Initial implementation of C++ supports,

some documentation of the existing code.
This commit is contained in:
bubnikv 2016-10-13 16:00:22 +02:00
parent c16eca0065
commit 8f40d9b34e
5 changed files with 1632 additions and 28 deletions

View File

@ -2,6 +2,7 @@
#include "../ClipperUtils.hpp"
#include "../Surface.hpp"
#include "../PrintConfig.hpp"
#include "FillBase.hpp"
#include "FillConcentric.hpp"
@ -15,28 +16,27 @@ namespace Slic3r {
Fill* Fill::new_from_type(const std::string &type)
{
if (type == "concentric")
return new FillConcentric();
if (type == "honeycomb")
return new FillHoneycomb();
if (type == "3dhoneycomb")
return new Fill3DHoneycomb();
if (type == "rectilinear")
// return new FillRectilinear();
return new FillRectilinear2();
if (type == "line")
return new FillLine();
if (type == "grid")
// return new FillGrid();
return new FillGrid2();
if (type == "archimedeanchords")
return new FillArchimedeanChords();
if (type == "hilbertcurve")
return new FillHilbertCurve();
if (type == "octagramspiral")
return new FillOctagramSpiral();
CONFESS("unknown type");
return NULL;
static t_config_enum_values enum_keys_map = ConfigOptionEnum<InfillPattern>::get_enum_values();
t_config_enum_values::const_iterator it = enum_keys_map.find(type);
return (it == enum_keys_map.end()) ? NULL : new_from_type(InfillPattern(it->second));
}
Fill* Fill::new_from_type(const InfillPattern type)
{
switch (type) {
case ipConcentric: return new FillConcentric();
case ipHoneycomb: return new FillHoneycomb();
case ip3DHoneycomb: return new Fill3DHoneycomb();
case ipRectilinear: return new FillRectilinear2();
// case ipRectilinear: return new FillRectilinear();
case ipLine: return new FillLine();
case ipGrid: return new FillGrid2();
// case ipGrid: return new FillGrid();
case ipArchimedeanChords: return new FillArchimedeanChords();
case ipHilbertCurve: return new FillHilbertCurve();
case ipOctagramSpiral: return new FillOctagramSpiral();
default: CONFESS("unknown type"); return NULL;
}
}
Polylines Fill::fill_surface(const Surface *surface, const FillParams &params)

View File

@ -76,7 +76,7 @@ class PrintObject
{
friend class Print;
public:
public:
// map of (vectors of volume ids), indexed by region_id
/* (we use map instead of vector so that we don't have to worry about
resizing it and the [] operator adds new items automagically) */
@ -141,7 +141,7 @@ class PrintObject
void discover_vertical_shells();
void bridge_over_infill();
private:
private:
Print* _print;
ModelObject* _model_object;
Points _copies; // Slic3r::Point objects in scaled G-code coordinates

File diff suppressed because it is too large Load Diff

View File

@ -4,8 +4,191 @@
namespace Slic3r {
// how much we extend support around the actual contact area
#define SUPPORT_MATERIAL_MARGIN 1.5
#define SUPPORT_MATERIAL_MARGIN 1.5
}
// Instantiated by Slic3r::Print::Object->_support_material()
class PrintSupportMaterial
{
public:
enum SupporLayerType {
sltUnknown = 0,
sltRaft,
stlFirstLayer,
sltBottomContact,
sltBottomInterface,
sltBase,
sltTopInterface,
sltTopContact,
// Some undecided type yet. It will turn into stlBase first, then it may turn into stlBottomInterface or stlTopInterface.
stlIntermediate,
};
class MyLayer
{
public:
MyLayer() :
layer_type(sltUnknown),
print_z(0.),
bottom_z(0.),
height(0.),
idx_object_layer_above(size_t(-1)),
idx_object_layer_below(size_t(-1)),
bridging(false)
{}
~MyLayer()
{
delete aux_polygons;
aux_polygons = NULL;
}
bool operator==(const MyLayer &layer2) const {
return print_z == layer2.printz && height == layer2.height && bridging == layer2.bridging;
}
bool operator<(const MyLayer &layer2) const {
if (print_z < layer2.print_z) {
return true;
} else if (print_z == layer2.print_z) {
if (height > layer2.height)
return true;
else if (height == layer2.height) {
return bridging < layer2.bridging;
} else
return false;
} else
return false;
}
SupporLayerType layer_type;
// Z used for printing in unscaled coordinates
coordf_t print_z;
// Bottom height of this layer. For soluble layers, bottom_z + height = print_z,
// otherwise bottom_z + gap + height = print_z.
coordf_t bottom_z;
// layer height in unscaled coordinates
coordf_t height;
// Index of a PrintObject layer_id supported by this layer. This will be set for top contact layers.
// If this is not a contact layer, it will be set to size_t(-1).
size_t idx_object_layer_above;
// Index of a PrintObject layer_id, which supports this layer. This will be set for bottom contact layers.
// If this is not a contact layer, it will be set to size_t(-1).
size_t idx_object_layer_below;
// Use a bridging flow when printing this support layer.
bool bridging;
// Polygons to be filled by the support pattern.
Polygons polygons;
// Currently for the contact layers only: Overhangs are stored here.
Polygons *aux_polygons;
};
struct LayerExtreme
{
LayerExtreme(MyLayer *alayer, bool ais_top) : layer(alayer), is_top(ais_top) {}
MyLayer *layer;
// top or bottom extreme
bool is_top;
coordf_t z() const { return is_top ? layer->print_z : layer->print_z - height; }
bool operator<(const LayerExtreme &other) const { return z() < other.z(); }
}
struct LayerPrintZ_Hash {
static size_t operator(const MyLayer &layer) {
return std::hash<double>(layer.print_z)^std::hash<double>(layer.height)^size_t(layer.bridging);
}
};
typedef std::set<MyLayer, LayerPrintZ_Hash> MyLayersSet;
typedef std::vector<Layer*> MyLayersPtr;
typedef std::deque<Layer> MyLayersDeque;
typedef std::deque<Layer> MyLayerStorage;
public:
PrintSupportMaterial() :
m_object(NULL),
m_print_config(NULL),
m_object_config(NULL),
m_soluble_interface(false),
m_support_layer_height_max(0.),
m_support_interface_layer_height_max(0.)
{}
void setup(
const PrintConfig *print_config;
const ObjectConfig *object_config;
Flow flow;
Flow first_layer_flow;
Flow interface_flow;
bool soluble_interface)
{
this->m_object = object;
this->m_print_config = print_config;
this->m_object_config = object_config;
this->m_flow = flow;
this->m_first_layer_flow = first_layer_flow;
this->m_interface_flow = interface_flow;
this->m_soluble_interface = soluble_interface;
}
void generate(const PrintObject *object);
private:
// Generate top contact layers supporting overhangs.
// For a soluble interface material synchronize the layer heights with the object, otherwise leave the layer height undefined.
// If supports over bed surface only are requested, don't generate contact layers over an object.
MyLayersPtr top_contact_layers(const PrintObject &object, MyLayerStorage &layer_storage) const;
// Generate bottom contact layers supporting the top contact layers.
// For a soluble interface material synchronize the layer heights with the object,
// otherwise set the layer height to a bridging flow of a support interface nozzle.
MyLayersPtr bottom_contact_layers(const PrintObject &object, const MyLayersPtr &top_contacts, MyLayerStorage &layer_storage) const;
// Generate raft layers and the intermediate support layers between the bottom contact and top contact surfaces.
MyLayersPtr raft_and_intermediate_support_layers(
const PrintObject &object,
const MyLayersPtr &bottom_contacts,
const MyLayersPtr &top_contacts,
MyLayerStorage &layer_storage,
const coordf_t max_object_layer_height);
void generate_base_layers(
const PrintObject &object,
const MyLayersPtr &bottom_contacts,
const MyLayersPtr &top_contacts,
MyLayersPtr &intermediate_layers);
MyLayersPtr generate_interface_layers(
const PrintObject &object,
const MyLayersPtr &bottom_contacts,
const MyLayersPtr &top_contacts,
MyLayersPtr &intermediate_layers,
MyLayerStorage &layer_storage);
/*
void generate_pillars_shape();
void clip_with_shape();
*/
// Produce the actual G-code.
void generate_toolpaths(
const PrintObject &object,
const MyLayersPtr &bottom_contacts,
const MyLayersPtr &top_contacts,
const MyLayersPtr &intermediate_layers,
const MyLayersPtr &interface_layers);
const PrintConfig *m_print_config;
const ObjectConfig *m_object_config;
Flow m_flow;
Flow m_first_layer_flow;
Flow m_interface_flow;
bool m_soluble_interface;
coordf_t m_support_layer_height_max;
coordf_t m_support_interface_layer_height_max;
};
#endif

View File

@ -6,11 +6,29 @@
namespace Slic3r {
enum SurfaceType { stTop, stBottom, stBottomBridge, stInternal, stInternalSolid, stInternalBridge, stInternalVoid, stPerimeter };
enum SurfaceType {
// Top horizontal surface, visible from the top.
stTop,
// Bottom horizontal surface, visible from the bottom, printed with a normal extrusion flow.
stBottom,
// Bottom horizontal surface, visible from the bottom, unsupported, printed with a bridging extrusion flow.
stBottomBridge,
// Normal sparse infill.
stInternal,
// Full infill, supporting the top surfaces and/or defining the verticall wall thickness.
stInternalSolid,
// 1st layer of dense infill over sparse infill, printed with a bridging extrusion flow.
stInternalBridge,
// stInternal turns into void surfaces if the sparse infill is used for supports only,
// or if sparse infill layers get combined into a single layer.
stInternalVoid,
// Inner/outer perimeters.
stPerimeter
};
class Surface
{
public:
public:
SurfaceType surface_type;
ExPolygon expolygon;
double thickness; // in mm