fixing optimizer and concurrency::reduce

This commit is contained in:
tamasmeszaros 2020-08-31 18:53:44 +02:00
parent c193d7c930
commit c10ff4f503
6 changed files with 142 additions and 41 deletions

View File

@ -1,7 +1,7 @@
#ifndef BRUTEFORCEOPTIMIZER_HPP
#define BRUTEFORCEOPTIMIZER_HPP
#include <libslic3r/Optimize/NLoptOptimizer.hpp>
#include <libslic3r/Optimize/Optimizer.hpp>
namespace Slic3r { namespace opt {
@ -24,19 +24,19 @@ struct AlgBurteForce {
AlgBurteForce(const StopCriteria &cr, size_t gs): stc{cr}, gridsz{gs} {}
template<int D, size_t N, class Fn, class Cmp>
void run(std::array<size_t, N> &idx,
bool run(std::array<size_t, N> &idx,
Result<N> &result,
const Bounds<N> &bounds,
Fn &&fn,
Cmp &&cmp)
{
if (stc.stop_condition()) return;
if (stc.stop_condition()) return false;
if constexpr (D < 0) {
Input<N> inp;
auto max_iter = stc.max_iterations();
if (max_iter && num_iter(idx, gridsz) >= max_iter) return;
if (max_iter && num_iter(idx, gridsz) >= max_iter) return false;
for (size_t d = 0; d < N; ++d) {
const Bound &b = bounds[d];
@ -46,17 +46,25 @@ struct AlgBurteForce {
auto score = fn(inp);
if (cmp(score, result.score)) {
double absdiff = std::abs(score - result.score);
result.score = score;
result.optimum = inp;
if (absdiff < stc.abs_score_diff() ||
absdiff < stc.rel_score_diff() * std::abs(score))
return false;
}
} else {
for (size_t i = 0; i < gridsz; ++i) {
idx[D] = i;
run<D - 1>(idx, result, bounds, std::forward<Fn>(fn),
std::forward<Cmp>(cmp));
if (!run<D - 1>(idx, result, bounds, std::forward<Fn>(fn),
std::forward<Cmp>(cmp))) return false;
}
}
return true;
}
template<class Fn, size_t N>

View File

@ -43,23 +43,36 @@ template<> struct _ccr<true>
});
}
template<class I, class Fn, class MergeFn, class T>
template<class I, class MergeFn, class T, class AccessFn>
static T reduce(I from,
I to,
const T &init,
Fn && fn,
MergeFn &&mergefn,
size_t granularity = 1)
AccessFn &&access,
size_t granularity = 1
)
{
return tbb::parallel_reduce(
tbb::blocked_range{from, to, granularity}, init,
[&](const auto &range, T subinit) {
T acc = subinit;
loop_(range, [&](auto &i) { acc = mergefn(acc, fn(i, acc)); });
loop_(range, [&](auto &i) { acc = mergefn(acc, access(i)); });
return acc;
},
std::forward<MergeFn>(mergefn));
}
template<class I, class MergeFn, class T>
static IteratorOnly<I, T> reduce(I from,
I to,
const T & init,
MergeFn &&mergefn,
size_t granularity = 1)
{
return reduce(
from, to, init, std::forward<MergeFn>(mergefn),
[](typename I::value_type &i) { return i; }, granularity);
}
};
template<> struct _ccr<false>
@ -92,18 +105,31 @@ public:
loop_(from, to, std::forward<Fn>(fn));
}
template<class I, class Fn, class MergeFn, class T>
static IntegerOnly<I, T> reduce(I from,
template<class I, class MergeFn, class T, class AccessFn>
static T reduce(I from,
I to,
const T & init,
Fn && fn,
MergeFn &&mergefn,
size_t /*granularity*/ = 1)
AccessFn &&access,
size_t /*granularity*/ = 1
)
{
T acc = init;
loop_(from, to, [&](auto &i) { acc = mergefn(acc, fn(i, acc)); });
loop_(from, to, [&](auto &i) { acc = mergefn(acc, access(i)); });
return acc;
}
template<class I, class MergeFn, class T>
static IteratorOnly<I, T> reduce(I from,
I to,
const T &init,
MergeFn &&mergefn,
size_t /*granularity*/ = 1
)
{
return reduce(from, to, init, std::forward<MergeFn>(mergefn),
[](typename I::value_type &i) { return i; });
}
};
using ccr = _ccr<USE_FULL_CONCURRENCY>;

View File

@ -31,7 +31,7 @@ VertexFaceMap create_vertex_face_map(const TriangleMesh &mesh) {
return vmap;
}
// Find transformed mesh ground level without copy and with parallell reduce.
// Find transformed mesh ground level without copy and with parallel reduce.
double find_ground_level(const TriangleMesh &mesh,
const Transform3d & tr,
size_t threads)
@ -40,15 +40,13 @@ double find_ground_level(const TriangleMesh &mesh,
auto minfn = [](double a, double b) { return std::min(a, b); };
auto findminz = [&mesh, &tr] (size_t vi, double submin) {
Vec3d v = tr * mesh.its.vertices[vi].template cast<double>();
return std::min(submin, v.z());
auto accessfn = [&mesh, &tr] (size_t vi) {
return (tr * mesh.its.vertices[vi].template cast<double>()).z();
};
double zmin = mesh.its.vertices.front().z();
return ccr_par::reduce(size_t(0), vsize, zmin, findminz, minfn,
vsize / threads);
size_t granularity = vsize / threads;
return ccr_par::reduce(size_t(0), vsize, zmin, minfn, accessfn, granularity);
}
// Try to guess the number of support points needed to support a mesh
@ -65,7 +63,7 @@ double calculate_model_supportedness(const TriangleMesh & mesh,
double zmin = find_ground_level(mesh, tr, Nthr);
auto score_mergefn = [&mesh, &tr, zmin](size_t fi, double subscore) {
auto accessfn = [&mesh, &tr, zmin](size_t fi) {
static const Vec3d DOWN = {0., 0., -1.};
@ -83,21 +81,18 @@ double calculate_model_supportedness(const TriangleMesh & mesh,
double zlvl = zmin + 0.1;
if (p1.z() <= zlvl && p2.z() <= zlvl && p3.z() <= zlvl) {
// score += area * POINTS_PER_UNIT_AREA;
return subscore;
return 0.;
}
double phi = 1. - std::acos(N.dot(DOWN)) / PI;
phi = phi * (phi > 0.5);
// phi = phi * (phi > 0.5);
// std::cout << "area: " << area << std::endl;
subscore += area * POINTS_PER_UNIT_AREA * phi;
return subscore;
return area * POINTS_PER_UNIT_AREA * phi;
};
double score = ccr_seq::reduce(size_t(0), facesize, 0., score_mergefn,
std::plus<double>{}, facesize / Nthr);
double score = ccr_par::reduce(size_t(0), facesize, 0., std::plus<double>{}, accessfn, facesize / Nthr);
return score / mesh.its.indices.size();
}
@ -107,7 +102,7 @@ std::array<double, 2> find_best_rotation(const ModelObject& modelobj,
std::function<void(unsigned)> statuscb,
std::function<bool()> stopcond)
{
static const unsigned MAX_TRIES = 100;
static const unsigned MAX_TRIES = 10000;
// return value
std::array<double, 2> rot;
@ -158,10 +153,10 @@ std::array<double, 2> find_best_rotation(const ModelObject& modelobj,
.max_iterations(max_tries)
.rel_score_diff(1e-6)
.stop_condition(stopcond),
10 /*grid size*/);
100 /*grid size*/);
// We are searching rotations around the three axes x, y, z. Thus the
// problem becomes a 3 dimensional optimization task.
// We are searching rotations around only two axes x, y. Thus the
// problem becomes a 2 dimensional optimization task.
// We can specify the bounds for a dimension in the following way:
auto b = opt::Bound{-PI, PI};

View File

@ -17,6 +17,7 @@ add_executable(${_TEST_NAME}_tests
test_marchingsquares.cpp
test_timeutils.cpp
test_voronoi.cpp
test_optimizers.cpp
test_png_io.cpp
test_timeutils.cpp
)

View File

@ -0,0 +1,59 @@
#include <catch2/catch.hpp>
#include <test_utils.hpp>
#include <libslic3r/Optimize/BruteforceOptimizer.hpp>
#include <libslic3r/Optimize/NLoptOptimizer.hpp>
void check_opt_result(double score, double ref, double abs_err, double rel_err)
{
double abs_diff = std::abs(score - ref);
double rel_diff = std::abs(abs_diff / std::abs(ref));
bool abs_reached = abs_diff < abs_err;
bool rel_reached = rel_diff < rel_err;
bool precision_reached = abs_reached || rel_reached;
REQUIRE(precision_reached);
}
template<class Opt> void test_sin(Opt &&opt)
{
using namespace Slic3r::opt;
auto optfunc = [](const auto &in) {
auto [phi] = in;
return std::sin(phi);
};
auto init = initvals({PI});
auto optbounds = bounds({ {0., 2 * PI}});
Result result_min = opt.to_min().optimize(optfunc, init, optbounds);
Result result_max = opt.to_max().optimize(optfunc, init, optbounds);
check_opt_result(result_min.score, -1., 1e-2, 1e-4);
check_opt_result(result_max.score, 1., 1e-2, 1e-4);
}
template<class Opt> void test_sphere_func(Opt &&opt)
{
using namespace Slic3r::opt;
Result result = opt.to_min().optimize([](const auto &in) {
auto [x, y] = in;
return x * x + y * y + 1.;
}, initvals({.6, -0.2}), bounds({{-1., 1.}, {-1., 1.}}));
check_opt_result(result.score, 1., 1e-2, 1e-4);
}
TEST_CASE("Test brute force optimzer for basic 1D and 2D functions", "[Opt]") {
using namespace Slic3r::opt;
Optimizer<AlgBruteForce> opt;
test_sin(opt);
test_sphere_func(opt);
}

View File

@ -5,6 +5,7 @@
#include "sla_test_utils.hpp"
#include <libslic3r/SLA/SupportTreeMesher.hpp>
#include <libslic3r/SLA/Concurrency.hpp>
namespace {
@ -239,3 +240,14 @@ TEST_CASE("halfcone test", "[halfcone]") {
m.require_shared_vertices();
m.WriteOBJFile("Halfcone.obj");
}
TEST_CASE("Test concurrency")
{
std::vector<double> vals = grid(0., 100., 10.);
double ref = std::accumulate(vals.begin(), vals.end(), 0.);
double s = sla::ccr_par::reduce(vals.begin(), vals.end(), 0., std::plus<double>{});
REQUIRE(s == Approx(ref));
}