Merge branch 'tm_hollowing' into lm_tm_hollowing

This commit is contained in:
tamasmeszaros 2020-01-14 10:50:15 +01:00
commit 929e467df9
6 changed files with 337 additions and 249 deletions

View file

@ -49,18 +49,64 @@ float SupportPointGenerator::distance_limit(float angle) const
return 1./(2.4*get_required_density(angle)); return 1./(2.4*get_required_density(angle));
}*/ }*/
SupportPointGenerator::SupportPointGenerator(const sla::EigenMesh3D & emesh, class SupportPointGenerator::RandomGen {
const std::vector<ExPolygons> &slices, std::mt19937 m_;
const std::vector<float> & heights, public:
const Config & config,
std::function<void(void)> throw_on_cancel, using result_type = long;
std::function<void(int)> statusfn)
RandomGen()
{
std::random_device rd;
m_.seed(rd());
}
explicit RandomGen(long seedval) { seed(seedval); }
void seed(long s) { m_.seed(std::mt19937::result_type(s)); }
long operator() () { return long(m_()); }
long min() const { return m_.min(); }
long max() const { return m_.max(); }
};
SupportPointGenerator::SupportPointGenerator(
const sla::EigenMesh3D &emesh,
const std::vector<ExPolygons> &slices,
const std::vector<float> & heights,
const Config & config,
std::function<void(void)> throw_on_cancel,
std::function<void(int)> statusfn)
: SupportPointGenerator(emesh, config, throw_on_cancel, statusfn)
{
execute(slices, heights);
}
SupportPointGenerator::SupportPointGenerator(
const EigenMesh3D &emesh,
const SupportPointGenerator::Config &config,
std::function<void ()> throw_on_cancel,
std::function<void (int)> statusfn)
: m_config(config) : m_config(config)
, m_emesh(emesh) , m_emesh(emesh)
, m_throw_on_cancel(throw_on_cancel) , m_throw_on_cancel(throw_on_cancel)
, m_statusfn(statusfn) , m_statusfn(statusfn)
{ {
process(slices, heights); }
void SupportPointGenerator::execute(const std::vector<ExPolygons> &slices,
const std::vector<float> & heights)
{
RandomGen rng;
process(slices, heights, rng);
project_onto_mesh(m_output);
}
void SupportPointGenerator::execute(const std::vector<ExPolygons> &slices,
const std::vector<float> & heights,
long seed)
{
RandomGen rng(seed);
process(slices, heights, rng);
project_onto_mesh(m_output); project_onto_mesh(m_output);
} }
@ -184,7 +230,7 @@ static std::vector<SupportPointGenerator::MyLayer> make_layers(
return layers; return layers;
} }
void SupportPointGenerator::process(const std::vector<ExPolygons>& slices, const std::vector<float>& heights) void SupportPointGenerator::process(const std::vector<ExPolygons>& slices, const std::vector<float>& heights, RandomGen &rng)
{ {
#ifdef SLA_SUPPORTPOINTGEN_DEBUG #ifdef SLA_SUPPORTPOINTGEN_DEBUG
std::vector<std::pair<ExPolygon, coord_t>> islands; std::vector<std::pair<ExPolygon, coord_t>> islands;
@ -239,15 +285,15 @@ void SupportPointGenerator::process(const std::vector<ExPolygons>& slices, const
//float force_deficit = s.support_force_deficit(m_config.tear_pressure()); //float force_deficit = s.support_force_deficit(m_config.tear_pressure());
if (s.islands_below.empty()) { // completely new island - needs support no doubt if (s.islands_below.empty()) { // completely new island - needs support no doubt
uniformly_cover({ *s.polygon }, s, point_grid, true); uniformly_cover({ *s.polygon }, s, point_grid, rng, true);
} else if (! s.dangling_areas.empty()) { } else if (! s.dangling_areas.empty()) {
// Let's see if there's anything that overlaps enough to need supports: // Let's see if there's anything that overlaps enough to need supports:
// What we now have in polygons needs support, regardless of what the forces are, so we can add them. // What we now have in polygons needs support, regardless of what the forces are, so we can add them.
//FIXME is it an island point or not? Vojtech thinks it is. //FIXME is it an island point or not? Vojtech thinks it is.
uniformly_cover(s.dangling_areas, s, point_grid); uniformly_cover(s.dangling_areas, s, point_grid, rng);
} else if (! s.overhangs_slopes.empty()) { } else if (! s.overhangs_slopes.empty()) {
//FIXME add the support force deficit as a parameter, only cover until the defficiency is covered. //FIXME add the support force deficit as a parameter, only cover until the defficiency is covered.
uniformly_cover(s.overhangs_slopes, s, point_grid); uniformly_cover(s.overhangs_slopes, s, point_grid, rng);
} }
} }
@ -266,7 +312,7 @@ void SupportPointGenerator::process(const std::vector<ExPolygons>& slices, const
} }
} }
std::vector<Vec2f> sample_expolygon(const ExPolygon &expoly, float samples_per_mm2, std::mt19937 &rng) std::vector<Vec2f> sample_expolygon(const ExPolygon &expoly, float samples_per_mm2, SupportPointGenerator::RandomGen &rng)
{ {
// Triangulate the polygon with holes into triplets of 3D points. // Triangulate the polygon with holes into triplets of 3D points.
std::vector<Vec2f> triangles = Slic3r::triangulate_expolygon_2f(expoly); std::vector<Vec2f> triangles = Slic3r::triangulate_expolygon_2f(expoly);
@ -306,7 +352,7 @@ std::vector<Vec2f> sample_expolygon(const ExPolygon &expoly, float samples_per_m
return out; return out;
} }
std::vector<Vec2f> sample_expolygon_with_boundary(const ExPolygon &expoly, float samples_per_mm2, float samples_per_mm_boundary, std::mt19937 &rng) std::vector<Vec2f> sample_expolygon_with_boundary(const ExPolygon &expoly, float samples_per_mm2, float samples_per_mm_boundary, SupportPointGenerator::RandomGen &rng)
{ {
std::vector<Vec2f> out = sample_expolygon(expoly, samples_per_mm2, rng); std::vector<Vec2f> out = sample_expolygon(expoly, samples_per_mm2, rng);
double point_stepping_scaled = scale_(1.f) / samples_per_mm_boundary; double point_stepping_scaled = scale_(1.f) / samples_per_mm_boundary;
@ -319,7 +365,7 @@ std::vector<Vec2f> sample_expolygon_with_boundary(const ExPolygon &expoly, float
return out; return out;
} }
std::vector<Vec2f> sample_expolygon_with_boundary(const ExPolygons &expolys, float samples_per_mm2, float samples_per_mm_boundary, std::mt19937 &rng) std::vector<Vec2f> sample_expolygon_with_boundary(const ExPolygons &expolys, float samples_per_mm2, float samples_per_mm_boundary, SupportPointGenerator::RandomGen &rng)
{ {
std::vector<Vec2f> out; std::vector<Vec2f> out;
for (const ExPolygon &expoly : expolys) for (const ExPolygon &expoly : expolys)
@ -442,7 +488,7 @@ static inline std::vector<Vec2f> poisson_disk_from_samples(const std::vector<Vec
return out; return out;
} }
void SupportPointGenerator::uniformly_cover(const ExPolygons& islands, Structure& structure, PointGrid3D &grid3d, bool is_new_island, bool just_one) void SupportPointGenerator::uniformly_cover(const ExPolygons& islands, Structure& structure, PointGrid3D &grid3d, RandomGen &rng, bool is_new_island, bool just_one)
{ {
//int num_of_points = std::max(1, (int)((island.area()*pow(SCALING_FACTOR, 2) * m_config.tear_pressure)/m_config.support_force)); //int num_of_points = std::max(1, (int)((island.area()*pow(SCALING_FACTOR, 2) * m_config.tear_pressure)/m_config.support_force));
@ -463,8 +509,7 @@ void SupportPointGenerator::uniformly_cover(const ExPolygons& islands, Structure
float min_spacing = poisson_radius; float min_spacing = poisson_radius;
//FIXME share the random generator. The random generator may be not so cheap to initialize, also we don't want the random generator to be restarted for each polygon. //FIXME share the random generator. The random generator may be not so cheap to initialize, also we don't want the random generator to be restarted for each polygon.
std::random_device rd;
std::mt19937 rng(rd());
std::vector<Vec2f> raw_samples = sample_expolygon_with_boundary(islands, samples_per_mm2, 5.f / poisson_radius, rng); std::vector<Vec2f> raw_samples = sample_expolygon_with_boundary(islands, samples_per_mm2, 5.f / poisson_radius, rng);
std::vector<Vec2f> poisson_samples; std::vector<Vec2f> poisson_samples;
for (size_t iter = 0; iter < 4; ++ iter) { for (size_t iter = 0; iter < 4; ++ iter) {

View file

@ -29,7 +29,10 @@ public:
SupportPointGenerator(const EigenMesh3D& emesh, const std::vector<ExPolygons>& slices, SupportPointGenerator(const EigenMesh3D& emesh, const std::vector<ExPolygons>& slices,
const std::vector<float>& heights, const Config& config, std::function<void(void)> throw_on_cancel, std::function<void(int)> statusfn); const std::vector<float>& heights, const Config& config, std::function<void(void)> throw_on_cancel, std::function<void(int)> statusfn);
const std::vector<SupportPoint>& output() { return m_output; } SupportPointGenerator(const EigenMesh3D& emesh, const Config& config, std::function<void(void)> throw_on_cancel, std::function<void(int)> statusfn);
const std::vector<SupportPoint>& output() const { return m_output; }
std::vector<SupportPoint>& output() { return m_output; }
struct MyLayer; struct MyLayer;
@ -76,7 +79,7 @@ public:
ExPolygons overhangs; ExPolygons overhangs;
// Overhangs, where the surface must slope. // Overhangs, where the surface must slope.
ExPolygons overhangs_slopes; ExPolygons overhangs_slopes;
float overhangs_area; float overhangs_area = 0.f;
bool overlaps(const Structure &rhs) const { bool overlaps(const Structure &rhs) const {
return this->bbox.overlap(rhs.bbox) && (this->polygon->overlaps(*rhs.polygon) || rhs.polygon->overlaps(*this->polygon)); return this->bbox.overlap(rhs.bbox) && (this->polygon->overlaps(*rhs.polygon) || rhs.polygon->overlaps(*this->polygon));
@ -184,13 +187,21 @@ public:
} }
}; };
void execute(const std::vector<ExPolygons> &slices,
const std::vector<float> & heights);
void execute(const std::vector<ExPolygons> &slices,
const std::vector<float> & heights, long seed);
class RandomGen;
private: private:
std::vector<SupportPoint> m_output; std::vector<SupportPoint> m_output;
SupportPointGenerator::Config m_config; SupportPointGenerator::Config m_config;
void process(const std::vector<ExPolygons>& slices, const std::vector<float>& heights); void process(const std::vector<ExPolygons>& slices, const std::vector<float>& heights, RandomGen&);
void uniformly_cover(const ExPolygons& islands, Structure& structure, PointGrid3D &grid3d, bool is_new_island = false, bool just_one = false); void uniformly_cover(const ExPolygons& islands, Structure& structure, PointGrid3D &grid3d, RandomGen&, bool is_new_island = false, bool just_one = false);
void project_onto_mesh(std::vector<SupportPoint>& points) const; void project_onto_mesh(std::vector<SupportPoint>& points) const;
#ifdef SLA_SUPPORTPOINTGEN_DEBUG #ifdef SLA_SUPPORTPOINTGEN_DEBUG

View file

@ -7,6 +7,14 @@
namespace Slic3r { namespace Slic3r {
namespace sla { namespace sla {
static const Vec3d DOWN = {0.0, 0.0, -1.0};
using libnest2d::opt::initvals;
using libnest2d::opt::bound;
using libnest2d::opt::StopCriteria;
using libnest2d::opt::GeneticOptimizer;
using libnest2d::opt::SubplexOptimizer;
SupportTreeBuildsteps::SupportTreeBuildsteps(SupportTreeBuilder & builder, SupportTreeBuildsteps::SupportTreeBuildsteps(SupportTreeBuilder & builder,
const SupportableMesh &sm) const SupportableMesh &sm)
: m_cfg(sm.cfg) : m_cfg(sm.cfg)
@ -560,9 +568,7 @@ void SupportTreeBuildsteps::create_ground_pillar(const Vec3d &jp,
double radius, double radius,
long head_id) long head_id)
{ {
// People were killed for this number (seriously) const double SLOPE = 1. / std::cos(m_cfg.bridge_slope);
static const double SQR2 = std::sqrt(2.0);
static const Vec3d DOWN = {0.0, 0.0, -1.0};
double gndlvl = m_builder.ground_level; double gndlvl = m_builder.ground_level;
Vec3d endp = {jp(X), jp(Y), gndlvl}; Vec3d endp = {jp(X), jp(Y), gndlvl};
@ -573,38 +579,47 @@ void SupportTreeBuildsteps::create_ground_pillar(const Vec3d &jp,
bool can_add_base = true; bool can_add_base = true;
bool normal_mode = true; bool normal_mode = true;
// If in zero elevation mode and the pillar is too close to the model body,
// the support pillar can not be placed in the gap between the model and
// the pad, and the pillar bases must not touch the model body either.
// To solve this, a corrector bridge is inserted between the starting point
// (jp) and the new pillar.
if (m_cfg.object_elevation_mm < EPSILON if (m_cfg.object_elevation_mm < EPSILON
&& (dist = std::sqrt(m_mesh.squared_distance(endp))) < min_dist) { && (dist = std::sqrt(m_mesh.squared_distance(endp))) < min_dist) {
// Get the distance from the mesh. This can be later optimized // Get the distance from the mesh. This can be later optimized
// to get the distance in 2D plane because we are dealing with // to get the distance in 2D plane because we are dealing with
// the ground level only. // the ground level only.
normal_mode = false;
// The min distance needed to move away from the model in XY plane.
double current_d = min_dist - dist;
double current_bride_d = SLOPE * current_d;
// get a suitable direction for the corrector bridge. It is the
// original sourcedir's azimuth but the polar angle is saturated to the
// configured bridge slope.
auto [polar, azimuth] = dir_to_spheric(sourcedir);
polar = PI - m_cfg.bridge_slope;
auto dir = spheric_to_dir(polar, azimuth).normalized();
normal_mode = false;
double mind = min_dist - dist;
double azimuth = std::atan2(sourcedir(Y), sourcedir(X));
double sinpolar = std::sin(PI - m_cfg.bridge_slope);
double cospolar = std::cos(PI - m_cfg.bridge_slope);
double cosazm = std::cos(azimuth);
double sinazm = std::sin(azimuth);
auto dir = Vec3d(cosazm * sinpolar, sinazm * sinpolar, cospolar)
.normalized();
using namespace libnest2d::opt;
StopCriteria scr; StopCriteria scr;
scr.stop_score = min_dist; scr.stop_score = min_dist;
SubplexOptimizer solver(scr); SubplexOptimizer solver(scr);
// Search for a distance along the corrector bridge to move the endpoint
// sufficiently away form the model body. The first few optimization
// cycles should succeed here.
auto result = solver.optimize_max( auto result = solver.optimize_max(
[this, dir, jp, gndlvl](double mv) { [this, dir, jp, gndlvl](double mv) {
Vec3d endpt = jp + SQR2 * mv * dir; Vec3d endpt = jp + mv * dir;
endpt(Z) = gndlvl; endpt(Z) = gndlvl;
return std::sqrt(m_mesh.squared_distance(endpt)); return std::sqrt(m_mesh.squared_distance(endpt));
}, },
initvals(mind), bound(0.0, 2 * min_dist)); initvals(current_bride_d),
bound(0.0, m_cfg.max_bridge_length_mm - current_bride_d));
mind = std::get<0>(result.optimum); endp = jp + std::get<0>(result.optimum) * dir;
endp = jp + SQR2 * mind * dir;
Vec3d pgnd = {endp(X), endp(Y), gndlvl}; Vec3d pgnd = {endp(X), endp(Y), gndlvl};
can_add_base = result.score > min_dist; can_add_base = result.score > min_dist;
@ -623,7 +638,7 @@ void SupportTreeBuildsteps::create_ground_pillar(const Vec3d &jp,
else { else {
// If the new endpoint is below ground, do not make a pillar // If the new endpoint is below ground, do not make a pillar
if (endp(Z) < gndlvl) if (endp(Z) < gndlvl)
endp = endp - SQR2 * (gndlvl - endp(Z)) * dir; // back off endp = endp - SLOPE * (gndlvl - endp(Z)) * dir; // back off
else { else {
auto hit = bridge_mesh_intersect(endp, DOWN, radius); auto hit = bridge_mesh_intersect(endp, DOWN, radius);
@ -685,11 +700,6 @@ void SupportTreeBuildsteps::filter()
// not be enough space for the pinhead. Filtering is applied for // not be enough space for the pinhead. Filtering is applied for
// these reasons. // these reasons.
using libnest2d::opt::bound;
using libnest2d::opt::initvals;
using libnest2d::opt::GeneticOptimizer;
using libnest2d::opt::StopCriteria;
ccr::SpinningMutex mutex; ccr::SpinningMutex mutex;
auto addfn = [&mutex](PtIndices &container, unsigned val) { auto addfn = [&mutex](PtIndices &container, unsigned val) {
std::lock_guard<ccr::SpinningMutex> lk(mutex); std::lock_guard<ccr::SpinningMutex> lk(mutex);
@ -708,10 +718,7 @@ void SupportTreeBuildsteps::filter()
// (Quaternion::FromTwoVectors) and apply the rotation to the // (Quaternion::FromTwoVectors) and apply the rotation to the
// arrow head. // arrow head.
double z = n(2); auto [polar, azimuth] = dir_to_spheric(n);
double r = 1.0; // for normalized vector
double polar = std::acos(z / r);
double azimuth = std::atan2(n(1), n(0));
// skip if the tilt is not sane // skip if the tilt is not sane
if(polar >= PI - m_cfg.normal_cutoff_angle) { if(polar >= PI - m_cfg.normal_cutoff_angle) {
@ -729,9 +736,7 @@ void SupportTreeBuildsteps::filter()
double pin_r = double(m_support_pts[fidx].head_front_radius); double pin_r = double(m_support_pts[fidx].head_front_radius);
// Reassemble the now corrected normal // Reassemble the now corrected normal
auto nn = Vec3d(std::cos(azimuth) * std::sin(polar), auto nn = spheric_to_dir(polar, azimuth).normalized();
std::sin(azimuth) * std::sin(polar),
std::cos(polar)).normalized();
// check available distance // check available distance
EigenMesh3D::hit_result t EigenMesh3D::hit_result t
@ -757,9 +762,7 @@ void SupportTreeBuildsteps::filter()
auto oresult = solver.optimize_max( auto oresult = solver.optimize_max(
[this, pin_r, w, hp](double plr, double azm) [this, pin_r, w, hp](double plr, double azm)
{ {
auto dir = Vec3d(std::cos(azm) * std::sin(plr), auto dir = spheric_to_dir(plr, azm).normalized();
std::sin(azm) * std::sin(plr),
std::cos(plr)).normalized();
double score = pinhead_mesh_intersect( double score = pinhead_mesh_intersect(
hp, dir, pin_r, m_cfg.head_back_radius_mm, w); hp, dir, pin_r, m_cfg.head_back_radius_mm, w);
@ -767,17 +770,14 @@ void SupportTreeBuildsteps::filter()
return score; return score;
}, },
initvals(polar, azimuth), // start with what we have initvals(polar, azimuth), // start with what we have
bound(3 * PI / 4, bound(3 * PI / 4, PI), // Must not exceed the tilt limit
PI), // Must not exceed the tilt limit
bound(-PI, PI) // azimuth can be a full search bound(-PI, PI) // azimuth can be a full search
); );
if(oresult.score > w) { if(oresult.score > w) {
polar = std::get<0>(oresult.optimum); polar = std::get<0>(oresult.optimum);
azimuth = std::get<1>(oresult.optimum); azimuth = std::get<1>(oresult.optimum);
nn = Vec3d(std::cos(azimuth) * std::sin(polar), nn = spheric_to_dir(polar, azimuth).normalized();
std::sin(azimuth) * std::sin(polar),
std::cos(polar)).normalized();
t = EigenMesh3D::hit_result(oresult.score); t = EigenMesh3D::hit_result(oresult.score);
} }
} }
@ -837,16 +837,17 @@ void SupportTreeBuildsteps::classify()
m_thr(); m_thr();
auto& head = m_builder.head(i); auto& head = m_builder.head(i);
Vec3d n(0, 0, -1);
double r = head.r_back_mm; double r = head.r_back_mm;
Vec3d headjp = head.junction_point(); Vec3d headjp = head.junction_point();
// collision check // collision check
auto hit = bridge_mesh_intersect(headjp, n, r); auto hit = bridge_mesh_intersect(headjp, DOWN, r);
if(std::isinf(hit.distance())) ground_head_indices.emplace_back(i); if(std::isinf(hit.distance())) ground_head_indices.emplace_back(i);
else if(m_cfg.ground_facing_only) head.invalidate(); else if(m_cfg.ground_facing_only) head.invalidate();
else m_iheads_onmodel.emplace_back(std::make_pair(i, hit)); else m_iheads_onmodel.emplace_back(i);
m_head_to_ground_scans[i] = hit;
} }
// We want to search for clusters of points that are far enough // We want to search for clusters of points that are far enough
@ -893,13 +894,14 @@ void SupportTreeBuildsteps::routing_to_ground()
// get the current cluster centroid // get the current cluster centroid
auto & thr = m_thr; auto & thr = m_thr;
const auto &points = m_points; const auto &points = m_points;
long lcid = cluster_centroid(
long lcid = cluster_centroid(
cl, [&points](size_t idx) { return points.row(long(idx)); }, cl, [&points](size_t idx) { return points.row(long(idx)); },
[thr](const Vec3d &p1, const Vec3d &p2) { [thr](const Vec3d &p1, const Vec3d &p2) {
thr(); thr();
return distance(Vec2d(p1(X), p1(Y)), Vec2d(p2(X), p2(Y))); return distance(Vec2d(p1(X), p1(Y)), Vec2d(p2(X), p2(Y)));
}); });
assert(lcid >= 0); assert(lcid >= 0);
unsigned hid = cl[size_t(lcid)]; // Head ID unsigned hid = cl[size_t(lcid)]; // Head ID
@ -944,192 +946,138 @@ void SupportTreeBuildsteps::routing_to_ground()
} }
} }
bool SupportTreeBuildsteps::connect_to_ground(Head &head, const Vec3d &dir)
{
auto hjp = head.junction_point();
double r = head.r_back_mm;
double t = bridge_mesh_intersect(hjp, dir, head.r_back_mm);
double d = 0, tdown = 0;
t = std::min(t, m_cfg.max_bridge_length_mm);
while (d < t && !std::isinf(tdown = bridge_mesh_intersect(hjp + d * dir, DOWN, r)))
d += r;
if(!std::isinf(tdown)) return false;
Vec3d endp = hjp + d * dir;
m_builder.add_bridge(head.id, endp);
m_builder.add_junction(endp, head.r_back_mm);
this->create_ground_pillar(endp, dir, head.r_back_mm);
return true;
}
bool SupportTreeBuildsteps::connect_to_ground(Head &head)
{
if (connect_to_ground(head, head.dir)) return true;
// Optimize bridge direction:
// Straight path failed so we will try to search for a suitable
// direction out of the cavity.
auto [polar, azimuth] = dir_to_spheric(head.dir);
StopCriteria stc;
stc.max_iterations = m_cfg.optimizer_max_iterations;
stc.relative_score_difference = m_cfg.optimizer_rel_score_diff;
stc.stop_score = 1e6;
GeneticOptimizer solver(stc);
solver.seed(0); // we want deterministic behavior
double r_back = head.r_back_mm;
Vec3d hjp = head.junction_point();
auto oresult = solver.optimize_max(
[this, hjp, r_back](double plr, double azm) {
Vec3d n = spheric_to_dir(plr, azm).normalized();
return bridge_mesh_intersect(hjp, n, r_back);
},
initvals(polar, azimuth), // let's start with what we have
bound(3*PI/4, PI), // Must not exceed the slope limit
bound(-PI, PI) // azimuth can be a full range search
);
Vec3d bridgedir = spheric_to_dir(oresult.optimum).normalized();
return connect_to_ground(head, bridgedir);
}
bool SupportTreeBuildsteps::connect_to_model_body(Head &head)
{
if (head.id <= ID_UNSET) return false;
auto it = m_head_to_ground_scans.find(unsigned(head.id));
if (it == m_head_to_ground_scans.end()) return false;
auto &hit = it->second;
Vec3d hjp = head.junction_point();
double zangle = std::asin(hit.direction()(Z));
zangle = std::max(zangle, PI/4);
double h = std::sin(zangle) * head.fullwidth();
// The width of the tail head that we would like to have...
h = std::min(hit.distance() - head.r_back_mm, h);
if(h <= 0.) return false;
Vec3d endp{hjp(X), hjp(Y), hjp(Z) - hit.distance() + h};
auto center_hit = m_mesh.query_ray_hit(hjp, DOWN);
double hitdiff = center_hit.distance() - hit.distance();
Vec3d hitp = std::abs(hitdiff) < 2*head.r_back_mm?
center_hit.position() : hit.position();
head.transform();
long pillar_id = m_builder.add_pillar(head.id, endp, head.r_back_mm);
Pillar &pill = m_builder.pillar(pillar_id);
Vec3d taildir = endp - hitp;
double dist = distance(endp, hitp) + m_cfg.head_penetration_mm;
double w = dist - 2 * head.r_pin_mm - head.r_back_mm;
if (w < 0.) {
BOOST_LOG_TRIVIAL(error) << "Pinhead width is negative!";
w = 0.;
}
Head tailhead(head.r_back_mm, head.r_pin_mm, w,
m_cfg.head_penetration_mm, taildir, hitp);
tailhead.transform();
pill.base = tailhead.mesh;
m_pillar_index.guarded_insert(pill.endpoint(), pill.id);
return true;
}
void SupportTreeBuildsteps::routing_to_model() void SupportTreeBuildsteps::routing_to_model()
{ {
// We need to check if there is an easy way out to the bed surface. // We need to check if there is an easy way out to the bed surface.
// If it can be routed there with a bridge shorter than // If it can be routed there with a bridge shorter than
// min_bridge_distance. // min_bridge_distance.
// First we want to index the available pillars. The best is to connect
// these points to the available pillars
auto routedown = [this](Head& head, const Vec3d& dir, double dist)
{
head.transform();
Vec3d endp = head.junction_point() + dist * dir;
m_builder.add_bridge(head.id, endp);
m_builder.add_junction(endp, head.r_back_mm);
this->create_ground_pillar(endp, dir, head.r_back_mm);
};
std::vector<unsigned> modelpillars;
ccr::SpinningMutex mutex;
auto onmodelfn = ccr::enumerate(m_iheads_onmodel.begin(), m_iheads_onmodel.end(),
[this, routedown, &modelpillars, &mutex] [this] (const unsigned idx, size_t) {
(const std::pair<unsigned, EigenMesh3D::hit_result> &el, size_t)
{
m_thr(); m_thr();
unsigned idx = el.first;
EigenMesh3D::hit_result hit = el.second;
auto& head = m_builder.head(idx); auto& head = m_builder.head(idx);
Vec3d hjp = head.junction_point();
// /////////////////////////////////////////////////////////////////
// Search nearby pillar // Search nearby pillar
// /////////////////////////////////////////////////////////////////
if(search_pillar_and_connect(head)) { head.transform(); return; } if(search_pillar_and_connect(head)) { head.transform(); return; }
// /////////////////////////////////////////////////////////////////
// Try straight path
// /////////////////////////////////////////////////////////////////
// Cannot connect to nearby pillar. We will try to search for // Cannot connect to nearby pillar. We will try to search for
// a route to the ground. // a route to the ground.
if(connect_to_ground(head)) { head.transform(); return; }
double t = bridge_mesh_intersect(hjp, head.dir, head.r_back_mm); // No route to the ground, so connect to the model body as a last resort
double d = 0, tdown = 0; if (connect_to_model_body(head)) { return; }
Vec3d dirdown(0.0, 0.0, -1.0);
t = std::min(t, m_cfg.max_bridge_length_mm);
while(d < t && !std::isinf(tdown = bridge_mesh_intersect(
hjp + d*head.dir,
dirdown, head.r_back_mm))) {
d += head.r_back_mm;
}
if(std::isinf(tdown)) { // we heave found a route to the ground
routedown(head, head.dir, d); return;
}
// /////////////////////////////////////////////////////////////////
// Optimize bridge direction
// /////////////////////////////////////////////////////////////////
// Straight path failed so we will try to search for a suitable
// direction out of the cavity.
// Get the spherical representation of the normal. its easier to
// work with.
double z = head.dir(Z);
double r = 1.0; // for normalized vector
double polar = std::acos(z / r);
double azimuth = std::atan2(head.dir(Y), head.dir(X));
using libnest2d::opt::bound;
using libnest2d::opt::initvals;
using libnest2d::opt::GeneticOptimizer;
using libnest2d::opt::StopCriteria;
StopCriteria stc;
stc.max_iterations = m_cfg.optimizer_max_iterations;
stc.relative_score_difference = m_cfg.optimizer_rel_score_diff;
stc.stop_score = 1e6;
GeneticOptimizer solver(stc);
solver.seed(0); // we want deterministic behavior
double r_back = head.r_back_mm;
auto oresult = solver.optimize_max(
[this, hjp, r_back](double plr, double azm)
{
Vec3d n = Vec3d(std::cos(azm) * std::sin(plr),
std::sin(azm) * std::sin(plr),
std::cos(plr)).normalized();
return bridge_mesh_intersect(hjp, n, r_back);
},
initvals(polar, azimuth), // let's start with what we have
bound(3*PI/4, PI), // Must not exceed the slope limit
bound(-PI, PI) // azimuth can be a full range search
);
d = 0; t = oresult.score;
polar = std::get<0>(oresult.optimum);
azimuth = std::get<1>(oresult.optimum);
Vec3d bridgedir = Vec3d(std::cos(azimuth) * std::sin(polar),
std::sin(azimuth) * std::sin(polar),
std::cos(polar)).normalized();
t = std::min(t, m_cfg.max_bridge_length_mm);
while(d < t && !std::isinf(tdown = bridge_mesh_intersect(
hjp + d*bridgedir,
dirdown,
head.r_back_mm))) {
d += head.r_back_mm;
}
if(std::isinf(tdown)) { // we heave found a route to the ground
routedown(head, bridgedir, d); return;
}
// /////////////////////////////////////////////////////////////////
// Route to model body
// /////////////////////////////////////////////////////////////////
double zangle = std::asin(hit.direction()(Z));
zangle = std::max(zangle, PI/4);
double h = std::sin(zangle) * head.fullwidth();
// The width of the tail head that we would like to have...
h = std::min(hit.distance() - head.r_back_mm, h);
if(h > 0) {
Vec3d endp{hjp(X), hjp(Y), hjp(Z) - hit.distance() + h};
auto center_hit = m_mesh.query_ray_hit(hjp, dirdown);
double hitdiff = center_hit.distance() - hit.distance();
Vec3d hitp = std::abs(hitdiff) < 2*head.r_back_mm?
center_hit.position() : hit.position();
head.transform();
long pillar_id = m_builder.add_pillar(head.id, endp, head.r_back_mm);
Pillar &pill = m_builder.pillar(pillar_id);
Vec3d taildir = endp - hitp;
double dist = distance(endp, hitp) + m_cfg.head_penetration_mm;
double w = dist - 2 * head.r_pin_mm - head.r_back_mm;
if (w < 0.) {
BOOST_LOG_TRIVIAL(error) << "Pinhead width is negative!";
w = 0.;
}
Head tailhead(head.r_back_mm,
head.r_pin_mm,
w,
m_cfg.head_penetration_mm,
taildir,
hitp);
tailhead.transform();
pill.base = tailhead.mesh;
// Experimental: add the pillar to the index for cascading
std::lock_guard<ccr::SpinningMutex> lk(mutex);
modelpillars.emplace_back(unsigned(pill.id));
return;
}
// We have failed to route this head. // We have failed to route this head.
BOOST_LOG_TRIVIAL(warning) BOOST_LOG_TRIVIAL(warning)
<< "Failed to route model facing support point." << "Failed to route model facing support point. ID: " << idx;
<< " ID: " << idx;
head.invalidate(); head.invalidate();
}; });
ccr::enumerate(m_iheads_onmodel.begin(), m_iheads_onmodel.end(), onmodelfn);
for(auto pillid : modelpillars) {
auto& pillar = m_builder.pillar(pillid);
m_pillar_index.insert(pillar.endpoint(), pillid);
}
} }
void SupportTreeBuildsteps::interconnect_pillars() void SupportTreeBuildsteps::interconnect_pillars()
@ -1280,7 +1228,8 @@ void SupportTreeBuildsteps::interconnect_pillars()
spts[n] = s; spts[n] = s;
// Check the path vertically down // Check the path vertically down
auto hr = bridge_mesh_intersect(s, {0, 0, -1}, pillar().r); Vec3d check_from = s + Vec3d{0., 0., pillar().r};
auto hr = bridge_mesh_intersect(check_from, DOWN, pillar().r);
Vec3d gndsp{s(X), s(Y), gnd}; Vec3d gndsp{s(X), s(Y), gnd};
// If the path is clear, check for pillar base collisions // If the path is clear, check for pillar base collisions
@ -1360,12 +1309,11 @@ void SupportTreeBuildsteps::routing_headless()
Vec3d n = m_support_nmls.row(i); // mesh outward normal Vec3d n = m_support_nmls.row(i); // mesh outward normal
Vec3d sp = sph - n * HWIDTH_MM; // stick head start point Vec3d sp = sph - n * HWIDTH_MM; // stick head start point
Vec3d dir = {0, 0, -1};
Vec3d sj = sp + R * n; // stick start point Vec3d sj = sp + R * n; // stick start point
// This is only for checking // This is only for checking
double idist = bridge_mesh_intersect(sph, dir, R, true); double idist = bridge_mesh_intersect(sph, DOWN, R, true);
double realdist = ray_mesh_intersect(sj, dir); double realdist = ray_mesh_intersect(sj, DOWN);
double dist = realdist; double dist = realdist;
if (std::isinf(dist)) dist = sph(Z) - m_builder.ground_level; if (std::isinf(dist)) dist = sph(Z) - m_builder.ground_level;
@ -1378,7 +1326,7 @@ void SupportTreeBuildsteps::routing_headless()
} }
bool use_endball = !std::isinf(realdist); bool use_endball = !std::isinf(realdist);
Vec3d ej = sj + (dist + HWIDTH_MM) * dir; Vec3d ej = sj + (dist + HWIDTH_MM) * DOWN ;
m_builder.add_compact_bridge(sp, ej, n, R, use_endball); m_builder.add_compact_bridge(sp, ej, n, R, use_endball);
} }
} }

View file

@ -20,6 +20,32 @@ inline Vec2d to_vec2(const Vec3d& v3) {
return {v3(X), v3(Y)}; return {v3(X), v3(Y)};
} }
inline std::pair<double, double> dir_to_spheric(const Vec3d &n, double norm = 1.)
{
double z = n.z();
double r = norm;
double polar = std::acos(z / r);
double azimuth = std::atan2(n(1), n(0));
return {polar, azimuth};
}
inline Vec3d spheric_to_dir(double polar, double azimuth)
{
return {std::cos(azimuth) * std::sin(polar),
std::sin(azimuth) * std::sin(polar), std::cos(polar)};
}
inline Vec3d spheric_to_dir(const std::tuple<double, double> &v)
{
auto [plr, azm] = v;
return spheric_to_dir(plr, azm);
}
inline Vec3d spheric_to_dir(const std::pair<double, double> &v)
{
return spheric_to_dir(v.first, v.second);
}
// This function returns the position of the centroid in the input 'clust' // This function returns the position of the centroid in the input 'clust'
// vector of point indices. // vector of point indices.
template<class DistFn> template<class DistFn>
@ -151,10 +177,10 @@ class SupportTreeBuildsteps {
using PtIndices = std::vector<unsigned>; using PtIndices = std::vector<unsigned>;
PtIndices m_iheads; // support points with pinhead PtIndices m_iheads; // support points with pinhead
PtIndices m_iheads_onmodel;
PtIndices m_iheadless; // headless support points PtIndices m_iheadless; // headless support points
// supp. pts. connecting to model: point index and the ray hit data std::map<unsigned, EigenMesh3D::hit_result> m_head_to_ground_scans;
std::vector<std::pair<unsigned, EigenMesh3D::hit_result>> m_iheads_onmodel;
// normals for support points from model faces. // normals for support points from model faces.
PointSet m_support_nmls; PointSet m_support_nmls;
@ -223,15 +249,29 @@ class SupportTreeBuildsteps {
// For connecting a head to a nearby pillar. // For connecting a head to a nearby pillar.
bool connect_to_nearpillar(const Head& head, long nearpillar_id); bool connect_to_nearpillar(const Head& head, long nearpillar_id);
// Find route for a head to the ground. Inserts additional bridge from the
// head to the pillar if cannot create pillar directly.
// The optional dir parameter is the direction of the bridge which is the
// direction of the pinhead if omitted.
bool connect_to_ground(Head& head, const Vec3d &dir);
inline bool connect_to_ground(Head& head);
bool connect_to_model_body(Head &head);
bool search_pillar_and_connect(const Head& head); bool search_pillar_and_connect(const Head& head);
// This is a proxy function for pillar creation which will mind the gap // This is a proxy function for pillar creation which will mind the gap
// between the pad and the model bottom in zero elevation mode. // between the pad and the model bottom in zero elevation mode.
// jp is the starting junction point which needs to be routed down.
// sourcedir is the allowed direction of an optional bridge between the
// jp junction and the final pillar.
void create_ground_pillar(const Vec3d &jp, void create_ground_pillar(const Vec3d &jp,
const Vec3d &sourcedir, const Vec3d &sourcedir,
double radius, double radius,
long head_id = ID_UNSET); long head_id = ID_UNSET);
public: public:
SupportTreeBuildsteps(SupportTreeBuilder & builder, const SupportableMesh &sm); SupportTreeBuildsteps(SupportTreeBuilder & builder, const SupportableMesh &sm);

View file

@ -85,6 +85,53 @@ TEST_CASE("Pillar pairhash should be unique", "[SLASupportGeneration]") {
test_pairhash<unsigned, unsigned long>(); test_pairhash<unsigned, unsigned long>();
} }
TEST_CASE("Support point generator should be deterministic if seeded",
"[SLASupportGeneration], [SLAPointGen]") {
TriangleMesh mesh = load_model("A_upsidedown.obj");
sla::EigenMesh3D emesh{mesh};
sla::SupportConfig supportcfg;
sla::SupportPointGenerator::Config autogencfg;
autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm);
sla::SupportPointGenerator point_gen{emesh, autogencfg, [] {}, [](int) {}};
TriangleMeshSlicer slicer{&mesh};
auto bb = mesh.bounding_box();
double zmin = bb.min.z();
double zmax = bb.max.z();
double gnd = zmin - supportcfg.object_elevation_mm;
auto layer_h = 0.05f;
auto slicegrid = grid(float(gnd), float(zmax), layer_h);
std::vector<ExPolygons> slices;
slicer.slice(slicegrid, CLOSING_RADIUS, &slices, []{});
point_gen.execute(slices, slicegrid, 0);
auto get_chksum = [](const std::vector<sla::SupportPoint> &pts){
long long chksum = 0;
for (auto &pt : pts) {
auto p = scaled(pt.pos);
chksum += p.x() + p.y() + p.z();
}
return chksum;
};
long long checksum = get_chksum(point_gen.output());
size_t ptnum = point_gen.output().size();
REQUIRE(point_gen.output().size() > 0);
for (int i = 0; i < 20; ++i) {
point_gen.output().clear();
point_gen.execute(slices, slicegrid, 0);
REQUIRE(point_gen.output().size() == ptnum);
REQUIRE(checksum == get_chksum(point_gen.output()));
}
}
TEST_CASE("Flat pad geometry is valid", "[SLASupportGeneration]") { TEST_CASE("Flat pad geometry is valid", "[SLASupportGeneration]") {
sla::PadConfig padcfg; sla::PadConfig padcfg;

View file

@ -13,11 +13,6 @@ void test_support_model_collision(const std::string &obj_filename,
// the supports will not touch the model body. // the supports will not touch the model body.
supportcfg.head_penetration_mm = -0.15; supportcfg.head_penetration_mm = -0.15;
// TODO: currently, the tailheads penetrating into the model body do not
// respect the penetration parameter properly. No issues were reported so
// far but we should definitely fix this.
supportcfg.ground_facing_only = true;
test_supports(obj_filename, supportcfg, hollowingcfg, drainholes, byproducts); test_supports(obj_filename, supportcfg, hollowingcfg, drainholes, byproducts);
// Slice the support mesh given the slice grid of the model. // Slice the support mesh given the slice grid of the model.
@ -115,8 +110,10 @@ void test_supports(const std::string &obj_filename,
// Create the support point generator // Create the support point generator
sla::SupportPointGenerator::Config autogencfg; sla::SupportPointGenerator::Config autogencfg;
autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm); autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm);
sla::SupportPointGenerator point_gen{emesh, out.model_slices, out.slicegrid, sla::SupportPointGenerator point_gen{emesh, autogencfg, [] {}, [](int) {}};
autogencfg, [] {}, [](int) {}};
long seed = 0; // Make the test repeatable
point_gen.execute(out.model_slices, out.slicegrid, seed);
// Get the calculated support points. // Get the calculated support points.
std::vector<sla::SupportPoint> support_points = point_gen.output(); std::vector<sla::SupportPoint> support_points = point_gen.output();