ = ret? Convexity::C_TRUE : Convexity::C_FALSE;
|
||||||
break;
|
break;
|
||||||
case Convexity::TRUE: ret = true; break;
|
case Convexity::C_TRUE: ret = true; break;
|
||||||
case Convexity::FALSE:;
|
case Convexity::C_FALSE:;
|
||||||
}
|
}
|
||||||
|
|
||||||
return ret;
|
return ret;
|
||||||
|
@ -625,7 +625,7 @@ public:
|
|||||||
opt::StopCriteria stopcr;
|
opt::StopCriteria stopcr;
|
||||||
stopcr.max_iterations = 1000;
|
stopcr.max_iterations = 1000;
|
||||||
stopcr.absolute_score_difference = 1e-20*norm_;
|
stopcr.absolute_score_difference = 1e-20*norm_;
|
||||||
opt::TOptimizer<opt::Method::L_SIMPLEX> solver(stopcr);
|
opt::TOptimizer<opt::Method::L_SUBPLEX> solver(stopcr);
|
||||||
|
|
||||||
Optimum optimum(0, 0);
|
Optimum optimum(0, 0);
|
||||||
double best_score = penality_;
|
double best_score = penality_;
|
||||||
|
@ -7,11 +7,6 @@
|
|||||||
#include "Format/STL.hpp"
|
#include "Format/STL.hpp"
|
||||||
#include "Format/3mf.hpp"
|
#include "Format/3mf.hpp"
|
||||||
|
|
||||||
#include <numeric>
|
|
||||||
#include <libnest2d.h>
|
|
||||||
#include <ClipperUtils.hpp>
|
|
||||||
#include "slic3r/GUI/GUI.hpp"
|
|
||||||
|
|
||||||
#include <float.h>
|
#include <float.h>
|
||||||
|
|
||||||
#include <boost/algorithm/string/predicate.hpp>
|
#include <boost/algorithm/string/predicate.hpp>
|
||||||
@ -304,411 +299,10 @@ static bool _arrange(const Pointfs &sizes, coordf_t dist, const BoundingBoxf* bb
|
|||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
namespace arr {
|
|
||||||
|
|
||||||
using namespace libnest2d;
|
|
||||||
|
|
||||||
std::string toString(const Model& model, bool holes = true) {
|
|
||||||
std::stringstream ss;
|
|
||||||
|
|
||||||
ss << "{\n";
|
|
||||||
|
|
||||||
for(auto objptr : model.objects) {
|
|
||||||
if(!objptr) continue;
|
|
||||||
|
|
||||||
auto rmesh = objptr->raw_mesh();
|
|
||||||
|
|
||||||
for(auto objinst : objptr->instances) {
|
|
||||||
if(!objinst) continue;
|
|
||||||
|
|
||||||
Slic3r::TriangleMesh tmpmesh = rmesh;
|
|
||||||
tmpmesh.scale(objinst->scaling_factor);
|
|
||||||
objinst->transform_mesh(&tmpmesh);
|
|
||||||
ExPolygons expolys = tmpmesh.horizontal_projection();
|
|
||||||
for(auto& expoly_complex : expolys) {
|
|
||||||
|
|
||||||
auto tmp = expoly_complex.simplify(1.0/SCALING_FACTOR);
|
|
||||||
if(tmp.empty()) continue;
|
|
||||||
auto expoly = tmp.front();
|
|
||||||
expoly.contour.make_clockwise();
|
|
||||||
for(auto& h : expoly.holes) h.make_counter_clockwise();
|
|
||||||
|
|
||||||
ss << "\t{\n";
|
|
||||||
ss << "\t\t{\n";
|
|
||||||
|
|
||||||
for(auto v : expoly.contour.points) ss << "\t\t\t{"
|
|
||||||
<< v.x << ", "
|
|
||||||
<< v.y << "},\n";
|
|
||||||
{
|
|
||||||
auto v = expoly.contour.points.front();
|
|
||||||
ss << "\t\t\t{" << v.x << ", " << v.y << "},\n";
|
|
||||||
}
|
|
||||||
ss << "\t\t},\n";
|
|
||||||
|
|
||||||
// Holes:
|
|
||||||
ss << "\t\t{\n";
|
|
||||||
if(holes) for(auto h : expoly.holes) {
|
|
||||||
ss << "\t\t\t{\n";
|
|
||||||
for(auto v : h.points) ss << "\t\t\t\t{"
|
|
||||||
<< v.x << ", "
|
|
||||||
<< v.y << "},\n";
|
|
||||||
{
|
|
||||||
auto v = h.points.front();
|
|
||||||
ss << "\t\t\t\t{" << v.x << ", " << v.y << "},\n";
|
|
||||||
}
|
|
||||||
ss << "\t\t\t},\n";
|
|
||||||
}
|
|
||||||
ss << "\t\t},\n";
|
|
||||||
|
|
||||||
ss << "\t},\n";
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
ss << "}\n";
|
|
||||||
|
|
||||||
return ss.str();
|
|
||||||
}
|
|
||||||
|
|
||||||
void toSVG(SVG& svg, const Model& model) {
|
|
||||||
for(auto objptr : model.objects) {
|
|
||||||
if(!objptr) continue;
|
|
||||||
|
|
||||||
auto rmesh = objptr->raw_mesh();
|
|
||||||
|
|
||||||
for(auto objinst : objptr->instances) {
|
|
||||||
if(!objinst) continue;
|
|
||||||
|
|
||||||
Slic3r::TriangleMesh tmpmesh = rmesh;
|
|
||||||
tmpmesh.scale(objinst->scaling_factor);
|
|
||||||
objinst->transform_mesh(&tmpmesh);
|
|
||||||
ExPolygons expolys = tmpmesh.horizontal_projection();
|
|
||||||
svg.draw(expolys);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// A container which stores a pointer to the 3D object and its projected
|
|
||||||
// 2D shape from top view.
|
|
||||||
using ShapeData2D =
|
|
||||||
std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
|
|
||||||
|
|
||||||
ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
|
|
||||||
ShapeData2D ret;
|
|
||||||
|
|
||||||
auto s = std::accumulate(model.objects.begin(), model.objects.end(), 0,
|
|
||||||
[](size_t s, ModelObject* o){
|
|
||||||
return s + o->instances.size();
|
|
||||||
});
|
|
||||||
|
|
||||||
ret.reserve(s);
|
|
||||||
|
|
||||||
for(auto objptr : model.objects) {
|
|
||||||
if(objptr) {
|
|
||||||
|
|
||||||
auto rmesh = objptr->raw_mesh();
|
|
||||||
|
|
||||||
for(auto objinst : objptr->instances) {
|
|
||||||
if(objinst) {
|
|
||||||
Slic3r::TriangleMesh tmpmesh = rmesh;
|
|
||||||
ClipperLib::PolygonImpl pn;
|
|
||||||
|
|
||||||
tmpmesh.scale(objinst->scaling_factor);
|
|
||||||
|
|
||||||
// TODO export the exact 2D projection
|
|
||||||
auto p = tmpmesh.convex_hull();
|
|
||||||
|
|
||||||
p.make_clockwise();
|
|
||||||
p.append(p.first_point());
|
|
||||||
pn.Contour = Slic3rMultiPoint_to_ClipperPath( p );
|
|
||||||
|
|
||||||
// Efficient conversion to item.
|
|
||||||
Item item(std::move(pn));
|
|
||||||
|
|
||||||
// Invalid geometries would throw exceptions when arranging
|
|
||||||
if(item.vertexCount() > 3) {
|
|
||||||
item.rotation(objinst->rotation);
|
|
||||||
item.translation( {
|
|
||||||
ClipperLib::cInt(objinst->offset.x/SCALING_FACTOR),
|
|
||||||
ClipperLib::cInt(objinst->offset.y/SCALING_FACTOR)
|
|
||||||
});
|
|
||||||
ret.emplace_back(objinst, item);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* \brief Arranges the model objects on the screen.
|
|
||||||
*
|
|
||||||
* The arrangement considers multiple bins (aka. print beds) for placing all
|
|
||||||
* the items provided in the model argument. If the items don't fit on one
|
|
||||||
* print bed, the remaining will be placed onto newly created print beds.
|
|
||||||
* The first_bin_only parameter, if set to true, disables this behaviour and
|
|
||||||
* makes sure that only one print bed is filled and the remaining items will be
|
|
||||||
* untouched. When set to false, the items which could not fit onto the
|
|
||||||
* print bed will be placed next to the print bed so the user should see a
|
|
||||||
* pile of items on the print bed and some other piles outside the print
|
|
||||||
* area that can be dragged later onto the print bed as a group.
|
|
||||||
*
|
|
||||||
* \param model The model object with the 3D content.
|
|
||||||
* \param dist The minimum distance which is allowed for any pair of items
|
|
||||||
* on the print bed in any direction.
|
|
||||||
* \param bb The bounding box of the print bed. It corresponds to the 'bin'
|
|
||||||
* for bin packing.
|
|
||||||
* \param first_bin_only This parameter controls whether to place the
|
|
||||||
* remaining items which do not fit onto the print area next to the print
|
|
||||||
* bed or leave them untouched (let the user arrange them by hand or remove
|
|
||||||
* them).
|
|
||||||
*/
|
|
||||||
bool arrange(Model &model, coordf_t dist, const Slic3r::BoundingBoxf* bb,
|
|
||||||
bool first_bin_only,
|
|
||||||
std::function<void(unsigned)> progressind)
|
|
||||||
{
|
|
||||||
using ArrangeResult = _IndexedPackGroup<PolygonImpl>;
|
|
||||||
|
|
||||||
bool ret = true;
|
|
||||||
|
|
||||||
// Create the arranger config
|
|
||||||
auto min_obj_distance = static_cast<Coord>(dist/SCALING_FACTOR);
|
|
||||||
|
|
||||||
// Get the 2D projected shapes with their 3D model instance pointers
|
|
||||||
auto shapemap = arr::projectModelFromTop(model);
|
|
||||||
|
|
||||||
bool hasbin = bb != nullptr && bb->defined;
|
|
||||||
double area_max = 0;
|
|
||||||
|
|
||||||
// Copy the references for the shapes only as the arranger expects a
|
|
||||||
// sequence of objects convertible to Item or ClipperPolygon
|
|
||||||
std::vector<std::reference_wrapper<Item>> shapes;
|
|
||||||
shapes.reserve(shapemap.size());
|
|
||||||
std::for_each(shapemap.begin(), shapemap.end(),
|
|
||||||
[&shapes, min_obj_distance, &area_max, hasbin]
|
|
||||||
(ShapeData2D::value_type& it)
|
|
||||||
{
|
|
||||||
shapes.push_back(std::ref(it.second));
|
|
||||||
});
|
|
||||||
|
|
||||||
Box bin;
|
|
||||||
|
|
||||||
if(hasbin) {
|
|
||||||
// Scale up the bounding box to clipper scale.
|
|
||||||
BoundingBoxf bbb = *bb;
|
|
||||||
bbb.scale(1.0/SCALING_FACTOR);
|
|
||||||
|
|
||||||
bin = Box({
|
|
||||||
static_cast<libnest2d::Coord>(bbb.min.x),
|
|
||||||
static_cast<libnest2d::Coord>(bbb.min.y)
|
|
||||||
},
|
|
||||||
{
|
|
||||||
static_cast<libnest2d::Coord>(bbb.max.x),
|
|
||||||
static_cast<libnest2d::Coord>(bbb.max.y)
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
// Will use the DJD selection heuristic with the BottomLeft placement
|
|
||||||
// strategy
|
|
||||||
using Arranger = Arranger<NfpPlacer, FirstFitSelection>;
|
|
||||||
using PConf = Arranger::PlacementConfig;
|
|
||||||
using SConf = Arranger::SelectionConfig;
|
|
||||||
|
|
||||||
PConf pcfg; // Placement configuration
|
|
||||||
SConf scfg; // Selection configuration
|
|
||||||
|
|
||||||
// Align the arranged pile into the center of the bin
|
|
||||||
pcfg.alignment = PConf::Alignment::CENTER;
|
|
||||||
|
|
||||||
// Start placing the items from the center of the print bed
|
|
||||||
pcfg.starting_point = PConf::Alignment::CENTER;
|
|
||||||
|
|
||||||
// TODO cannot use rotations until multiple objects of same geometry can
|
|
||||||
// handle different rotations
|
|
||||||
// arranger.useMinimumBoundigBoxRotation();
|
|
||||||
pcfg.rotations = { 0.0 };
|
|
||||||
|
|
||||||
// The accuracy of optimization. Goes from 0.0 to 1.0 and scales performance
|
|
||||||
pcfg.accuracy = 0.8;
|
|
||||||
|
|
||||||
// Magic: we will specify what is the goal of arrangement... In this case
|
|
||||||
// we override the default object function to make the larger items go into
|
|
||||||
// the center of the pile and smaller items orbit it so the resulting pile
|
|
||||||
// has a circle-like shape. This is good for the print bed's heat profile.
|
|
||||||
// We alse sacrafice a bit of pack efficiency for this to work. As a side
|
|
||||||
// effect, the arrange procedure is a lot faster (we do not need to
|
|
||||||
// calculate the convex hulls)
|
|
||||||
pcfg.object_function = [bin, hasbin](
|
|
||||||
NfpPlacer::Pile& pile, // The currently arranged pile
|
|
||||||
const Item &item,
|
|
||||||
double /*area*/, // Sum area of items (not needed)
|
|
||||||
double norm, // A norming factor for physical dimensions
|
|
||||||
double penality) // Min penality in case of bad arrangement
|
|
||||||
{
|
|
||||||
using pl = PointLike;
|
|
||||||
|
|
||||||
static const double BIG_ITEM_TRESHOLD = 0.2;
|
|
||||||
static const double GRAVITY_RATIO = 0.5;
|
|
||||||
static const double DENSITY_RATIO = 1.0 - GRAVITY_RATIO;
|
|
||||||
|
|
||||||
// We will treat big items (compared to the print bed) differently
|
|
||||||
NfpPlacer::Pile bigs;
|
|
||||||
bigs.reserve(pile.size());
|
|
||||||
for(auto& p : pile) {
|
|
||||||
auto pbb = ShapeLike::boundingBox(p);
|
|
||||||
auto na = std::sqrt(pbb.width()*pbb.height())/norm;
|
|
||||||
if(na > BIG_ITEM_TRESHOLD) bigs.emplace_back(p);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Candidate item bounding box
|
|
||||||
auto ibb = item.boundingBox();
|
|
||||||
|
|
||||||
// Calculate the full bounding box of the pile with the candidate item
|
|
||||||
pile.emplace_back(item.transformedShape());
|
|
||||||
auto fullbb = ShapeLike::boundingBox(pile);
|
|
||||||
pile.pop_back();
|
|
||||||
|
|
||||||
// The bounding box of the big items (they will accumulate in the center
|
|
||||||
// of the pile
|
|
||||||
auto bigbb = bigs.empty()? fullbb : ShapeLike::boundingBox(bigs);
|
|
||||||
|
|
||||||
// The size indicator of the candidate item. This is not the area,
|
|
||||||
// but almost...
|
|
||||||
auto itemnormarea = std::sqrt(ibb.width()*ibb.height())/norm;
|
|
||||||
|
|
||||||
// Will hold the resulting score
|
|
||||||
double score = 0;
|
|
||||||
|
|
||||||
if(itemnormarea > BIG_ITEM_TRESHOLD) {
|
|
||||||
// This branch is for the bigger items..
|
|
||||||
// Here we will use the closest point of the item bounding box to
|
|
||||||
// the already arranged pile. So not the bb center nor the a choosen
|
|
||||||
// corner but whichever is the closest to the center. This will
|
|
||||||
// prevent unwanted strange arrangements.
|
|
||||||
|
|
||||||
auto minc = ibb.minCorner(); // bottom left corner
|
|
||||||
auto maxc = ibb.maxCorner(); // top right corner
|
|
||||||
|
|
||||||
// top left and bottom right corners
|
|
||||||
auto top_left = PointImpl{getX(minc), getY(maxc)};
|
|
||||||
auto bottom_right = PointImpl{getX(maxc), getY(minc)};
|
|
||||||
|
|
||||||
auto cc = fullbb.center(); // The gravity center
|
|
||||||
|
|
||||||
// Now the distnce of the gravity center will be calculated to the
|
|
||||||
// five anchor points and the smallest will be chosen.
|
|
||||||
std::array<double, 5> dists;
|
|
||||||
dists[0] = pl::distance(minc, cc);
|
|
||||||
dists[1] = pl::distance(maxc, cc);
|
|
||||||
dists[2] = pl::distance(ibb.center(), cc);
|
|
||||||
dists[3] = pl::distance(top_left, cc);
|
|
||||||
dists[4] = pl::distance(bottom_right, cc);
|
|
||||||
|
|
||||||
auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
|
|
||||||
|
|
||||||
// Density is the pack density: how big is the arranged pile
|
|
||||||
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
|
||||||
|
|
||||||
// The score is a weighted sum of the distance from pile center
|
|
||||||
// and the pile size
|
|
||||||
score = GRAVITY_RATIO * dist + DENSITY_RATIO * density;
|
|
||||||
|
|
||||||
} else if(itemnormarea < BIG_ITEM_TRESHOLD && bigs.empty()) {
|
|
||||||
// If there are no big items, only small, we should consider the
|
|
||||||
// density here as well to not get silly results
|
|
||||||
auto bindist = pl::distance(ibb.center(), bin.center()) / norm;
|
|
||||||
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
|
||||||
score = GRAVITY_RATIO * bindist + DENSITY_RATIO * density;
|
|
||||||
} else {
|
|
||||||
// Here there are the small items that should be placed around the
|
|
||||||
// already processed bigger items.
|
|
||||||
// No need to play around with the anchor points, the center will be
|
|
||||||
// just fine for small items
|
|
||||||
score = pl::distance(ibb.center(), bigbb.center()) / norm;
|
|
||||||
}
|
|
||||||
|
|
||||||
// If it does not fit into the print bed we will beat it
|
|
||||||
// with a large penality. If we would not do this, there would be only
|
|
||||||
// one big pile that doesn't care whether it fits onto the print bed.
|
|
||||||
if(!NfpPlacer::wouldFit(fullbb, bin)) score = 2*penality - score;
|
|
||||||
|
|
||||||
return score;
|
|
||||||
};
|
|
||||||
|
|
||||||
// Create the arranger object
|
|
||||||
Arranger arranger(bin, min_obj_distance, pcfg, scfg);
|
|
||||||
|
|
||||||
// Set the progress indicator for the arranger.
|
|
||||||
arranger.progressIndicator(progressind);
|
|
||||||
|
|
||||||
// Arrange and return the items with their respective indices within the
|
|
||||||
// input sequence.
|
|
||||||
auto result = arranger.arrangeIndexed(shapes.begin(), shapes.end());
|
|
||||||
|
|
||||||
auto applyResult = [&shapemap](ArrangeResult::value_type& group,
|
|
||||||
Coord batch_offset)
|
|
||||||
{
|
|
||||||
for(auto& r : group) {
|
|
||||||
auto idx = r.first; // get the original item index
|
|
||||||
Item& item = r.second; // get the item itself
|
|
||||||
|
|
||||||
// Get the model instance from the shapemap using the index
|
|
||||||
ModelInstance *inst_ptr = shapemap[idx].first;
|
|
||||||
|
|
||||||
// Get the tranformation data from the item object and scale it
|
|
||||||
// appropriately
|
|
||||||
auto off = item.translation();
|
|
||||||
Radians rot = item.rotation();
|
|
||||||
Pointf foff(off.X*SCALING_FACTOR + batch_offset,
|
|
||||||
off.Y*SCALING_FACTOR);
|
|
||||||
|
|
||||||
// write the tranformation data into the model instance
|
|
||||||
inst_ptr->rotation = rot;
|
|
||||||
inst_ptr->offset = foff;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
if(first_bin_only) {
|
|
||||||
applyResult(result.front(), 0);
|
|
||||||
} else {
|
|
||||||
|
|
||||||
const auto STRIDE_PADDING = 1.2;
|
|
||||||
|
|
||||||
Coord stride = static_cast<Coord>(STRIDE_PADDING*
|
|
||||||
bin.width()*SCALING_FACTOR);
|
|
||||||
Coord batch_offset = 0;
|
|
||||||
|
|
||||||
for(auto& group : result) {
|
|
||||||
applyResult(group, batch_offset);
|
|
||||||
|
|
||||||
// Only the first pack group can be placed onto the print bed. The
|
|
||||||
// other objects which could not fit will be placed next to the
|
|
||||||
// print bed
|
|
||||||
batch_offset += stride;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
for(auto objptr : model.objects) objptr->invalidate_bounding_box();
|
|
||||||
|
|
||||||
return ret && result.size() == 1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/* arrange objects preserving their instance count
|
/* arrange objects preserving their instance count
|
||||||
but altering their instance positions */
|
but altering their instance positions */
|
||||||
bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb,
|
bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb)
|
||||||
std::function<void(unsigned)> progressind)
|
|
||||||
{
|
{
|
||||||
bool ret = false;
|
|
||||||
if(bb != nullptr && bb->defined) {
|
|
||||||
// Despite the new arrange is able to run without a specified bin,
|
|
||||||
// the perl testsuit still fails for this case. For now the safest
|
|
||||||
// thing to do is to use the new arrange only when a proper bin is
|
|
||||||
// specified.
|
|
||||||
ret = arr::arrange(*this, dist, bb, false, progressind);
|
|
||||||
} else {
|
|
||||||
// get the (transformed) size of each instance so that we take
|
// get the (transformed) size of each instance so that we take
|
||||||
// into account their different transformations when packing
|
// into account their different transformations when packing
|
||||||
Pointfs instance_sizes;
|
Pointfs instance_sizes;
|
||||||
@ -733,9 +327,8 @@ bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb,
|
|||||||
}
|
}
|
||||||
o->invalidate_bounding_box();
|
o->invalidate_bounding_box();
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
return ret;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Duplicate the entire model preserving instance relative positions.
|
// Duplicate the entire model preserving instance relative positions.
|
||||||
|
@ -290,8 +290,7 @@ public:
|
|||||||
void center_instances_around_point(const Pointf &point);
|
void center_instances_around_point(const Pointf &point);
|
||||||
void translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelObject *o : this->objects) o->translate(x, y, z); }
|
void translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelObject *o : this->objects) o->translate(x, y, z); }
|
||||||
TriangleMesh mesh() const;
|
TriangleMesh mesh() const;
|
||||||
bool arrange_objects(coordf_t dist, const BoundingBoxf* bb = NULL,
|
bool arrange_objects(coordf_t dist, const BoundingBoxf* bb = NULL);
|
||||||
std::function<void(unsigned)> progressind = [](unsigned){});
|
|
||||||
// Croaks if the duplicated objects do not fit the print bed.
|
// Croaks if the duplicated objects do not fit the print bed.
|
||||||
void duplicate(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL);
|
void duplicate(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL);
|
||||||
void duplicate_objects(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL);
|
void duplicate_objects(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL);
|
||||||
|
405
xs/src/libslic3r/ModelArrange.hpp
Normal file
405
xs/src/libslic3r/ModelArrange.hpp
Normal file
@ -0,0 +1,405 @@
|
|||||||
|
#ifndef MODELARRANGE_HPP
|
||||||
|
#define MODELARRANGE_HPP
|
||||||
|
|
||||||
|
#include "Model.hpp"
|
||||||
|
#include "SVG.hpp"
|
||||||
|
#include <libnest2d.h>
|
||||||
|
|
||||||
|
#include <numeric>
|
||||||
|
#include <ClipperUtils.hpp>
|
||||||
|
|
||||||
|
namespace Slic3r {
|
||||||
|
namespace arr {
|
||||||
|
|
||||||
|
using namespace libnest2d;
|
||||||
|
|
||||||
|
std::string toString(const Model& model, bool holes = true) {
|
||||||
|
std::stringstream ss;
|
||||||
|
|
||||||
|
ss << "{\n";
|
||||||
|
|
||||||
|
for(auto objptr : model.objects) {
|
||||||
|
if(!objptr) continue;
|
||||||
|
|
||||||
|
auto rmesh = objptr->raw_mesh();
|
||||||
|
|
||||||
|
for(auto objinst : objptr->instances) {
|
||||||
|
if(!objinst) continue;
|
||||||
|
|
||||||
|
Slic3r::TriangleMesh tmpmesh = rmesh;
|
||||||
|
tmpmesh.scale(objinst->scaling_factor);
|
||||||
|
objinst->transform_mesh(&tmpmesh);
|
||||||
|
ExPolygons expolys = tmpmesh.horizontal_projection();
|
||||||
|
for(auto& expoly_complex : expolys) {
|
||||||
|
|
||||||
|
auto tmp = expoly_complex.simplify(1.0/SCALING_FACTOR);
|
||||||
|
if(tmp.empty()) continue;
|
||||||
|
auto expoly = tmp.front();
|
||||||
|
expoly.contour.make_clockwise();
|
||||||
|
for(auto& h : expoly.holes) h.make_counter_clockwise();
|
||||||
|
|
||||||
|
ss << "\t{\n";
|
||||||
|
ss << "\t\t{\n";
|
||||||
|
|
||||||
|
for(auto v : expoly.contour.points) ss << "\t\t\t{"
|
||||||
|
<< v.x << ", "
|
||||||
|
<< v.y << "},\n";
|
||||||
|
{
|
||||||
|
auto v = expoly.contour.points.front();
|
||||||
|
ss << "\t\t\t{" << v.x << ", " << v.y << "},\n";
|
||||||
|
}
|
||||||
|
ss << "\t\t},\n";
|
||||||
|
|
||||||
|
// Holes:
|
||||||
|
ss << "\t\t{\n";
|
||||||
|
if(holes) for(auto h : expoly.holes) {
|
||||||
|
ss << "\t\t\t{\n";
|
||||||
|
for(auto v : h.points) ss << "\t\t\t\t{"
|
||||||
|
<< v.x << ", "
|
||||||
|
<< v.y << "},\n";
|
||||||
|
{
|
||||||
|
auto v = h.points.front();
|
||||||
|
ss << "\t\t\t\t{" << v.x << ", " << v.y << "},\n";
|
||||||
|
}
|
||||||
|
ss << "\t\t\t},\n";
|
||||||
|
}
|
||||||
|
ss << "\t\t},\n";
|
||||||
|
|
||||||
|
ss << "\t},\n";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
ss << "}\n";
|
||||||
|
|
||||||
|
return ss.str();
|
||||||
|
}
|
||||||
|
|
||||||
|
void toSVG(SVG& svg, const Model& model) {
|
||||||
|
for(auto objptr : model.objects) {
|
||||||
|
if(!objptr) continue;
|
||||||
|
|
||||||
|
auto rmesh = objptr->raw_mesh();
|
||||||
|
|
||||||
|
for(auto objinst : objptr->instances) {
|
||||||
|
if(!objinst) continue;
|
||||||
|
|
||||||
|
Slic3r::TriangleMesh tmpmesh = rmesh;
|
||||||
|
tmpmesh.scale(objinst->scaling_factor);
|
||||||
|
objinst->transform_mesh(&tmpmesh);
|
||||||
|
ExPolygons expolys = tmpmesh.horizontal_projection();
|
||||||
|
svg.draw(expolys);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// A container which stores a pointer to the 3D object and its projected
|
||||||
|
// 2D shape from top view.
|
||||||
|
using ShapeData2D =
|
||||||
|
std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
|
||||||
|
|
||||||
|
ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
|
||||||
|
ShapeData2D ret;
|
||||||
|
|
||||||
|
auto s = std::accumulate(model.objects.begin(), model.objects.end(), 0,
|
||||||
|
[](size_t s, ModelObject* o){
|
||||||
|
return s + o->instances.size();
|
||||||
|
});
|
||||||
|
|
||||||
|
ret.reserve(s);
|
||||||
|
|
||||||
|
for(auto objptr : model.objects) {
|
||||||
|
if(objptr) {
|
||||||
|
|
||||||
|
auto rmesh = objptr->raw_mesh();
|
||||||
|
|
||||||
|
for(auto objinst : objptr->instances) {
|
||||||
|
if(objinst) {
|
||||||
|
Slic3r::TriangleMesh tmpmesh = rmesh;
|
||||||
|
ClipperLib::PolygonImpl pn;
|
||||||
|
|
||||||
|
tmpmesh.scale(objinst->scaling_factor);
|
||||||
|
|
||||||
|
// TODO export the exact 2D projection
|
||||||
|
auto p = tmpmesh.convex_hull();
|
||||||
|
|
||||||
|
p.make_clockwise();
|
||||||
|
p.append(p.first_point());
|
||||||
|
pn.Contour = Slic3rMultiPoint_to_ClipperPath( p );
|
||||||
|
|
||||||
|
// Efficient conversion to item.
|
||||||
|
Item item(std::move(pn));
|
||||||
|
|
||||||
|
// Invalid geometries would throw exceptions when arranging
|
||||||
|
if(item.vertexCount() > 3) {
|
||||||
|
item.rotation(objinst->rotation);
|
||||||
|
item.translation( {
|
||||||
|
ClipperLib::cInt(objinst->offset.x/SCALING_FACTOR),
|
||||||
|
ClipperLib::cInt(objinst->offset.y/SCALING_FACTOR)
|
||||||
|
});
|
||||||
|
ret.emplace_back(objinst, item);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Arranges the model objects on the screen.
|
||||||
|
*
|
||||||
|
* The arrangement considers multiple bins (aka. print beds) for placing all
|
||||||
|
* the items provided in the model argument. If the items don't fit on one
|
||||||
|
* print bed, the remaining will be placed onto newly created print beds.
|
||||||
|
* The first_bin_only parameter, if set to true, disables this behaviour and
|
||||||
|
* makes sure that only one print bed is filled and the remaining items will be
|
||||||
|
* untouched. When set to false, the items which could not fit onto the
|
||||||
|
* print bed will be placed next to the print bed so the user should see a
|
||||||
|
* pile of items on the print bed and some other piles outside the print
|
||||||
|
* area that can be dragged later onto the print bed as a group.
|
||||||
|
*
|
||||||
|
* \param model The model object with the 3D content.
|
||||||
|
* \param dist The minimum distance which is allowed for any pair of items
|
||||||
|
* on the print bed in any direction.
|
||||||
|
* \param bb The bounding box of the print bed. It corresponds to the 'bin'
|
||||||
|
* for bin packing.
|
||||||
|
* \param first_bin_only This parameter controls whether to place the
|
||||||
|
* remaining items which do not fit onto the print area next to the print
|
||||||
|
* bed or leave them untouched (let the user arrange them by hand or remove
|
||||||
|
* them).
|
||||||
|
*/
|
||||||
|
bool arrange(Model &model, coordf_t dist, const Slic3r::BoundingBoxf* bb,
|
||||||
|
bool first_bin_only,
|
||||||
|
std::function<void(unsigned)> progressind)
|
||||||
|
{
|
||||||
|
using ArrangeResult = _IndexedPackGroup<PolygonImpl>;
|
||||||
|
|
||||||
|
bool ret = true;
|
||||||
|
|
||||||
|
// Create the arranger config
|
||||||
|
auto min_obj_distance = static_cast<Coord>(dist/SCALING_FACTOR);
|
||||||
|
|
||||||
|
// Get the 2D projected shapes with their 3D model instance pointers
|
||||||
|
auto shapemap = arr::projectModelFromTop(model);
|
||||||
|
|
||||||
|
bool hasbin = bb != nullptr && bb->defined;
|
||||||
|
double area_max = 0;
|
||||||
|
|
||||||
|
// Copy the references for the shapes only as the arranger expects a
|
||||||
|
// sequence of objects convertible to Item or ClipperPolygon
|
||||||
|
std::vector<std::reference_wrapper<Item>> shapes;
|
||||||
|
shapes.reserve(shapemap.size());
|
||||||
|
std::for_each(shapemap.begin(), shapemap.end(),
|
||||||
|
[&shapes, min_obj_distance, &area_max, hasbin]
|
||||||
|
(ShapeData2D::value_type& it)
|
||||||
|
{
|
||||||
|
shapes.push_back(std::ref(it.second));
|
||||||
|
});
|
||||||
|
|
||||||
|
Box bin;
|
||||||
|
|
||||||
|
if(hasbin) {
|
||||||
|
// Scale up the bounding box to clipper scale.
|
||||||
|
BoundingBoxf bbb = *bb;
|
||||||
|
bbb.scale(1.0/SCALING_FACTOR);
|
||||||
|
|
||||||
|
bin = Box({
|
||||||
|
static_cast<libnest2d::Coord>(bbb.min.x),
|
||||||
|
static_cast<libnest2d::Coord>(bbb.min.y)
|
||||||
|
},
|
||||||
|
{
|
||||||
|
static_cast<libnest2d::Coord>(bbb.max.x),
|
||||||
|
static_cast<libnest2d::Coord>(bbb.max.y)
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
// Will use the DJD selection heuristic with the BottomLeft placement
|
||||||
|
// strategy
|
||||||
|
using Arranger = Arranger<NfpPlacer, FirstFitSelection>;
|
||||||
|
using PConf = Arranger::PlacementConfig;
|
||||||
|
using SConf = Arranger::SelectionConfig;
|
||||||
|
|
||||||
|
PConf pcfg; // Placement configuration
|
||||||
|
SConf scfg; // Selection configuration
|
||||||
|
|
||||||
|
// Align the arranged pile into the center of the bin
|
||||||
|
pcfg.alignment = PConf::Alignment::CENTER;
|
||||||
|
|
||||||
|
// Start placing the items from the center of the print bed
|
||||||
|
pcfg.starting_point = PConf::Alignment::CENTER;
|
||||||
|
|
||||||
|
// TODO cannot use rotations until multiple objects of same geometry can
|
||||||
|
// handle different rotations
|
||||||
|
// arranger.useMinimumBoundigBoxRotation();
|
||||||
|
pcfg.rotations = { 0.0 };
|
||||||
|
|
||||||
|
// The accuracy of optimization. Goes from 0.0 to 1.0 and scales performance
|
||||||
|
pcfg.accuracy = 0.4f;
|
||||||
|
|
||||||
|
// Magic: we will specify what is the goal of arrangement... In this case
|
||||||
|
// we override the default object function to make the larger items go into
|
||||||
|
// the center of the pile and smaller items orbit it so the resulting pile
|
||||||
|
// has a circle-like shape. This is good for the print bed's heat profile.
|
||||||
|
// We alse sacrafice a bit of pack efficiency for this to work. As a side
|
||||||
|
// effect, the arrange procedure is a lot faster (we do not need to
|
||||||
|
// calculate the convex hulls)
|
||||||
|
pcfg.object_function = [bin, hasbin](
|
||||||
|
NfpPlacer::Pile& pile, // The currently arranged pile
|
||||||
|
const Item &item,
|
||||||
|
double /*area*/, // Sum area of items (not needed)
|
||||||
|
double norm, // A norming factor for physical dimensions
|
||||||
|
double penality) // Min penality in case of bad arrangement
|
||||||
|
{
|
||||||
|
using pl = PointLike;
|
||||||
|
|
||||||
|
static const double BIG_ITEM_TRESHOLD = 0.2;
|
||||||
|
static const double GRAVITY_RATIO = 0.5;
|
||||||
|
static const double DENSITY_RATIO = 1.0 - GRAVITY_RATIO;
|
||||||
|
|
||||||
|
// We will treat big items (compared to the print bed) differently
|
||||||
|
NfpPlacer::Pile bigs;
|
||||||
|
bigs.reserve(pile.size());
|
||||||
|
for(auto& p : pile) {
|
||||||
|
auto pbb = ShapeLike::boundingBox(p);
|
||||||
|
auto na = std::sqrt(pbb.width()*pbb.height())/norm;
|
||||||
|
if(na > BIG_ITEM_TRESHOLD) bigs.emplace_back(p);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Candidate item bounding box
|
||||||
|
auto ibb = item.boundingBox();
|
||||||
|
|
||||||
|
// Calculate the full bounding box of the pile with the candidate item
|
||||||
|
pile.emplace_back(item.transformedShape());
|
||||||
|
auto fullbb = ShapeLike::boundingBox(pile);
|
||||||
|
pile.pop_back();
|
||||||
|
|
||||||
|
// The bounding box of the big items (they will accumulate in the center
|
||||||
|
// of the pile
|
||||||
|
auto bigbb = bigs.empty()? fullbb : ShapeLike::boundingBox(bigs);
|
||||||
|
|
||||||
|
// The size indicator of the candidate item. This is not the area,
|
||||||
|
// but almost...
|
||||||
|
auto itemnormarea = std::sqrt(ibb.width()*ibb.height())/norm;
|
||||||
|
|
||||||
|
// Will hold the resulting score
|
||||||
|
double score = 0;
|
||||||
|
|
||||||
|
if(itemnormarea > BIG_ITEM_TRESHOLD) {
|
||||||
|
// This branch is for the bigger items..
|
||||||
|
// Here we will use the closest point of the item bounding box to
|
||||||
|
// the already arranged pile. So not the bb center nor the a choosen
|
||||||
|
// corner but whichever is the closest to the center. This will
|
||||||
|
// prevent unwanted strange arrangements.
|
||||||
|
|
||||||
|
auto minc = ibb.minCorner(); // bottom left corner
|
||||||
|
auto maxc = ibb.maxCorner(); // top right corner
|
||||||
|
|
||||||
|
// top left and bottom right corners
|
||||||
|
auto top_left = PointImpl{getX(minc), getY(maxc)};
|
||||||
|
auto bottom_right = PointImpl{getX(maxc), getY(minc)};
|
||||||
|
|
||||||
|
auto cc = fullbb.center(); // The gravity center
|
||||||
|
|
||||||
|
// Now the distnce of the gravity center will be calculated to the
|
||||||
|
// five anchor points and the smallest will be chosen.
|
||||||
|
std::array<double, 5> dists;
|
||||||
|
dists[0] = pl::distance(minc, cc);
|
||||||
|
dists[1] = pl::distance(maxc, cc);
|
||||||
|
dists[2] = pl::distance(ibb.center(), cc);
|
||||||
|
dists[3] = pl::distance(top_left, cc);
|
||||||
|
dists[4] = pl::distance(bottom_right, cc);
|
||||||
|
|
||||||
|
auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
|
||||||
|
|
||||||
|
// Density is the pack density: how big is the arranged pile
|
||||||
|
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
||||||
|
|
||||||
|
// The score is a weighted sum of the distance from pile center
|
||||||
|
// and the pile size
|
||||||
|
score = GRAVITY_RATIO * dist + DENSITY_RATIO * density;
|
||||||
|
|
||||||
|
} else if(itemnormarea < BIG_ITEM_TRESHOLD && bigs.empty()) {
|
||||||
|
// If there are no big items, only small, we should consider the
|
||||||
|
// density here as well to not get silly results
|
||||||
|
auto bindist = pl::distance(ibb.center(), bin.center()) / norm;
|
||||||
|
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
||||||
|
score = GRAVITY_RATIO * bindist + DENSITY_RATIO * density;
|
||||||
|
} else {
|
||||||
|
// Here there are the small items that should be placed around the
|
||||||
|
// already processed bigger items.
|
||||||
|
// No need to play around with the anchor points, the center will be
|
||||||
|
// just fine for small items
|
||||||
|
score = pl::distance(ibb.center(), bigbb.center()) / norm;
|
||||||
|
}
|
||||||
|
|
||||||
|
// If it does not fit into the print bed we will beat it
|
||||||
|
// with a large penality. If we would not do this, there would be only
|
||||||
|
// one big pile that doesn't care whether it fits onto the print bed.
|
||||||
|
if(!NfpPlacer::wouldFit(fullbb, bin)) score = 2*penality - score;
|
||||||
|
|
||||||
|
return score;
|
||||||
|
};
|
||||||
|
|
||||||
|
// Create the arranger object
|
||||||
|
Arranger arranger(bin, min_obj_distance, pcfg, scfg);
|
||||||
|
|
||||||
|
// Set the progress indicator for the arranger.
|
||||||
|
arranger.progressIndicator(progressind);
|
||||||
|
|
||||||
|
// Arrange and return the items with their respective indices within the
|
||||||
|
// input sequence.
|
||||||
|
auto result = arranger.arrangeIndexed(shapes.begin(), shapes.end());
|
||||||
|
|
||||||
|
auto applyResult = [&shapemap](ArrangeResult::value_type& group,
|
||||||
|
Coord batch_offset)
|
||||||
|
{
|
||||||
|
for(auto& r : group) {
|
||||||
|
auto idx = r.first; // get the original item index
|
||||||
|
Item& item = r.second; // get the item itself
|
||||||
|
|
||||||
|
// Get the model instance from the shapemap using the index
|
||||||
|
ModelInstance *inst_ptr = shapemap[idx].first;
|
||||||
|
|
||||||
|
// Get the tranformation data from the item object and scale it
|
||||||
|
// appropriately
|
||||||
|
auto off = item.translation();
|
||||||
|
Radians rot = item.rotation();
|
||||||
|
Pointf foff(off.X*SCALING_FACTOR + batch_offset,
|
||||||
|
off.Y*SCALING_FACTOR);
|
||||||
|
|
||||||
|
// write the tranformation data into the model instance
|
||||||
|
inst_ptr->rotation = rot;
|
||||||
|
inst_ptr->offset = foff;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
if(first_bin_only) {
|
||||||
|
applyResult(result.front(), 0);
|
||||||
|
} else {
|
||||||
|
|
||||||
|
const auto STRIDE_PADDING = 1.2;
|
||||||
|
|
||||||
|
Coord stride = static_cast<Coord>(STRIDE_PADDING*
|
||||||
|
bin.width()*SCALING_FACTOR);
|
||||||
|
Coord batch_offset = 0;
|
||||||
|
|
||||||
|
for(auto& group : result) {
|
||||||
|
applyResult(group, batch_offset);
|
||||||
|
|
||||||
|
// Only the first pack group can be placed onto the print bed. The
|
||||||
|
// other objects which could not fit will be placed next to the
|
||||||
|
// print bed
|
||||||
|
batch_offset += stride;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for(auto objptr : model.objects) objptr->invalidate_bounding_box();
|
||||||
|
|
||||||
|
return ret && result.size() == 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif // MODELARRANGE_HPP
|
@ -14,7 +14,7 @@
|
|||||||
#include <boost/thread.hpp>
|
#include <boost/thread.hpp>
|
||||||
|
|
||||||
#define SLIC3R_FORK_NAME "Slic3r Prusa Edition"
|
#define SLIC3R_FORK_NAME "Slic3r Prusa Edition"
|
||||||
#define SLIC3R_VERSION "1.41.0-alpha2"
|
#define SLIC3R_VERSION "1.41.0-alpha3"
|
||||||
#define SLIC3R_BUILD "UNKNOWN"
|
#define SLIC3R_BUILD "UNKNOWN"
|
||||||
|
|
||||||
typedef int32_t coord_t;
|
typedef int32_t coord_t;
|
||||||
|
@ -8,6 +8,7 @@
|
|||||||
#include <unordered_map>
|
#include <unordered_map>
|
||||||
|
|
||||||
#include <slic3r/GUI/GUI.hpp>
|
#include <slic3r/GUI/GUI.hpp>
|
||||||
|
#include <ModelArrange.hpp>
|
||||||
#include <slic3r/GUI/PresetBundle.hpp>
|
#include <slic3r/GUI/PresetBundle.hpp>
|
||||||
|
|
||||||
#include <Geometry.hpp>
|
#include <Geometry.hpp>
|
||||||
@ -310,12 +311,13 @@ void AppController::arrange_model()
|
|||||||
|
|
||||||
auto dist = print_ctl()->config().min_object_distance();
|
auto dist = print_ctl()->config().min_object_distance();
|
||||||
|
|
||||||
|
|
||||||
BoundingBoxf bb(print_ctl()->config().bed_shape.values);
|
BoundingBoxf bb(print_ctl()->config().bed_shape.values);
|
||||||
|
|
||||||
if(pind) pind->update(0, _(L("Arranging objects...")));
|
if(pind) pind->update(0, _(L("Arranging objects...")));
|
||||||
|
|
||||||
try {
|
try {
|
||||||
model_->arrange_objects(dist, &bb, [pind, count](unsigned rem){
|
arr::arrange(*model_, dist, &bb, false, [pind, count](unsigned rem){
|
||||||
if(pind) pind->update(count - rem, _(L("Arranging objects...")));
|
if(pind) pind->update(count - rem, _(L("Arranging objects...")));
|
||||||
});
|
});
|
||||||
} catch(std::exception& e) {
|
} catch(std::exception& e) {
|
||||||
|
@ -2697,9 +2697,9 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
|
|||||||
}
|
}
|
||||||
else if (evt.Leaving())
|
else if (evt.Leaving())
|
||||||
{
|
{
|
||||||
// to remove hover when mouse goes out of this canvas
|
// to remove hover on objects when the mouse goes out of this canvas
|
||||||
m_mouse.position = Pointf((coordf_t)pos.x, (coordf_t)pos.y);
|
m_mouse.position = Pointf(-1.0, -1.0);
|
||||||
render();
|
m_dirty = true;
|
||||||
}
|
}
|
||||||
else if (evt.LeftDClick() && (m_hover_volume_id != -1))
|
else if (evt.LeftDClick() && (m_hover_volume_id != -1))
|
||||||
m_on_double_click_callback.call();
|
m_on_double_click_callback.call();
|
||||||
@ -3403,20 +3403,22 @@ void GLCanvas3D::_picking_pass() const
|
|||||||
if (m_multisample_allowed)
|
if (m_multisample_allowed)
|
||||||
::glEnable(GL_MULTISAMPLE);
|
::glEnable(GL_MULTISAMPLE);
|
||||||
|
|
||||||
const Size& cnv_size = get_canvas_size();
|
int volume_id = -1;
|
||||||
|
|
||||||
GLubyte color[4];
|
|
||||||
::glReadPixels(pos.x, cnv_size.get_height() - pos.y - 1, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, (void*)color);
|
|
||||||
int volume_id = color[0] + color[1] * 256 + color[2] * 256 * 256;
|
|
||||||
|
|
||||||
m_hover_volume_id = -1;
|
|
||||||
|
|
||||||
for (GLVolume* vol : m_volumes.volumes)
|
for (GLVolume* vol : m_volumes.volumes)
|
||||||
{
|
{
|
||||||
vol->hover = false;
|
vol->hover = false;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (volume_id < (int)m_volumes.volumes.size())
|
GLubyte color[4] = { 0, 0, 0, 0 };
|
||||||
|
const Size& cnv_size = get_canvas_size();
|
||||||
|
bool inside = (0 <= pos.x) && (pos.x < cnv_size.get_width()) && (0 <= pos.y) && (pos.y < cnv_size.get_height());
|
||||||
|
if (inside)
|
||||||
|
{
|
||||||
|
::glReadPixels(pos.x, cnv_size.get_height() - pos.y - 1, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, (void*)color);
|
||||||
|
volume_id = color[0] + color[1] * 256 + color[2] * 256 * 256;
|
||||||
|
}
|
||||||
|
|
||||||
|
if ((0 <= volume_id) && (volume_id < (int)m_volumes.volumes.size()))
|
||||||
{
|
{
|
||||||
m_hover_volume_id = volume_id;
|
m_hover_volume_id = volume_id;
|
||||||
m_volumes.volumes[volume_id]->hover = true;
|
m_volumes.volumes[volume_id]->hover = true;
|
||||||
@ -3432,7 +3434,10 @@ void GLCanvas3D::_picking_pass() const
|
|||||||
m_gizmos.set_hover_id(-1);
|
m_gizmos.set_hover_id(-1);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
m_gizmos.set_hover_id(254 - (int)color[2]);
|
{
|
||||||
|
m_hover_volume_id = -1;
|
||||||
|
m_gizmos.set_hover_id(inside ? (254 - (int)color[2]) : -1);
|
||||||
|
}
|
||||||
|
|
||||||
// updates gizmos overlay
|
// updates gizmos overlay
|
||||||
if (_get_first_selected_object_id() != -1)
|
if (_get_first_selected_object_id() != -1)
|
||||||
|
Loading…
Reference in New Issue
Block a user