PrusaSlicer-NonPlainar/src/libslic3r/Fill/FillGyroid.cpp

206 lines
8.5 KiB
C++

#include "../ClipperUtils.hpp"
#include "../PolylineCollection.hpp"
#include "../Surface.hpp"
#include <cmath>
#include <algorithm>
#include <iostream>
#include "FillGyroid.hpp"
namespace Slic3r {
static inline double f(double x, double z_sin, double z_cos, bool vertical, bool flip)
{
if (vertical) {
double phase_offset = (z_cos < 0 ? M_PI : 0) + M_PI;
double a = sin(x + phase_offset);
double b = - z_cos;
double res = z_sin * cos(x + phase_offset + (flip ? M_PI : 0.));
double r = sqrt(sqr(a) + sqr(b));
return asin(a/r) + asin(res/r) + M_PI;
}
else {
double phase_offset = z_sin < 0 ? M_PI : 0.;
double a = cos(x + phase_offset);
double b = - z_sin;
double res = z_cos * sin(x + phase_offset + (flip ? 0 : M_PI));
double r = sqrt(sqr(a) + sqr(b));
return (asin(a/r) + asin(res/r) + 0.5 * M_PI);
}
}
static inline Polyline make_wave(
const std::vector<Vec2d>& one_period, double width, double height, double offset, double scaleFactor,
double z_cos, double z_sin, bool vertical)
{
std::vector<Vec2d> points = one_period;
double period = points.back()(0);
points.pop_back();
int n = points.size();
do {
points.emplace_back(Vec2d(points[points.size()-n](0) + period, points[points.size()-n](1)));
} while (points.back()(0) < width);
points.back()(0) = width;
// and construct the final polyline to return:
Polyline polyline;
for (auto& point : points) {
point(1) += offset;
point(1) = clamp(0., height, double(point(1)));
if (vertical)
std::swap(point(0), point(1));
polyline.points.emplace_back((point * scaleFactor).cast<coord_t>());
}
return polyline;
}
static std::vector<Vec2d> make_one_period(double width, double scaleFactor, double z_cos, double z_sin, bool vertical, bool flip)
{
std::vector<Vec2d> points;
double dx = M_PI_4; // very coarse spacing to begin with
double limit = std::min(2*M_PI, width);
for (double x = 0.; x < limit + EPSILON; x += dx) { // so the last point is there too
x = std::min(x, limit);
points.emplace_back(Vec2d(x,f(x, z_sin,z_cos, vertical, flip)));
}
// now we will check all internal points and in case some are too far from the line connecting its neighbours,
// we will add one more point on each side:
const double tolerance = .1;
for (unsigned int i=1;i<points.size()-1;++i) {
auto& lp = points[i-1]; // left point
auto& tp = points[i]; // this point
Vec2d lrv = tp - lp;
auto& rp = points[i+1]; // right point
// calculate distance of the point to the line:
double dist_mm = unscale<double>(scaleFactor) * std::abs(cross2(rp, lp) - cross2(rp - lp, tp)) / lrv.norm();
if (dist_mm > tolerance) { // if the difference from straight line is more than this
double x = 0.5f * (points[i-1](0) + points[i](0));
points.emplace_back(Vec2d(x, f(x, z_sin, z_cos, vertical, flip)));
x = 0.5f * (points[i+1](0) + points[i](0));
points.emplace_back(Vec2d(x, f(x, z_sin, z_cos, vertical, flip)));
// we added the points to the end, but need them all in order
std::sort(points.begin(), points.end(), [](const Vec2d &lhs, const Vec2d &rhs){ return lhs < rhs; });
// decrement i so we also check the first newly added point
--i;
}
}
return points;
}
static Polylines make_gyroid_waves(double gridZ, double density_adjusted, double line_spacing, double width, double height)
{
const double scaleFactor = scale_(line_spacing) / density_adjusted;
//scale factor for 5% : 8 712 388
// 1z = 10^-6 mm ?
const double z = gridZ / scaleFactor;
const double z_sin = sin(z);
const double z_cos = cos(z);
bool vertical = (std::abs(z_sin) <= std::abs(z_cos));
double lower_bound = 0.;
double upper_bound = height;
bool flip = true;
if (vertical) {
flip = false;
lower_bound = -M_PI;
upper_bound = width - M_PI_2;
std::swap(width,height);
}
std::vector<Vec2d> one_period_odd = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip); // creates one period of the waves, so it doesn't have to be recalculated all the time
flip = !flip; // even polylines are a bit shifted
std::vector<Vec2d> one_period_even = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip);
Polylines result;
for (double y0 = lower_bound; y0 < upper_bound + EPSILON; y0 += M_PI) {
// creates odd polylines
result.emplace_back(make_wave(one_period_odd, width, height, y0, scaleFactor, z_cos, z_sin, vertical));
// creates even polylines
y0 += M_PI;
if (y0 < upper_bound + EPSILON) {
result.emplace_back(make_wave(one_period_even, width, height, y0, scaleFactor, z_cos, z_sin, vertical));
}
}
return result;
}
void FillGyroid::_fill_surface_single(
const FillParams &params,
unsigned int thickness_layers,
const std::pair<float, Point> &direction,
ExPolygon &expolygon,
Polylines &polylines_out)
{
// no rotation is supported for this infill pattern (yet)
BoundingBox bb = expolygon.contour.bounding_box();
// Density adjusted to have a good %of weight.
double density_adjusted = std::max(0., params.density * 2.44);
// Distance between the gyroid waves in scaled coordinates.
coord_t distance = coord_t(scale_(this->spacing) / density_adjusted);
// align bounding box to a multiple of our grid module
bb.merge(_align_to_grid(bb.min, Point(2.*M_PI*distance, 2.*M_PI*distance)));
// generate pattern
Polylines polylines_square = make_gyroid_waves(
scale_(this->z),
density_adjusted,
this->spacing,
ceil(bb.size()(0) / distance) + 1.,
ceil(bb.size()(1) / distance) + 1.);
// move pattern in place
for (Polyline &polyline : polylines_square)
polyline.translate(bb.min(0), bb.min(1));
// clip pattern to boundaries, keeping the polyline order & ordering the fragment to be able to join them easily
//Polylines polylines = intersection_pl(polylines_square, (Polygons)expolygon);
Polylines polylines_chained;
for (size_t idx_polyline = 0; idx_polyline < polylines_square.size(); ++idx_polyline) {
Polyline &poly_to_cut = polylines_square[idx_polyline];
Polylines polylines_to_sort = intersection_pl(Polylines() = { poly_to_cut }, (Polygons)expolygon);
for (Polyline &polyline : polylines_to_sort) {
//TODO: replace by closest_index_point()
if (idx_polyline % 2 == 0) {
if (poly_to_cut.points.front().distance_to_square(polyline.points.front()) > poly_to_cut.points.front().distance_to_square(polyline.points.back())) {
polyline.reverse();
}
} else {
if (poly_to_cut.points.back().distance_to_square(polyline.points.front()) > poly_to_cut.points.back().distance_to_square(polyline.points.back())) {
polyline.reverse();
}
}
}
if (polylines_to_sort.size() > 1) {
Point nearest = poly_to_cut.points.front();
if (idx_polyline % 2 != 0) {
nearest = poly_to_cut.points.back();
}
//Bubble sort
for (size_t idx_sort = polylines_to_sort.size() - 1; idx_sort > 0; idx_sort--) {
for (size_t idx_bubble = 0; idx_bubble < idx_sort; idx_bubble++) {
if (polylines_to_sort[idx_bubble + 1].points.front().distance_to_square(nearest) < polylines_to_sort[idx_bubble].points.front().distance_to_square(nearest)) {
iter_swap(polylines_to_sort.begin() + idx_bubble, polylines_to_sort.begin() + idx_bubble + 1);
}
}
}
}
polylines_chained.insert(polylines_chained.end(), polylines_to_sort.begin(), polylines_to_sort.end());
}
if (!polylines_chained.empty()) {
// connect lines
if (params.dont_connect) {
polylines_out.insert(polylines_out.end(), polylines_chained.begin(), polylines_chained.end());
} else {
this->connect_infill(polylines_chained, expolygon, polylines_out);
}
}
}
} // namespace Slic3r