Merge branch 'lh_fdm_supports_smart_fill'

This commit is contained in:
Lukáš Hejl 2021-10-18 11:35:39 +02:00
commit c660091bfa
10 changed files with 189 additions and 95 deletions

View File

@ -32,6 +32,8 @@ struct SlopeDetection
uniform vec4 uniform_color;
uniform SlopeDetection slope;
uniform bool offset_depth_buffer;
#ifdef ENABLE_ENVIRONMENT_MAP
uniform sampler2D environment_tex;
uniform bool use_environment_tex;
@ -50,8 +52,6 @@ varying float world_pos_z;
varying float world_normal_z;
varying vec3 eye_normal;
uniform bool compute_triangle_normals_in_fs;
void main()
{
if (any(lessThan(clipping_planes_dots, ZERO)))
@ -59,36 +59,7 @@ void main()
vec3 color = uniform_color.rgb;
float alpha = uniform_color.a;
vec2 intensity_fs = intensity;
vec3 eye_normal_fs = eye_normal;
float world_normal_z_fs = world_normal_z;
if (compute_triangle_normals_in_fs) {
vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz)));
#ifdef FLIP_TRIANGLE_NORMALS
triangle_normal = -triangle_normal;
#endif
// First transform the normal into camera space and normalize the result.
eye_normal_fs = normalize(gl_NormalMatrix * triangle_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(eye_normal_fs, LIGHT_TOP_DIR), 0.0);
intensity_fs = vec2(0.0, 0.0);
intensity_fs.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
vec3 position = (gl_ModelViewMatrix * model_pos).xyz;
intensity_fs.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal_fs)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(eye_normal_fs, LIGHT_FRONT_DIR), 0.0);
intensity_fs.x += NdotL * LIGHT_FRONT_DIFFUSE;
// z component of normal vector in world coordinate used for slope shading
world_normal_z_fs = slope.actived ? (normalize(slope.volume_world_normal_matrix * triangle_normal)).z : 0.0;
}
if (slope.actived && world_normal_z_fs < slope.normal_z - EPSILON) {
if (slope.actived && world_normal_z < slope.normal_z - EPSILON) {
color = vec3(0.7, 0.7, 1.0);
alpha = 1.0;
}
@ -96,8 +67,13 @@ void main()
color = (any(lessThan(delta_box_min, ZERO)) || any(greaterThan(delta_box_max, ZERO))) ? mix(color, ZERO, 0.3333) : color;
#ifdef ENABLE_ENVIRONMENT_MAP
if (use_environment_tex)
gl_FragColor = vec4(0.45 * texture2D(environment_tex, normalize(eye_normal_fs).xy * 0.5 + 0.5).xyz + 0.8 * color * intensity_fs.x, alpha);
gl_FragColor = vec4(0.45 * texture2D(environment_tex, normalize(eye_normal).xy * 0.5 + 0.5).xyz + 0.8 * color * intensity.x, alpha);
else
#endif
gl_FragColor = vec4(vec3(intensity_fs.y) + color * intensity_fs.x, alpha);
gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha);
// In the support painting gizmo and the seam painting gizmo are painted triangles rendered over the already
// rendered object. To resolved z-fighting between previously rendered object and painted triangles, values
// inside the depth buffer are offset by small epsilon for painted triangles inside those gizmos.
gl_FragDepth = gl_FragCoord.z - (offset_depth_buffer ? EPSILON : 0.0);
}

View File

@ -54,26 +54,22 @@ varying float world_pos_z;
varying float world_normal_z;
varying vec3 eye_normal;
uniform bool compute_triangle_normals_in_fs;
void main()
{
if (!compute_triangle_normals_in_fs) {
// First transform the normal into camera space and normalize the result.
eye_normal = normalize(gl_NormalMatrix * gl_Normal);
// First transform the normal into camera space and normalize the result.
eye_normal = normalize(gl_NormalMatrix * gl_Normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
vec3 position = (gl_ModelViewMatrix * gl_Vertex).xyz;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
vec3 position = (gl_ModelViewMatrix * gl_Vertex).xyz;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
}
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
model_pos = gl_Vertex;
// Point in homogenous coordinates.
@ -90,8 +86,7 @@ void main()
}
// z component of normal vector in world coordinate used for slope shading
if (!compute_triangle_normals_in_fs)
world_normal_z = slope.actived ? (normalize(slope.volume_world_normal_matrix * gl_Normal)).z : 0.0;
world_normal_z = slope.actived ? (normalize(slope.volume_world_normal_matrix * gl_Normal)).z : 0.0;
gl_Position = ftransform();
// Fill in the scalars for fragment shader clipping. Fragments with any of these components lower than zero are discarded.

View File

@ -0,0 +1,55 @@
#version 110
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
#define INTENSITY_AMBIENT 0.3
const vec3 ZERO = vec3(0.0, 0.0, 0.0);
const float EPSILON = 0.0001;
uniform vec4 uniform_color;
varying vec3 clipping_planes_dots;
varying vec4 model_pos;
void main()
{
if (any(lessThan(clipping_planes_dots, ZERO)))
discard;
vec3 color = uniform_color.rgb;
float alpha = uniform_color.a;
vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz)));
#ifdef FLIP_TRIANGLE_NORMALS
triangle_normal = -triangle_normal;
#endif
// First transform the normal into camera space and normalize the result.
vec3 eye_normal = normalize(gl_NormalMatrix * triangle_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
// x = diffuse, y = specular;
vec2 intensity = vec2(0.0, 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
vec3 position = (gl_ModelViewMatrix * model_pos).xyz;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha);
}

View File

@ -0,0 +1,23 @@
#version 110
const vec3 ZERO = vec3(0.0, 0.0, 0.0);
uniform mat4 volume_world_matrix;
// Clipping plane, x = min z, y = max z. Used by the FFF and SLA previews to clip with a top / bottom plane.
uniform vec2 z_range;
// Clipping plane - general orientation. Used by the SLA gizmo.
uniform vec4 clipping_plane;
varying vec3 clipping_planes_dots;
varying vec4 model_pos;
void main()
{
model_pos = gl_Vertex;
// Point in homogenous coordinates.
vec4 world_pos = volume_world_matrix * gl_Vertex;
gl_Position = ftransform();
// Fill in the scalars for fragment shader clipping. Fragments with any of these components lower than zero are discarded.
clipping_planes_dots = vec3(dot(world_pos, clipping_plane), world_pos.z - z_range.x, z_range.y - world_pos.z);
}

View File

@ -456,7 +456,7 @@ private:
GLGizmosManager m_gizmos;
GLToolbar m_main_toolbar;
GLToolbar m_undoredo_toolbar;
ClippingPlane m_clipping_planes[2];
std::array<ClippingPlane, 2> m_clipping_planes;
ClippingPlane m_camera_clipping_plane;
bool m_use_clipping_planes;
SlaCap m_sla_caps[2];
@ -651,6 +651,9 @@ public:
void reset_clipping_planes_cache() { m_sla_caps[0].triangles.clear(); m_sla_caps[1].triangles.clear(); }
void set_use_clipping_planes(bool use) { m_use_clipping_planes = use; }
bool get_use_clipping_planes() const { return m_use_clipping_planes; }
const std::array<ClippingPlane, 2> &get_clipping_planes() const { return m_clipping_planes; };
void set_color_by(const std::string& value);
void refresh_camera_scene_box();

View File

@ -61,25 +61,23 @@ std::pair<bool, std::string> GLShadersManager::init()
// used to render extrusion and travel paths as lines in gcode preview
valid &= append_shader("toolpaths_lines", { "toolpaths_lines.vs", "toolpaths_lines.fs" });
// used to render objects in 3d editor
// For Apple's on Arm CPU computed triangle normals inside fragment shader using dFdx and dFdy has the opposite direction.
// Because of this, objects had darker colors inside the multi-material gizmo.
// Based on https://stackoverflow.com/a/66206648, the similar behavior was also spotted on some other devices with Arm CPU.
if (platform_flavor() == PlatformFlavor::OSXOnArm)
valid &= append_shader("gouraud", { "gouraud.vs", "gouraud.fs" }, { "FLIP_TRIANGLE_NORMALS"sv
valid &= append_shader("gouraud", { "gouraud.vs", "gouraud.fs" }
#if ENABLE_ENVIRONMENT_MAP
, "ENABLE_ENVIRONMENT_MAP"sv
#endif
});
else
valid &= append_shader("gouraud", { "gouraud.vs", "gouraud.fs" }
#if ENABLE_ENVIRONMENT_MAP
, { "ENABLE_ENVIRONMENT_MAP"sv }
, { "ENABLE_ENVIRONMENT_MAP"sv }
#endif
);
// used to render variable layers heights in 3d editor
valid &= append_shader("variable_layer_height", { "variable_layer_height.vs", "variable_layer_height.fs" });
// used to render highlight contour around selected triangles inside the multi-material gizmo
valid &= append_shader("mm_contour", { "mm_contour.vs", "mm_contour.fs" });
// Used to render painted triangles inside the multi-material gizmo. Triangle normals are computed inside fragment shader.
// For Apple's on Arm CPU computed triangle normals inside fragment shader using dFdx and dFdy has the opposite direction.
// Because of this, objects had darker colors inside the multi-material gizmo.
// Based on https://stackoverflow.com/a/66206648, the similar behavior was also spotted on some other devices with Arm CPU.
if (platform_flavor() == PlatformFlavor::OSXOnArm)
valid &= append_shader("mm_gouraud", {"mm_gouraud.vs", "mm_gouraud.fs"}, {"FLIP_TRIANGLE_NORMALS"sv});
else
valid &= append_shader("mm_gouraud", {"mm_gouraud.vs", "mm_gouraud.fs"});
return { valid, error };
}

View File

@ -143,7 +143,7 @@ void GLGizmoMmuSegmentation::render_painter_gizmo() const
glsafe(::glEnable(GL_BLEND));
glsafe(::glEnable(GL_DEPTH_TEST));
render_triangles(selection, false);
render_triangles(selection);
m_c->object_clipper()->render_cut();
m_c->instances_hider()->render_cut();
@ -174,6 +174,43 @@ void GLGizmoMmuSegmentation::set_painter_gizmo_data(const Selection &selection)
}
}
void GLGizmoMmuSegmentation::render_triangles(const Selection &selection) const
{
ClippingPlaneDataWrapper clp_data = this->get_clipping_plane_data();
auto *shader = wxGetApp().get_shader("mm_gouraud");
if (!shader)
return;
shader->start_using();
shader->set_uniform("clipping_plane", clp_data.clp_dataf);
shader->set_uniform("z_range", clp_data.z_range);
ScopeGuard guard([shader]() { if (shader) shader->stop_using(); });
const ModelObject *mo = m_c->selection_info()->model_object();
int mesh_id = -1;
for (const ModelVolume *mv : mo->volumes) {
if (!mv->is_model_part())
continue;
++mesh_id;
const Transform3d trafo_matrix = mo->instances[selection.get_instance_idx()]->get_transformation().get_matrix() * mv->get_matrix();
bool is_left_handed = trafo_matrix.matrix().determinant() < 0.;
if (is_left_handed)
glsafe(::glFrontFace(GL_CW));
glsafe(::glPushMatrix());
glsafe(::glMultMatrixd(trafo_matrix.data()));
shader->set_uniform("volume_world_matrix", trafo_matrix);
m_triangle_selectors[mesh_id]->render(m_imgui);
glsafe(::glPopMatrix());
if (is_left_handed)
glsafe(::glFrontFace(GL_CCW));
}
}
static void render_extruders_combo(const std::string &label,
const std::vector<std::string> &extruders,
const std::vector<std::array<float, 4>> &extruders_colors,
@ -554,9 +591,7 @@ void TriangleSelectorMmGui::render(ImGuiWrapper *imgui)
auto *shader = wxGetApp().get_current_shader();
if (!shader)
return;
assert(shader->get_name() == "gouraud");
ScopeGuard guard([shader]() { if (shader) shader->set_uniform("compute_triangle_normals_in_fs", false);});
shader->set_uniform("compute_triangle_normals_in_fs", true);
assert(shader->get_name() == "mm_gouraud");
for (size_t color_idx = 0; color_idx < m_gizmo_scene.triangle_indices.size(); ++color_idx)
if (m_gizmo_scene.has_VBOs(color_idx)) {
@ -569,7 +604,7 @@ void TriangleSelectorMmGui::render(ImGuiWrapper *imgui)
}
if (m_paint_contour.has_VBO()) {
ScopeGuard guard_gouraud([shader]() { shader->start_using(); });
ScopeGuard guard_mm_gouraud([shader]() { shader->start_using(); });
shader->stop_using();
auto *contour_shader = wxGetApp().get_shader("mm_contour");

View File

@ -89,6 +89,8 @@ public:
void set_painter_gizmo_data(const Selection& selection) override;
void render_triangles(const Selection& selection) const override;
// TriangleSelector::serialization/deserialization has a limit to store 19 different states.
// EXTRUDER_LIMIT + 1 states are used to storing the painting because also uncolored triangles are stored.
// When increasing EXTRUDER_LIMIT, it needs to ensure that TriangleSelector::serialization/deserialization

View File

@ -43,42 +43,40 @@ void GLGizmoPainterBase::set_painter_gizmo_data(const Selection& selection)
}
}
void GLGizmoPainterBase::render_triangles(const Selection& selection, const bool use_polygon_offset_fill) const
GLGizmoPainterBase::ClippingPlaneDataWrapper GLGizmoPainterBase::get_clipping_plane_data() const
{
const ModelObject* mo = m_c->selection_info()->model_object();
ScopeGuard offset_fill_guard([&use_polygon_offset_fill]() {
if (use_polygon_offset_fill)
glsafe(::glDisable(GL_POLYGON_OFFSET_FILL));
});
if (use_polygon_offset_fill) {
glsafe(::glEnable(GL_POLYGON_OFFSET_FILL));
glsafe(::glPolygonOffset(-5.0, -5.0));
}
ClippingPlaneDataWrapper clp_data_out{{0.f, 0.f, 1.f, FLT_MAX}, {-FLT_MAX, FLT_MAX}};
// Take care of the clipping plane. The normal of the clipping plane is
// saved with opposite sign than we need to pass to OpenGL (FIXME)
bool clipping_plane_active = m_c->object_clipper()->get_position() != 0.;
float clp_dataf[4] = {0.f, 0.f, 1.f, FLT_MAX};
if (clipping_plane_active) {
const ClippingPlane* clp = m_c->object_clipper()->get_clipping_plane();
for (size_t i=0; i<3; ++i)
clp_dataf[i] = -1.f * float(clp->get_data()[i]);
clp_dataf[3] = float(clp->get_data()[3]);
if (bool clipping_plane_active = m_c->object_clipper()->get_position() != 0.; clipping_plane_active) {
const ClippingPlane *clp = m_c->object_clipper()->get_clipping_plane();
for (size_t i = 0; i < 3; ++i)
clp_data_out.clp_dataf[i] = -1.f * float(clp->get_data()[i]);
clp_data_out.clp_dataf[3] = float(clp->get_data()[3]);
}
// z_range is calculated in the same way as in GLCanvas3D::_render_objects(GLVolumeCollection::ERenderType type)
if (m_c->get_canvas()->get_use_clipping_planes()) {
const std::array<ClippingPlane, 2> &clps = m_c->get_canvas()->get_clipping_planes();
clp_data_out.z_range = {float(-clps[0].get_data()[3]), float(clps[1].get_data()[3])};
}
return clp_data_out;
}
void GLGizmoPainterBase::render_triangles(const Selection& selection) const
{
auto *shader = wxGetApp().get_shader("gouraud");
if (! shader)
return;
shader->start_using();
shader->set_uniform("slope.actived", false);
shader->set_uniform("print_box.actived", false);
shader->set_uniform("clipping_plane", clp_dataf, 4);
shader->set_uniform("clipping_plane", this->get_clipping_plane_data().clp_dataf);
ScopeGuard guard([shader]() { if (shader) shader->stop_using(); });
int mesh_id = -1;
const ModelObject *mo = m_c->selection_info()->model_object();
int mesh_id = -1;
for (const ModelVolume* mv : mo->volumes) {
if (! mv->is_model_part())
continue;
@ -578,7 +576,8 @@ void TriangleSelectorGUI::render(ImGuiWrapper* imgui)
if (! shader)
return;
assert(shader->get_name() == "gouraud");
ScopeGuard guard([shader]() { if (shader) shader->set_uniform("offset_depth_buffer", false);});
shader->set_uniform("offset_depth_buffer", true);
for (auto iva : {std::make_pair(&m_iva_enforcers, enforcers_color),
std::make_pair(&m_iva_blockers, blockers_color)}) {
if (iva.first->has_VBOs()) {
@ -604,7 +603,7 @@ void TriangleSelectorGUI::render(ImGuiWrapper* imgui)
auto *contour_shader = wxGetApp().get_shader("mm_contour");
contour_shader->start_using();
glsafe(::glDepthFunc(GL_GEQUAL));
glsafe(::glDepthFunc(GL_LEQUAL));
m_paint_contour.render();
glsafe(::glDepthFunc(GL_LESS));

View File

@ -126,7 +126,7 @@ public:
virtual bool gizmo_event(SLAGizmoEventType action, const Vec2d& mouse_position, bool shift_down, bool alt_down, bool control_down);
protected:
void render_triangles(const Selection& selection, const bool use_polygon_offset_fill = true) const;
virtual void render_triangles(const Selection& selection) const;
void render_cursor() const;
void render_cursor_circle() const;
void render_cursor_sphere(const Transform3d& trafo) const;
@ -176,6 +176,14 @@ protected:
Right
};
struct ClippingPlaneDataWrapper
{
std::array<float, 4> clp_dataf;
std::array<float, 2> z_range;
};
ClippingPlaneDataWrapper get_clipping_plane_data() const;
private:
bool is_mesh_point_clipped(const Vec3d& point, const Transform3d& trafo) const;
void update_raycast_cache(const Vec2d& mouse_position,