gyroid & 3Dhoneycomb: now 'connected lines' follow the perimeters
This commit is contained in:
parent
8e4f777bd3
commit
86fbb9a095
5 changed files with 377 additions and 77 deletions
|
@ -161,43 +161,38 @@ void Fill3DHoneycomb::_fill_surface_single(
|
|||
for (Polylines::iterator it = polylines.begin(); it != polylines.end(); ++ it)
|
||||
it->translate(bb.min(0), bb.min(1));
|
||||
|
||||
// clip pattern to boundaries
|
||||
polylines = intersection_pl(polylines, (Polygons)expolygon);
|
||||
|
||||
// connect lines
|
||||
if (! params.dont_connect && ! polylines.empty()) { // prevent calling leftmost_point() on empty collections
|
||||
ExPolygon expolygon_off;
|
||||
{
|
||||
ExPolygons expolygons_off = offset_ex(expolygon, SCALED_EPSILON);
|
||||
if (! expolygons_off.empty()) {
|
||||
// When expanding a polygon, the number of islands could only shrink. Therefore the offset_ex shall generate exactly one expanded island for one input island.
|
||||
assert(expolygons_off.size() == 1);
|
||||
std::swap(expolygon_off, expolygons_off.front());
|
||||
// clip pattern to boundaries, keeping the polyline order & ordering the fragment to be able to join them easily
|
||||
Polylines polylines_chained;
|
||||
for (size_t idx_polyline = 0; idx_polyline < polylines.size(); ++idx_polyline) {
|
||||
Polyline &poly_to_cut = polylines[idx_polyline];
|
||||
Polylines polylines_to_sort = intersection_pl(Polylines() = { poly_to_cut }, (Polygons)expolygon);
|
||||
for (Polyline &polyline : polylines_to_sort) {
|
||||
//TODO: replace by closest_index_point()
|
||||
if (poly_to_cut.points.front().distance_to_square(polyline.points.front()) > poly_to_cut.points.front().distance_to_square(polyline.points.back())) {
|
||||
polyline.reverse();
|
||||
}
|
||||
}
|
||||
Polylines chained = PolylineCollection::chained_path_from(
|
||||
std::move(polylines),
|
||||
PolylineCollection::leftmost_point(polylines), false); // reverse allowed
|
||||
bool first = true;
|
||||
for (Polylines::iterator it_polyline = chained.begin(); it_polyline != chained.end(); ++ it_polyline) {
|
||||
if (! first) {
|
||||
// Try to connect the lines.
|
||||
Points &pts_end = polylines_out.back().points;
|
||||
const Point &first_point = it_polyline->points.front();
|
||||
const Point &last_point = pts_end.back();
|
||||
// TODO: we should also check that both points are on a fill_boundary to avoid
|
||||
// connecting paths on the boundaries of internal regions
|
||||
if ((last_point - first_point).cast<double>().norm() <= 1.5 * distance &&
|
||||
expolygon_off.contains(Line(last_point, first_point))) {
|
||||
// Append the polyline.
|
||||
pts_end.insert(pts_end.end(), it_polyline->points.begin(), it_polyline->points.end());
|
||||
continue;
|
||||
if (polylines_to_sort.size() > 1) {
|
||||
Point nearest = poly_to_cut.points.front();
|
||||
//Bubble sort
|
||||
for (size_t idx_sort = polylines_to_sort.size() - 1; idx_sort > 0; idx_sort--) {
|
||||
for (size_t idx_bubble = 0; idx_bubble < idx_sort; idx_bubble++) {
|
||||
if (polylines_to_sort[idx_bubble + 1].points.front().distance_to_square(nearest) < polylines_to_sort[idx_bubble].points.front().distance_to_square(nearest)) {
|
||||
iter_swap(polylines_to_sort.begin() + idx_bubble, polylines_to_sort.begin() + idx_bubble + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
// The lines cannot be connected.
|
||||
polylines_out.emplace_back(std::move(*it_polyline));
|
||||
first = false;
|
||||
}
|
||||
polylines_chained.insert(polylines_chained.end(), polylines_to_sort.begin(), polylines_to_sort.end());
|
||||
}
|
||||
// connect lines if needed
|
||||
if (!polylines_chained.empty()) {
|
||||
if (params.dont_connect) {
|
||||
polylines_out.insert(polylines_out.end(), polylines_chained.begin(), polylines_chained.end());
|
||||
} else {
|
||||
this->connect_infill(polylines_chained, expolygon, polylines_out);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -130,4 +130,291 @@ std::pair<float, Point> Fill::_infill_direction(const Surface *surface) const
|
|||
return std::pair<float, Point>(out_angle, out_shift);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// cut poly between poly.point[idx_1] & poly.point[idx_1+1]
|
||||
/// add p1+-width to one part and p2+-width to the other one.
|
||||
/// add the "new" polyline to polylines (to part cut from poly)
|
||||
/// p1 & p2 have to be between poly.point[idx_1] & poly.point[idx_1+1]
|
||||
/// if idx_1 is ==0 or == size-1, then we don't need to create a new polyline.
|
||||
void cut_polyline(Polyline &poly, Polylines &polylines, size_t idx_1, Point p1, Point p2) {
|
||||
//reorder points
|
||||
if (p1.distance_to_square(poly.points[idx_1]) > p2.distance_to_square(poly.points[idx_1])) {
|
||||
Point temp = p2;
|
||||
p2 = p1;
|
||||
p1 = temp;
|
||||
}
|
||||
if (idx_1 == 0) {
|
||||
poly.points.insert(poly.points.begin(), p2);
|
||||
} else if (idx_1 == poly.points.size() - 1) {
|
||||
poly.points.push_back(p1);
|
||||
} else {
|
||||
// create new polyline
|
||||
Polyline new_poly;
|
||||
//put points in new_poly
|
||||
new_poly.points.push_back(p2);
|
||||
new_poly.points.insert(new_poly.points.end(), poly.points.begin() + idx_1 + 1, poly.points.end());
|
||||
//erase&put points in poly
|
||||
poly.points.erase(poly.points.begin() + idx_1 + 1, poly.points.end());
|
||||
poly.points.push_back(p1);
|
||||
polylines.emplace_back(new_poly);
|
||||
}
|
||||
}
|
||||
|
||||
/// the poly is like a polygon but with first_point != last_point (already removed)
|
||||
void cut_polygon(Polyline &poly, size_t idx_1, Point p1, Point p2) {
|
||||
//reorder points
|
||||
if (p1.distance_to_square(poly.points[idx_1]) > p2.distance_to_square(poly.points[idx_1])) {
|
||||
Point temp = p2;
|
||||
p2 = p1;
|
||||
p1 = temp;
|
||||
}
|
||||
//check if we need to rotate before cutting
|
||||
if (idx_1 != poly.size() - 1) {
|
||||
//put points in new_poly
|
||||
poly.points.insert(poly.points.end(), poly.points.begin(), poly.points.begin() + idx_1 + 1);
|
||||
poly.points.erase(poly.points.begin(), poly.points.begin() + idx_1 + 1);
|
||||
}
|
||||
//put points in poly
|
||||
poly.points.push_back(p1);
|
||||
poly.points.insert(poly.points.begin(), p2);
|
||||
}
|
||||
|
||||
/// check if the polyline from pts_to_check may be at 'width' distance of a point in polylines_blocker
|
||||
/// it use equally_spaced_points with width/2 precision, so don't worry with pts_to_check number of points.
|
||||
/// it use the given polylines_blocker points, be sure to put enough of them to be reliable.
|
||||
/// complexity : N(pts_to_check.equally_spaced_points(width / 2)) x N(polylines_blocker.points)
|
||||
bool collision(const Points &pts_to_check, const Polylines &polylines_blocker, const coordf_t width) {
|
||||
//check if it's not too close to a polyline
|
||||
coordf_t min_dist = width * width * 0.9 - SCALED_EPSILON;
|
||||
Polyline better_polylines(pts_to_check);
|
||||
Points better_pts = better_polylines.equally_spaced_points(width / 2);
|
||||
for (const Point &p : better_pts) {
|
||||
for (const Polyline &poly2 : polylines_blocker) {
|
||||
for (const Point &p2 : poly2.points) {
|
||||
if (p.distance_to_square(p2) < min_dist) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/// Try to find a path inside polylines that allow to go from p1 to p2.
|
||||
/// width if the width of the extrusion
|
||||
/// polylines_blockers are the array of polylines to check if the path isn't blocked by something.
|
||||
/// complexity: N(polylines.points) + a collision check after that if we finded a path: N(2(p2-p1)/width) x N(polylines_blocker.points)
|
||||
Points getFrontier(Polylines &polylines, const Point& p1, const Point& p2, const coord_t width, const Polylines &polylines_blockers) {
|
||||
for (size_t idx_poly = 0; idx_poly < polylines.size(); ++idx_poly) {
|
||||
Polyline &poly = polylines[idx_poly];
|
||||
if (poly.size() <= 1) continue;
|
||||
|
||||
//loop?
|
||||
if (poly.first_point() == poly.last_point()) {
|
||||
//polygon : try to find a line for p1 & p2.
|
||||
size_t idx_11, idx_12, idx_21, idx_22;
|
||||
idx_11 = poly.closest_point_index(p1);
|
||||
idx_12 = idx_11;
|
||||
if (Line(poly.points[idx_11], poly.points[(idx_11 + 1) % (poly.points.size() - 1)]).distance_to(p1) < SCALED_EPSILON) {
|
||||
idx_12 = (idx_11 + 1) % (poly.points.size() - 1);
|
||||
} else if (Line(poly.points[(idx_11 > 0) ? (idx_11 - 1) : (poly.points.size() - 2)], poly.points[idx_11]).distance_to(p1) < SCALED_EPSILON) {
|
||||
idx_11 = (idx_11 > 0) ? (idx_11 - 1) : (poly.points.size() - 2);
|
||||
} else {
|
||||
continue;
|
||||
}
|
||||
idx_21 = poly.closest_point_index(p2);
|
||||
idx_22 = idx_21;
|
||||
if (Line(poly.points[idx_21], poly.points[(idx_21 + 1) % (poly.points.size() - 1)]).distance_to(p2) < SCALED_EPSILON) {
|
||||
idx_22 = (idx_21 + 1) % (poly.points.size() - 1);
|
||||
} else if (Line(poly.points[(idx_21 > 0) ? (idx_21 - 1) : (poly.points.size() - 2)], poly.points[idx_21]).distance_to(p2) < SCALED_EPSILON) {
|
||||
idx_21 = (idx_21 > 0) ? (idx_21 - 1) : (poly.points.size() - 2);
|
||||
} else {
|
||||
continue;
|
||||
}
|
||||
|
||||
|
||||
//edge case: on the same line
|
||||
if (idx_11 == idx_21 && idx_12 == idx_22) {
|
||||
if (collision(Points() = { p1, p2 }, polylines_blockers, width)) return Points();
|
||||
//break loop
|
||||
poly.points.erase(poly.points.end() - 1);
|
||||
cut_polygon(poly, idx_11, p1, p2);
|
||||
return Points() = { Line(p1, p2).midpoint() };
|
||||
}
|
||||
|
||||
//compute distance & array for the ++ path
|
||||
Points ret_1_to_2;
|
||||
double dist_1_to_2 = p1.distance_to(poly.points[idx_12]);
|
||||
ret_1_to_2.push_back(poly.points[idx_12]);
|
||||
size_t max = idx_12 <= idx_21 ? idx_21 : poly.points.size() - 2;
|
||||
for (size_t i = idx_12 + 1; i < max; i++) {
|
||||
dist_1_to_2 += poly.points[i - 1].distance_to(poly.points[i]);
|
||||
ret_1_to_2.push_back(poly.points[i]);
|
||||
}
|
||||
if (idx_12 > idx_21) {
|
||||
dist_1_to_2 += poly.points.back().distance_to(poly.points.front());
|
||||
ret_1_to_2.push_back(poly.points[0]);
|
||||
for (size_t i = 1; i <= idx_21; i++) {
|
||||
dist_1_to_2 += poly.points[i - 1].distance_to(poly.points[i]);
|
||||
ret_1_to_2.push_back(poly.points[i]);
|
||||
}
|
||||
}
|
||||
dist_1_to_2 += p2.distance_to(poly.points[idx_21]);
|
||||
|
||||
//compute distance & array for the -- path
|
||||
Points ret_2_to_1;
|
||||
double dist_2_to_1 = p1.distance_to(poly.points[idx_11]);
|
||||
ret_2_to_1.push_back(poly.points[idx_11]);
|
||||
size_t min = idx_22 <= idx_11 ? idx_22 : 0;
|
||||
for (size_t i = idx_11; i > min; i--) {
|
||||
dist_2_to_1 += poly.points[i - 1].distance_to(poly.points[i]);
|
||||
ret_2_to_1.push_back(poly.points[i - 1]);
|
||||
}
|
||||
if (idx_22 > idx_11) {
|
||||
dist_2_to_1 += poly.points.back().distance_to(poly.points.front());
|
||||
ret_2_to_1.push_back(poly.points[poly.points.size() - 1]);
|
||||
for (size_t i = poly.points.size() - 2; i > idx_22; i--) {
|
||||
dist_2_to_1 += poly.points[i - 1].distance_to(poly.points[i]);
|
||||
ret_2_to_1.push_back(poly.points[i - 1]);
|
||||
}
|
||||
}
|
||||
dist_2_to_1 += p2.distance_to(poly.points[idx_22]);
|
||||
|
||||
//choose between the two direction (keep the short one)
|
||||
if (dist_1_to_2 < dist_2_to_1) {
|
||||
if (collision(ret_1_to_2, polylines_blockers, width)) return Points();
|
||||
//break loop
|
||||
poly.points.erase(poly.points.end() - 1);
|
||||
//remove points
|
||||
if (idx_12 <= idx_21) {
|
||||
poly.points.erase(poly.points.begin() + idx_12, poly.points.begin() + idx_21 + 1);
|
||||
cut_polygon(poly, idx_11, p1, p2);
|
||||
} else {
|
||||
poly.points.erase(poly.points.begin() + idx_12, poly.points.end());
|
||||
poly.points.erase(poly.points.begin(), poly.points.begin() + idx_21);
|
||||
cut_polygon(poly, poly.points.size() - 1, p1, p2);
|
||||
}
|
||||
return ret_1_to_2;
|
||||
} else {
|
||||
if (collision(ret_2_to_1, polylines_blockers, width)) return Points();
|
||||
//break loop
|
||||
poly.points.erase(poly.points.end() - 1);
|
||||
//remove points
|
||||
if (idx_22 <= idx_11) {
|
||||
poly.points.erase(poly.points.begin() + idx_22, poly.points.begin() + idx_11 + 1);
|
||||
cut_polygon(poly, idx_21, p1, p2);
|
||||
} else {
|
||||
poly.points.erase(poly.points.begin() + idx_22, poly.points.end());
|
||||
poly.points.erase(poly.points.begin(), poly.points.begin() + idx_11);
|
||||
cut_polygon(poly, poly.points.size() - 1, p1, p2);
|
||||
}
|
||||
return ret_2_to_1;
|
||||
}
|
||||
} else {
|
||||
//polyline : try to find a line for p1 & p2.
|
||||
size_t idx_1, idx_2;
|
||||
idx_1 = poly.closest_point_index(p1);
|
||||
if (idx_1 < poly.points.size() - 1 && Line(poly.points[idx_1], poly.points[idx_1 + 1]).distance_to(p1) < SCALED_EPSILON) {
|
||||
} else if (idx_1 > 0 && Line(poly.points[idx_1 - 1], poly.points[idx_1]).distance_to(p1) < SCALED_EPSILON) {
|
||||
idx_1 = idx_1 - 1;
|
||||
} else {
|
||||
continue;
|
||||
}
|
||||
idx_2 = poly.closest_point_index(p2);
|
||||
if (idx_2 < poly.points.size() - 1 && Line(poly.points[idx_2], poly.points[idx_2 + 1]).distance_to(p2) < SCALED_EPSILON) {
|
||||
} else if (idx_2 > 0 && Line(poly.points[idx_2 - 1], poly.points[idx_2]).distance_to(p2) < SCALED_EPSILON) {
|
||||
idx_2 = idx_2 - 1;
|
||||
} else {
|
||||
continue;
|
||||
}
|
||||
|
||||
//edge case: on the same line
|
||||
if (idx_1 == idx_2) {
|
||||
if (collision(Points() = { p1, p2 }, polylines_blockers, width)) return Points();
|
||||
cut_polyline(poly, polylines, idx_1, p1, p2);
|
||||
return Points() = { Line(p1, p2).midpoint() };
|
||||
}
|
||||
|
||||
//create ret array
|
||||
size_t first_idx = idx_1;
|
||||
size_t last_idx = idx_2 + 1;
|
||||
if (idx_1 > idx_2) {
|
||||
first_idx = idx_2;
|
||||
last_idx = idx_1 + 1;
|
||||
}
|
||||
Points p_ret;
|
||||
p_ret.insert(p_ret.end(), poly.points.begin() + first_idx + 1, poly.points.begin() + last_idx);
|
||||
if (collision(p_ret, polylines_blockers, width)) return Points();
|
||||
//cut polyline
|
||||
poly.points.erase(poly.points.begin() + first_idx + 1, poly.points.begin() + last_idx);
|
||||
cut_polyline(poly, polylines, first_idx, p1, p2);
|
||||
//order the returned array to be p1->p2
|
||||
if (idx_1 > idx_2) {
|
||||
std::reverse(p_ret.begin(), p_ret.end());
|
||||
}
|
||||
return p_ret;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return Points();
|
||||
}
|
||||
|
||||
/// Connect the infill_ordered polylines, in this order, from the back point to the next front point.
|
||||
/// It uses only the boundary polygons to do so, and can't pass two times at the same place.
|
||||
/// It avoid passing over the infill_ordered's polylines (preventing local over-extrusion).
|
||||
/// return the connected polylines in polylines_out. Can output polygons (stored as polylines with first_point = last_point).
|
||||
/// complexity: worst: N(infill_ordered.points) x N(boundary.points)
|
||||
/// typical: N(infill_ordered) x ( N(boundary.points) + N(infill_ordered.points) )
|
||||
void Fill::connect_infill(const Polylines &infill_ordered, const ExPolygon &boundary, Polylines &polylines_out) {
|
||||
|
||||
//TODO: fallback to the quick & dirty old algorithm when n(points) is too high.
|
||||
Polylines polylines_frontier = to_polylines(((Polygons)boundary));
|
||||
|
||||
Polylines polylines_blocker;
|
||||
coord_t clip_size = scale_(this->spacing) * 2;
|
||||
for (const Polyline &polyline : infill_ordered) {
|
||||
if (polyline.length() > 1.8 * clip_size) {
|
||||
polylines_blocker.push_back(polyline);
|
||||
polylines_blocker.back().clip_end(clip_size);
|
||||
polylines_blocker.back().clip_start(clip_size);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Polylines polylines_connected;
|
||||
bool first = true;
|
||||
for (const Polyline &polyline : infill_ordered) {
|
||||
if (!first) {
|
||||
// Try to connect the lines.
|
||||
Points &pts_end = polylines_connected.back().points;
|
||||
const Point &first_point = polyline.points.front();
|
||||
const Point &last_point = pts_end.back();
|
||||
|
||||
Points pts = getFrontier(polylines_frontier, last_point, first_point, scale_(this->spacing), polylines_blocker);
|
||||
if (!pts.empty()) {
|
||||
pts_end.insert(pts_end.end(), pts.begin(), pts.end());
|
||||
pts_end.insert(pts_end.end(), polyline.points.begin(), polyline.points.end());
|
||||
continue;
|
||||
}
|
||||
}
|
||||
// The lines cannot be connected.
|
||||
polylines_connected.emplace_back(std::move(polyline));
|
||||
|
||||
first = false;
|
||||
}
|
||||
|
||||
//try to create some loops if possible
|
||||
for (Polyline &polyline : polylines_connected) {
|
||||
Points pts = getFrontier(polylines_frontier, polyline.last_point(), polyline.first_point(), scale_(this->spacing), polylines_blocker);
|
||||
if (!pts.empty()) {
|
||||
polyline.points.insert(polyline.points.end(), pts.begin(), pts.end());
|
||||
polyline.points.insert(polyline.points.begin(), polyline.points.back());
|
||||
}
|
||||
polylines_out.emplace_back(polyline);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
|
|
|
@ -109,6 +109,8 @@ protected:
|
|||
|
||||
virtual std::pair<float, Point> _infill_direction(const Surface *surface) const;
|
||||
|
||||
void connect_infill(const Polylines &infill_ordered, const ExPolygon &boundary, Polylines &polylines_out);
|
||||
|
||||
public:
|
||||
static coord_t _adjust_solid_spacing(const coord_t width, const coord_t distance);
|
||||
|
||||
|
|
|
@ -109,16 +109,20 @@ static Polylines make_gyroid_waves(double gridZ, double density_adjusted, double
|
|||
std::swap(width,height);
|
||||
}
|
||||
|
||||
std::vector<Vec2d> one_period = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip); // creates one period of the waves, so it doesn't have to be recalculated all the time
|
||||
std::vector<Vec2d> one_period_odd = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip); // creates one period of the waves, so it doesn't have to be recalculated all the time
|
||||
flip = !flip; // even polylines are a bit shifted
|
||||
std::vector<Vec2d> one_period_even = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip);
|
||||
Polylines result;
|
||||
|
||||
for (double y0 = lower_bound; y0 < upper_bound+EPSILON; y0 += 2*M_PI) // creates odd polylines
|
||||
result.emplace_back(make_wave(one_period, width, height, y0, scaleFactor, z_cos, z_sin, vertical));
|
||||
|
||||
flip = !flip; // even polylines are a bit shifted
|
||||
one_period = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip); // updates the one period sample
|
||||
for (double y0 = lower_bound + M_PI; y0 < upper_bound+EPSILON; y0 += 2*M_PI) // creates even polylines
|
||||
result.emplace_back(make_wave(one_period, width, height, y0, scaleFactor, z_cos, z_sin, vertical));
|
||||
for (double y0 = lower_bound; y0 < upper_bound + EPSILON; y0 += M_PI) {
|
||||
// creates odd polylines
|
||||
result.emplace_back(make_wave(one_period_odd, width, height, y0, scaleFactor, z_cos, z_sin, vertical));
|
||||
// creates even polylines
|
||||
y0 += M_PI;
|
||||
if (y0 < upper_bound + EPSILON) {
|
||||
result.emplace_back(make_wave(one_period_even, width, height, y0, scaleFactor, z_cos, z_sin, vertical));
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
@ -141,7 +145,7 @@ void FillGyroid::_fill_surface_single(
|
|||
bb.merge(_align_to_grid(bb.min, Point(2.*M_PI*distance, 2.*M_PI*distance)));
|
||||
|
||||
// generate pattern
|
||||
Polylines polylines = make_gyroid_waves(
|
||||
Polylines polylines_square = make_gyroid_waves(
|
||||
scale_(this->z),
|
||||
density_adjusted,
|
||||
this->spacing,
|
||||
|
@ -149,46 +153,51 @@ void FillGyroid::_fill_surface_single(
|
|||
ceil(bb.size()(1) / distance) + 1.);
|
||||
|
||||
// move pattern in place
|
||||
for (Polyline &polyline : polylines)
|
||||
for (Polyline &polyline : polylines_square)
|
||||
polyline.translate(bb.min(0), bb.min(1));
|
||||
|
||||
// clip pattern to boundaries
|
||||
polylines = intersection_pl(polylines, (Polygons)expolygon);
|
||||
|
||||
// connect lines
|
||||
if (! params.dont_connect && ! polylines.empty()) { // prevent calling leftmost_point() on empty collections
|
||||
ExPolygon expolygon_off;
|
||||
{
|
||||
ExPolygons expolygons_off = offset_ex(expolygon, (float)SCALED_EPSILON);
|
||||
if (! expolygons_off.empty()) {
|
||||
// When expanding a polygon, the number of islands could only shrink. Therefore the offset_ex shall generate exactly one expanded island for one input island.
|
||||
assert(expolygons_off.size() == 1);
|
||||
std::swap(expolygon_off, expolygons_off.front());
|
||||
}
|
||||
}
|
||||
Polylines chained = PolylineCollection::chained_path_from(
|
||||
std::move(polylines),
|
||||
PolylineCollection::leftmost_point(polylines), false); // reverse allowed
|
||||
bool first = true;
|
||||
for (Polyline &polyline : chained) {
|
||||
if (! first) {
|
||||
// Try to connect the lines.
|
||||
Points &pts_end = polylines_out.back().points;
|
||||
const Point &first_point = polyline.points.front();
|
||||
const Point &last_point = pts_end.back();
|
||||
// TODO: we should also check that both points are on a fill_boundary to avoid
|
||||
// connecting paths on the boundaries of internal regions
|
||||
// TODO: avoid crossing current infill path
|
||||
if ((last_point - first_point).cast<double>().norm() <= 5 * distance &&
|
||||
expolygon_off.contains(Line(last_point, first_point))) {
|
||||
// Append the polyline.
|
||||
pts_end.insert(pts_end.end(), polyline.points.begin(), polyline.points.end());
|
||||
continue;
|
||||
// clip pattern to boundaries, keeping the polyline order & ordering the fragment to be able to join them easily
|
||||
//Polylines polylines = intersection_pl(polylines_square, (Polygons)expolygon);
|
||||
Polylines polylines_chained;
|
||||
for (size_t idx_polyline = 0; idx_polyline < polylines_square.size(); ++idx_polyline) {
|
||||
Polyline &poly_to_cut = polylines_square[idx_polyline];
|
||||
Polylines polylines_to_sort = intersection_pl(Polylines() = { poly_to_cut }, (Polygons)expolygon);
|
||||
for (Polyline &polyline : polylines_to_sort) {
|
||||
//TODO: replace by closest_index_point()
|
||||
if (idx_polyline % 2 == 0) {
|
||||
if (poly_to_cut.points.front().distance_to_square(polyline.points.front()) > poly_to_cut.points.front().distance_to_square(polyline.points.back())) {
|
||||
polyline.reverse();
|
||||
}
|
||||
} else {
|
||||
if (poly_to_cut.points.back().distance_to_square(polyline.points.front()) > poly_to_cut.points.back().distance_to_square(polyline.points.back())) {
|
||||
polyline.reverse();
|
||||
}
|
||||
}
|
||||
// The lines cannot be connected.
|
||||
polylines_out.emplace_back(std::move(polyline));
|
||||
first = false;
|
||||
}
|
||||
if (polylines_to_sort.size() > 1) {
|
||||
Point nearest = poly_to_cut.points.front();
|
||||
if (idx_polyline % 2 != 0) {
|
||||
nearest = poly_to_cut.points.back();
|
||||
}
|
||||
//Bubble sort
|
||||
for (size_t idx_sort = polylines_to_sort.size() - 1; idx_sort > 0; idx_sort--) {
|
||||
for (size_t idx_bubble = 0; idx_bubble < idx_sort; idx_bubble++) {
|
||||
if (polylines_to_sort[idx_bubble + 1].points.front().distance_to_square(nearest) < polylines_to_sort[idx_bubble].points.front().distance_to_square(nearest)) {
|
||||
iter_swap(polylines_to_sort.begin() + idx_bubble, polylines_to_sort.begin() + idx_bubble + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
polylines_chained.insert(polylines_chained.end(), polylines_to_sort.begin(), polylines_to_sort.end());
|
||||
}
|
||||
|
||||
if (!polylines_chained.empty()) {
|
||||
|
||||
// connect lines
|
||||
if (params.dont_connect) {
|
||||
polylines_out.insert(polylines_out.end(), polylines_chained.begin(), polylines_chained.end());
|
||||
} else {
|
||||
this->connect_infill(polylines_chained, expolygon, polylines_out);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -124,6 +124,13 @@ public:
|
|||
double ccw_angle(const Point &p1, const Point &p2) const;
|
||||
Point projection_onto(const MultiPoint &poly) const;
|
||||
Point projection_onto(const Line &line) const;
|
||||
|
||||
double distance_to(const Point &point) const { return (point - *this).cast<double>().norm(); }
|
||||
double distance_to_square(const Point &point) const {
|
||||
double dx = (point.x() - this->x());
|
||||
double dy = (point.y() - this->y());
|
||||
return dx*dx + dy*dy;
|
||||
}
|
||||
};
|
||||
|
||||
namespace int128 {
|
||||
|
|
Loading…
Reference in a new issue