Rectilinear fill

This commit is contained in:
Alessandro Ranellucci 2011-09-05 12:21:27 +02:00
parent 428006264d
commit 9e111d0a6d
11 changed files with 317 additions and 33 deletions

View File

@ -28,20 +28,26 @@ Also, http://xkcd.com/224/
## What's its current status?
Slic3r can now successfully parse and analyze an STL file by slicing it in
layers and representing internally the following features:
Slic3r is able to:
* holes in surfaces;
* external top/bottom surfaces.
* read binary and ASCII STL files;
* generate multiple perimeters (skins);
* generate rectilinear feed (100% solid for external surfaces or with customizable less density for inner surfaces);
* use relative or absolute extrusion commands;
* center print around bed center point;
* output relevant GCODE.
This kind of abstraction will allow to implement particular logic and allow the
user to specify custom options.
Roadmap include the following goals:
It is also able to generate perimeters and to produce working GCODE.
To reach a minimum level of usability, I need to implement an algorithm to generate
surface fill.
Future goals include support material, options to control bridges, skirt, cool.
* set up a command line interface and hide debug messages;
* output some statistics;
* allow the user to customize initial and final GCODE commands;
* option for filling multiple solid layers near external surfaces;
* support material for internal perimeters;
* ability to infill in the direction of bridges;
* skirt;
* cool;
* nice packaging for cross-platform deployment.
## Is it usable already?

View File

@ -4,6 +4,7 @@ use strict;
use warnings;
use Slic3r::ExtrusionPath;
use Slic3r::Fill;
use Slic3r::Layer;
use Slic3r::Line;
use Slic3r::Perimeter;
@ -17,6 +18,7 @@ use Slic3r::Surface;
our $layer_height = 0.4;
our $resolution = 0.1;
our $perimeter_offsets = 3;
our $fill_density = 0.2; # 1 = 100%
our $flow_width = 0.4; # TODO: verify this is a multiple of $resolution
our $temperature = 195;

6
lib/Slic3r/Fill.pm Normal file
View File

@ -0,0 +1,6 @@
package Slic3r::Fill;
use Moose;
use Slic3r::Fill::Rectilinear;
1;

View File

@ -0,0 +1,221 @@
package Slic3r::Fill::Rectilinear;
use Moose;
use constant epsilon => 1E-10;
use constant PI => 4 * atan2(1, 1);
use constant X1 => 0;
use constant Y1 => 1;
use constant X2 => 2;
use constant Y2 => 3;
use Math::Geometry::Planar;
use XXX;
sub make_fill {
my $self = shift;
my ($print, $layer) = @_;
printf "Filling layer %d:\n", $layer->id;
# let's alternate fill direction
my @axes = $layer->id % 2 == 0 ? (0,1) : (1,0);
printf " primary axis: %d\n", $axes[0];
foreach my $surface (@{ $layer->fill_surfaces }) {
printf " Processing surface %s:\n", $surface->id;
my $polygon = $surface->mgp_polygon;
# rotate surface as needed
if ($axes[0] == 1) {
$polygon = $polygon->rotate(PI/2)->move($print->x_length, $print->y_length);
}
# force 100% density for external surfaces
my $density = $surface->surface_type eq 'internal' ? $Slic3r::fill_density : 1;
my $distance_between_lines = $Slic3r::flow_width / $Slic3r::resolution / $density;
my $number_of_lines = ($axes[0] == 0 ? $print->x_length : $print->y_length) / $distance_between_lines;
#printf "distance_between_lines = %f\n", $distance_between_lines;
#printf "number_of_lines = %d\n", $number_of_lines;
#printf "axes = %d, %d\n", @axes;
# this arrayref will hold intersection points of the fill grid with surface segments
my $points = [ map [], 0..$number_of_lines-1 ];
foreach my $line (map $self->_lines_from_mgp_points($_), @{ $polygon->polygons }) {
# for a possible implementation of "infill in direction of bridges"
# we should rotate $line so that primary axis is in detected direction;
# then, generated extrusion paths should be rotated back to the original
# coordinate system
# find out the coordinates
my @coordinates = map @$_, @$line;
printf "Segment %d,%d - %d,%d\n", @coordinates;
# get the extents of the segment along the primary axis
my @line_c = sort ($coordinates[X1], $coordinates[X2]);
for (my $c = $line_c[0]; $c <= $line_c[1]; $c += $distance_between_lines) {
my $i = sprintf('%.0f', $c / $distance_between_lines) - 1;
# if the segment is parallel to our ray, there will be two intersection points
if ($line_c[0] == $line_c[1]) {
printf " Segment is parallel!\n";
push @{ $points->[$i] }, $coordinates[Y1], $coordinates[Y2];
printf " intersections at %f (%d) = %f, %f\n", $c, $i, $points->[$i][-2], $points->[$i][-1];
} else {
printf " Segment NOT parallel!\n";
# one point of intersection
push @{ $points->[$i] }, $coordinates[Y1] + ($coordinates[Y2] - $coordinates[Y1])
* ($c - $coordinates[X1]) / ($coordinates[X2] - $coordinates[X1]);
printf " intersection at %f (%d) = %f\n", $c, $i, $points->[$i][-1];
}
}
}
# sort and remove duplicates
$points = [
map {
my %h = map { sprintf("%.0f", $_) => 1 } @$_;
[ sort keys %h ];
} @$points
];
# generate extrusion paths
my (@paths, @path_points) = ();
my $direction = 0;
my $stop_path = sub {
# defensive programming
if (@path_points == 1) {
YYY \@path_points;
die "There shouldn't be only one point in the current path";
}
# if we were constructing a path, stop it
push @paths, [ @path_points ] if @path_points;
@path_points = ();
};
# loop until we have spare points
while (map @$_, @$points) {
# loop through rows
ROW: for (my $i = 0; $i < $number_of_lines; $i++) {
my $row = $points->[$i];
printf "Processing row %d...\n", $i;
if (!@$row) {
printf " no points\n";
$stop_path->();
next ROW;
}
printf " points = %s\n", join ', ', @$row;
# coordinate of current row
my $c = ($i + 1) * $distance_between_lines;
# need to start a path?
if (!@path_points) {
push @path_points, [ $c, shift @$row ];
}
my @connectable_points = $self->find_connectable_points($polygon, $path_points[-1], $c, $row);
@connectable_points = reverse @connectable_points if $direction == 1;
printf " found %d connectable points = %s\n", scalar(@connectable_points),
join ', ', @connectable_points;
if (!@connectable_points && @path_points && $path_points[-1][0] != $c) {
# no connectable in this row
$stop_path->();
}
foreach my $p (@connectable_points) {
push @path_points, [ $c, $p ];
@$row = grep $_ != $p, @$row; # remove point from row
}
# invert direction
$direction = $direction ? 0 : 1;
}
$stop_path->() if @path_points;
}
# paths must be rotated back
if ($axes[0] == 1) {
@paths = map $self->_mgp_from_points_ref($_)->move(-$print->x_length, -$print->y_length)->rotate(-PI()/2)->points, @paths;
}
# save into layer
push @{ $layer->fills }, map Slic3r::ExtrusionPath->new_from_points(@$_), @paths;
}
}
# this function will select the first contiguous block of
# points connectable to a given one
sub find_connectable_points {
my $self = shift;
my ($polygon, $point, $c, $points) = @_;
my @connectable_points = ();
foreach my $p (@$points) {
push @connectable_points, $p
if $self->can_connect($polygon, $point, [ $c, $p ]);
}
return @connectable_points;
}
# this subroutine tries to determine whether two points in a surface
# are connectable without crossing contour or holes
sub can_connect {
my $self = shift;
my ($polygon, $p1, $p2) = @_;
# there's room for optimization here
# this is not needed since we assume that $p1 and $p2 belong to $polygon
###for ($p1, $p2) {
###return 0 unless $polygon->isinside($_);
###}
# check whether the $p1-$p2 segment doesn't intersect any segment
# of the contour or of holes
foreach my $points (@{ $polygon->polygons }) {
foreach my $line ($self->_lines_from_mgp_points($points)) {
my $point = SegmentIntersection([$p1, $p2, @$line]);
if ($point && !$self->points_coincide($point, $p1) && !$self->points_coincide($point, $p2)) {
return 0;
}
}
}
return 1;
}
sub points_coincide {
my $self = shift;
my ($p1, $p2) = @_;
return 0 if $p2->[0] - $p1->[0] < epsilon && $p2->[1] - $p1->[1] < epsilon;
return 1;
}
sub _lines_from_mgp_points {
my $self = shift;
my ($points) = @_;
my @lines = ();
my $last_point = $points->[-1];
foreach my $point (@$points) {
push @lines, [ $last_point, $point ];
$last_point = $point;
}
return @lines;
}
sub _mgp_from_points_ref {
my $self = shift;
my ($points) = @_;
my $p = Math::Geometry::Planar->new;
$p->points($points);
return $p;
}
1;

View File

@ -55,6 +55,13 @@ has 'fill_surfaces' => (
default => sub { [] },
);
# ordered collection of extrusion paths to fill surfaces
has 'fills' => (
is => 'rw',
isa => 'ArrayRef[Slic3r::ExtrusionPath]',
default => sub { [] },
);
sub z {
my $self = shift;
return $self->id * $Slic3r::layer_height / $Slic3r::resolution;

View File

@ -45,6 +45,11 @@ sub id {
return $self->a->id . "-" . $self->b->id;
}
sub coordinates {
my $self = shift;
return ($self->a->coordinates, $self->b->coordinates);
}
sub coincides_with {
my $self = shift;
my ($line) = @_;
@ -55,7 +60,7 @@ sub coincides_with {
sub has_endpoint {
my $self = shift;
my ($point) = @_;#printf " %s has endpoint %s: %s\n", $self->id, $point->id, ($point eq $self->a || $point eq $self->b);
my ($point) = @_;
return $point->coincides_with($self->a) || $point->coincides_with($self->b);
}

View File

@ -44,7 +44,8 @@ sub make_perimeter {
# create one more offset to be used as boundary for fill
push @{ $layer->fill_surfaces },
map Slic3r::Surface->new_from_mgp($_), $self->offset_polygon($perimeters[-1]);
map Slic3r::Surface->new_from_mgp($_, surface_type => $surface->surface_type),
$self->offset_polygon($perimeters[-1]);
}
# generate paths for holes

View File

@ -31,6 +31,11 @@ sub id {
return $self->x . "," . $self->y; #;;
}
sub coordinates {
my $self = shift;
return ($self->x, $self->y); #))
}
sub coincides_with {
my $self = shift;
my ($point) = @_;

View File

@ -55,6 +55,19 @@ sub extrude_perimeters {
}
}
sub extrude_fills {
my $self = shift;
my $fill_extruder = Slic3r::Fill::Rectilinear->new;
foreach my $layer (@{ $self->layers }) {
$fill_extruder->make_fill($self, $layer);
printf " generated %d paths: %s\n",
scalar @{ $layer->fills },
join ' ', map $_->id, @{ $layer->fills };
}
}
sub export_gcode {
my $self = shift;
my ($file) = @_;
@ -107,17 +120,9 @@ sub export_gcode {
print $fh "\n";
};
# write gcode commands layer by layer
foreach my $layer (@{ $self->layers }) {
my $z = ($layer->z * $Slic3r::resolution);
# go to layer
# TODO: retraction
printf $fh "G1 Z%.${dec}f F%.${dec}f ; move to next layer\n",
$z, $travel_feed_rate;
# extrude perimeters
foreach my $perimeter (@{ $layer->perimeters }) {
my $z;
my $Extrude = sub {
my ($path, $description) = @_;
# reset extrusion distance counter
my $extrusion_distance = 0;
@ -126,15 +131,32 @@ sub export_gcode {
}
# go to first point (without extruding)
$G1->($perimeter->lines->[0]->a, $z, 0, 'move to first perimeter point');
$G1->($path->lines->[0]->a, $z, 0, "move to first $description point");
# extrude while going to next points
foreach my $line (@{ $perimeter->lines }) {
foreach my $line (@{ $path->lines }) {
$extrusion_distance = 0 if $Slic3r::use_relative_e_distances;
$extrusion_distance += $line->a->distance_to($line->b);
$G1->($line->b, $z, $extrusion_distance, 'perimeter');
}
$G1->($line->b, $z, $extrusion_distance, $description);
}
# TODO: retraction
};
# write gcode commands layer by layer
foreach my $layer (@{ $self->layers }) {
$z = ($layer->z * $Slic3r::resolution);
# go to layer
# TODO: retraction
printf $fh "G1 Z%.${dec}f F%.${dec}f ; move to next layer\n",
$z, $travel_feed_rate;
# extrude perimeters
$Extrude->($_, 'perimeter') for @{ $layer->perimeters };
# extrude fills
$Extrude->($_, 'fill') for @{ $layer->fills };
}
# write end commands to file

View File

@ -20,6 +20,8 @@ has 'holes' => (
},
);
# TODO: to allow for multiple solid skins to be filled near external
# surfaces, a new type should be defined: internal-solid
has 'surface_type' => (
is => 'rw',
isa => enum([qw(internal bottom top)]),
@ -44,7 +46,7 @@ sub BUILD {
sub new_from_mgp {
my $self = shift;
my ($polygon) = @_;
my ($polygon, %params) = @_;
my ($contour_p, @holes_p) = @{ $polygon->polygons };
@ -53,6 +55,7 @@ sub new_from_mgp {
holes => [
map Slic3r::Polyline::Closed->new_from_points(@$_), @holes_p
],
%params,
);
}
@ -78,4 +81,9 @@ sub mgp_polygon {
return $p;
}
sub lines {
my $self = shift;
return @{ $self->contour->lines }, map @{ $_->lines }, @{ $self->holes };
}
1;

View File

@ -15,6 +15,7 @@ my $stl_parser = Slic3r::STL->new;
my $print = $stl_parser->parse_file("testcube20mm.stl");
$print->extrude_perimeters;
$print->extrude_fills;
$print->export_gcode("testcube20mm.gcode");