Simple attempt to smooth the lay flat triangles
This commit is contained in:
parent
25a6c7e30e
commit
93ce0d23b7
@ -2209,14 +2209,49 @@ void GLCanvas3D::update_gizmos_data()
|
||||
TriangleMesh ch = model_object->mesh().convex_hull3d();
|
||||
stl_facet* facet_ptr = ch.stl.facet_start;
|
||||
std::vector<Pointf3s> points;
|
||||
const unsigned int k = 20;
|
||||
const float ratio = 0.2f;
|
||||
const unsigned int N = 3; // 3 - triangle
|
||||
|
||||
while (facet_ptr < ch.stl.facet_start+ch.stl.stats.number_of_facets) {
|
||||
Pointf3 a = Pointf3(facet_ptr->vertex[1].x - facet_ptr->vertex[0].x, facet_ptr->vertex[1].y - facet_ptr->vertex[0].y, facet_ptr->vertex[1].z - facet_ptr->vertex[0].z);
|
||||
Pointf3 b = Pointf3(facet_ptr->vertex[2].x - facet_ptr->vertex[0].x, facet_ptr->vertex[2].y - facet_ptr->vertex[0].y, facet_ptr->vertex[2].z - facet_ptr->vertex[0].z);
|
||||
|
||||
|
||||
if (0.5 * sqrt(dot(cross(a, b), cross(a,b))) > 50.f) {
|
||||
points.emplace_back(Pointf3s());
|
||||
for (unsigned int j=0; j<3; ++j)
|
||||
points.back().emplace_back(Pointf3(facet_ptr->vertex[j].x, facet_ptr->vertex[j].y, facet_ptr->vertex[j].z));
|
||||
points.emplace_back(Pointf3s(2*k*N));
|
||||
|
||||
std::vector<std::pair<unsigned int, unsigned int>> neighbours;
|
||||
if (k != 0) {
|
||||
for (unsigned int j=0; j<N; ++j) {
|
||||
points.back()[j*2*k] = Pointf3(facet_ptr->vertex[j].x, facet_ptr->vertex[j].y, facet_ptr->vertex[j].z);
|
||||
neighbours.push_back(std::make_pair((int)(j*2*k-k) < 0 ? (N-1)*2*k+k : j*2*k-k, j*2*k+k));
|
||||
}
|
||||
|
||||
for (unsigned int i=0; i<k; ++i) {
|
||||
// Calculate middle of each edge so that neighbours points to something useful:
|
||||
for (unsigned int j=0; j<N; ++j)
|
||||
if (i==0)
|
||||
points.back()[j*2*k+k] = 0.5f * (points.back()[j*2*k] + points.back()[j==N-1 ? 0 : (j+1)*2*k]);
|
||||
else {
|
||||
float r = 0.2+0.3/(k-1)*i;
|
||||
points.back()[neighbours[j].first] = r*points.back()[j*2*k] + (1-r) * points.back()[neighbours[j].first-1];
|
||||
points.back()[neighbours[j].second] = r*points.back()[j*2*k] + (1-r) * points.back()[neighbours[j].second+1];
|
||||
}
|
||||
// Now we have a triangle and valid neighbours, we can do an iteration:
|
||||
for (unsigned int j=0; j<N; ++j)
|
||||
points.back()[2*k*j] = (1-ratio) * points.back()[2*k*j] + ratio * 0.5*(points.back()[neighbours[j].first] + points.back()[neighbours[j].second]);
|
||||
|
||||
for (auto& n : neighbours) {
|
||||
++n.first;
|
||||
--n.second;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
for (unsigned int j=0; j<N; ++j)
|
||||
points.back().emplace_back(Pointf3(facet_ptr->vertex[j].x, facet_ptr->vertex[j].y, facet_ptr->vertex[j].z));
|
||||
|
||||
points.back().emplace_back(Pointf3(facet_ptr->normal.x, facet_ptr->normal.y, facet_ptr->normal.z));
|
||||
}
|
||||
facet_ptr+=1;
|
||||
|
Loading…
Reference in New Issue
Block a user