Merge branch 'tm_scales'

This commit is contained in:
tamasmeszaros 2019-06-26 11:21:55 +02:00
commit f93e7496f7
7 changed files with 418 additions and 383 deletions

View file

@ -10,10 +10,6 @@
#include "boost/multiprecision/integer.hpp"
#include "boost/rational.hpp"
//#include "../tools/Int128.hpp"
//#include "gte/Mathematics/GteMinimumAreaBox2.h"
//#include "../tools/libnfpglue.hpp"
//#include "../tools/nfp_svgnest_glue.hpp"
@ -556,11 +552,12 @@ TEST(GeometryAlgorithms, NestTest) {
ASSERT_LE(result.size(), 2);
int partsum = std::accumulate(result.begin(),
size_t partsum = std::accumulate(result.begin(),
result.end(),
0,
size_t(0),
[](int s,
const decltype(result)::value_type &bin) {
const decltype(
result)::value_type &bin) {
return s += bin.size();
});
@ -935,49 +932,22 @@ template<class T> struct BoostGCD {
};
using Unit = int64_t;
using Ratio = boost::rational<boost::multiprecision::int128_t>;// Rational<boost::multiprecision::int256_t>;
//double gteMinAreaBox(const PolygonImpl& p) {
// using GteCoord = ClipperLib::cInt;
// using GtePoint = gte::Vector2<GteCoord>;
// gte::MinimumAreaBox2<GteCoord, Ratio> mb;
// std::vector<GtePoint> points;
// points.reserve(p.Contour.size());
// for(auto& pt : p.Contour) points.emplace_back(GtePoint{GteCoord(pt.X), GteCoord(pt.Y)});
// mb(int(points.size()), points.data(), 0, nullptr, true);
// auto min_area = double(mb.GetArea());
// return min_area;
//}
using Ratio = boost::rational<boost::multiprecision::int128_t>;
}
TEST(RotatingCalipers, MinAreaBBCClk) {
// PolygonImpl poly({{-50, 30}, {-50, -50}, {50, -50}, {50, 50}, {-40, 50}});
// PolygonImpl poly({{-50, 0}, {50, 0}, {0, 100}});
auto u = [](ClipperLib::cInt n) { return n*1000000; };
PolygonImpl poly({ {u(0), u(0)}, {u(4), u(1)}, {u(2), u(4)}});
long double arearef = refMinAreaBox(poly);
long double area = minAreaBoundingBox<PolygonImpl, Unit, Ratio>(poly).area();
// double gtearea = gteMinAreaBox(poly);
ASSERT_LE(std::abs(area - arearef), 500e6 );
// ASSERT_LE(std::abs(gtearea - arearef), 500 );
// ASSERT_DOUBLE_EQ(gtearea, arearef);
}
TEST(RotatingCalipers, AllPrusaMinBB) {
size_t idx = 0;
// /size_t idx = 0;
long double err_epsilon = 500e6l;
for(ClipperLib::Path rinput : PRINTER_PART_POLYGONS) {
@ -991,11 +961,10 @@ TEST(RotatingCalipers, AllPrusaMinBB) {
long double arearef = refMinAreaBox(poly);
auto bb = minAreaBoundingBox<PathImpl, Unit, Ratio>(rinput);
long double area = cast<long double>(bb.area());
// double area = gteMinAreaBox(poly);
bool succ = std::abs(arearef - area) < err_epsilon;
std::cout << idx++ << " " << (succ? "ok" : "failed") << " ref: "
<< arearef << " actual: " << area << std::endl;
// std::cout << idx++ << " " << (succ? "ok" : "failed") << " ref: "
// << arearef << " actual: " << area << std::endl;
ASSERT_TRUE(succ);
}
@ -1006,15 +975,14 @@ TEST(RotatingCalipers, AllPrusaMinBB) {
PolygonImpl poly(removeCollinearPoints<PathImpl, PointImpl, Unit>(rinput, 1000000));
long double arearef = refMinAreaBox(poly);
auto bb = minAreaBoundingBox<PolygonImpl, Unit, Ratio>(poly);
long double area = cast<long double>(bb.area());
// double area = gteMinAreaBox(poly);
bool succ = std::abs(arearef - area) < err_epsilon;
std::cout << idx++ << " " << (succ? "ok" : "failed") << " ref: "
<< arearef << " actual: " << area << std::endl;
// std::cout << idx++ << " " << (succ? "ok" : "failed") << " ref: "
// << arearef << " actual: " << area << std::endl;
ASSERT_TRUE(succ);
}

View file

@ -7,6 +7,9 @@
#include <utility> // for std::forward
#include <algorithm>
#include "libslic3r.h"
#include "Point.hpp"
namespace Slic3r {
/// Handy little spin mutex for the cached meshes.
@ -239,13 +242,92 @@ template<class C> bool all_of(const C &container)
});
}
template<class X, class Y> inline X ceil_i(X x, Y y)
{
static_assert(std::is_integral<X>::value &&
std::is_integral<Y>::value && sizeof(X) >= sizeof(Y),
"");
// A shorter C++14 style form of the enable_if metafunction
template<bool B, class T>
using enable_if_t = typename std::enable_if<B, T>::type;
return (x % y) ? x / y + 1 : x / y;
// /////////////////////////////////////////////////////////////////////////////
// Type safe conversions to and from scaled and unscaled coordinates
// /////////////////////////////////////////////////////////////////////////////
// A meta-predicate which is true for integers wider than or equal to coord_t
template<class I> struct is_scaled_coord
{
static const SLIC3R_CONSTEXPR bool value =
std::is_integral<I>::value &&
std::numeric_limits<I>::digits >=
std::numeric_limits<coord_t>::digits;
};
// Meta predicates for floating, 'scaled coord' and generic arithmetic types
template<class T>
using FloatingOnly = enable_if_t<std::is_floating_point<T>::value, T>;
template<class T>
using ScaledCoordOnly = enable_if_t<is_scaled_coord<T>::value, T>;
template<class T>
using ArithmeticOnly = enable_if_t<std::is_arithmetic<T>::value, T>;
// A shorter form for a generic Eigen vector which is widely used in PrusaSlicer
template<class T, int N>
using EigenVec = Eigen::Matrix<T, N, 1, Eigen::DontAlign>;
// Semantics are the following:
// Upscaling (scaled()): only from floating point types (or Vec) to either
// floating point or integer 'scaled coord' coordinates.
// Downscaling (unscaled()): from arithmetic types (or Vec) to either
// floating point only
// Conversion definition from unscaled to floating point scaled
template<class Tout,
class Tin,
class = FloatingOnly<Tin>,
class = FloatingOnly<Tout>>
inline SLIC3R_CONSTEXPR Tout scaled(const Tin &v) SLIC3R_NOEXCEPT
{
return static_cast<Tout>(v / static_cast<Tout>(SCALING_FACTOR));
}
// Conversion definition from unscaled to integer 'scaled coord'.
// TODO: is the rounding necessary ? Here it is to show that it can be different
// but it does not have to be. Using std::round means loosing noexcept and
// constexpr modifiers
template<class Tout = coord_t, class Tin, class = FloatingOnly<Tin>>
inline SLIC3R_CONSTEXPR ScaledCoordOnly<Tout> scaled(const Tin &v) SLIC3R_NOEXCEPT
{
//return static_cast<Tout>(std::round(v / SCALING_FACTOR));
return static_cast<Tout>(v / static_cast<Tout>(SCALING_FACTOR));
}
// Conversion for Eigen vectors (N dimensional points)
template<class Tout = coord_t, class Tin, int N, class = FloatingOnly<Tin>>
inline EigenVec<ArithmeticOnly<Tout>, N> scaled(const EigenVec<Tin, N> &v)
{
return v.template cast<Tout>() / SCALING_FACTOR;
}
// Conversion from arithmetic scaled type to floating point unscaled
template<class Tout = double,
class Tin,
class = ArithmeticOnly<Tin>,
class = FloatingOnly<Tout>>
inline SLIC3R_CONSTEXPR Tout unscaled(const Tin &v) SLIC3R_NOEXCEPT
{
return static_cast<Tout>(v * static_cast<Tout>(SCALING_FACTOR));
}
// Unscaling for Eigen vectors. Input base type can be arithmetic, output base
// type can only be floating point.
template<class Tout = double,
class Tin,
int N,
class = ArithmeticOnly<Tin>,
class = FloatingOnly<Tout>>
inline SLIC3R_CONSTEXPR EigenVec<Tout, N> unscaled(
const EigenVec<Tin, N> &v) SLIC3R_NOEXCEPT
{
return v.template cast<Tout>() * SCALING_FACTOR;
}
} // namespace Slic3r

View file

@ -39,7 +39,7 @@ template<> inline Slic3r::Points& contour(Slic3r::Polygon& sh) { return sh.point
template<> inline const Slic3r::Points& contour(const Slic3r::Polygon& sh) { return sh.points; }
template<> Slic3r::Points::iterator begin(Slic3r::Points& pts, const PathTag&) { return pts.begin();}
template<> Slic3r::Points::const_iterator cbegin(const Slic3r::Points& pts, const PathTag&) { return pts.begin(); }
template<> Slic3r::Points::const_iterator cbegin(const Slic3r::Points& pts, const PathTag&) { return pts.cbegin(); }
template<> Slic3r::Points::iterator end(Slic3r::Points& pts, const PathTag&) { return pts.end();}
template<> Slic3r::Points::const_iterator cend(const Slic3r::Points& pts, const PathTag&) { return pts.cend(); }
@ -71,37 +71,40 @@ using Rational = boost::rational<__int128>;
MinAreaBoundigBox::MinAreaBoundigBox(const Polygon &p, PolygonLevel pc)
{
const Polygon& chull = pc == pcConvex ? p : libnest2d::sl::convexHull(p);
const Polygon &chull = pc == pcConvex ? p :
libnest2d::sl::convexHull(p);
libnest2d::RotatedBox<Point, Unit> box =
libnest2d::minAreaBoundingBox<Polygon, Unit, Rational>(chull);
m_right = box.right_extent();
m_bottom = box.bottom_extent();
m_right = libnest2d::cast<long double>(box.right_extent());
m_bottom = libnest2d::cast<long double>(box.bottom_extent());
m_axis = box.axis();
}
MinAreaBoundigBox::MinAreaBoundigBox(const ExPolygon &p, PolygonLevel pc)
{
const ExPolygon& chull = pc == pcConvex ? p : libnest2d::sl::convexHull(p);
const ExPolygon &chull = pc == pcConvex ? p :
libnest2d::sl::convexHull(p);
libnest2d::RotatedBox<Point, Unit> box =
libnest2d::minAreaBoundingBox<ExPolygon, Unit, Rational>(chull);
m_right = box.right_extent();
m_bottom = box.bottom_extent();
m_right = libnest2d::cast<long double>(box.right_extent());
m_bottom = libnest2d::cast<long double>(box.bottom_extent());
m_axis = box.axis();
}
MinAreaBoundigBox::MinAreaBoundigBox(const Points &pts, PolygonLevel pc)
{
const Points& chull = pc == pcConvex ? pts : libnest2d::sl::convexHull(pts);
const Points &chull = pc == pcConvex ? pts :
libnest2d::sl::convexHull(pts);
libnest2d::RotatedBox<Point, Unit> box =
libnest2d::minAreaBoundingBox<Points, Unit, Rational>(chull);
m_right = box.right_extent();
m_bottom = box.bottom_extent();
m_right = libnest2d::cast<long double>(box.right_extent());
m_bottom = libnest2d::cast<long double>(box.bottom_extent());
m_axis = box.axis();
}
@ -115,12 +118,14 @@ double MinAreaBoundigBox::angle_to_X() const
long double MinAreaBoundigBox::width() const
{
return std::abs(m_bottom) / std::sqrt(libnest2d::pl::magnsq<Point, long double>(m_axis));
return std::abs(m_bottom) /
std::sqrt(libnest2d::pl::magnsq<Point, long double>(m_axis));
}
long double MinAreaBoundigBox::height() const
{
return std::abs(m_right) / std::sqrt(libnest2d::pl::magnsq<Point, long double>(m_axis));
return std::abs(m_right) /
std::sqrt(libnest2d::pl::magnsq<Point, long double>(m_axis));
}
long double MinAreaBoundigBox::area() const
@ -138,5 +143,4 @@ void remove_collinear_points(ExPolygon &p)
{
p = libnest2d::removeCollinearPoints<ExPolygon>(p, Unit(0));
}
}
} // namespace Slic3r

View file

@ -63,9 +63,9 @@ std::string toString(const Model& model, bool holes = true) {
ExPolygons expolys = tmpmesh.horizontal_projection();
for(auto& expoly_complex : expolys) {
auto tmp = expoly_complex.simplify(1.0/SCALING_FACTOR);
ExPolygons tmp = expoly_complex.simplify(scaled<double>(1.));
if(tmp.empty()) continue;
auto expoly = tmp.front();
ExPolygon expoly = tmp.front();
expoly.contour.make_clockwise();
for(auto& h : expoly.holes) h.make_counter_clockwise();
@ -610,7 +610,7 @@ ShapeData2D projectModelFromTop(const Slic3r::Model &model,
if(tolerance > EPSILON) {
Polygons pp { p };
pp = p.simplify(double(scaled(tolerance)));
pp = p.simplify(scaled<double>(tolerance));
if (!pp.empty()) p = pp.front();
}
@ -633,8 +633,8 @@ ShapeData2D projectModelFromTop(const Slic3r::Model &model,
if(item.vertexCount() > 3) {
item.rotation(Geometry::rotation_diff_z(rotation0, objinst->get_rotation()));
item.translation({
ClipperLib::cInt(objinst->get_offset(X)/SCALING_FACTOR),
ClipperLib::cInt(objinst->get_offset(Y)/SCALING_FACTOR)
scaled<ClipperLib::cInt>(objinst->get_offset(X)),
scaled<ClipperLib::cInt>(objinst->get_offset(Y))
});
ret.emplace_back(objinst, item);
}
@ -658,8 +658,8 @@ ShapeData2D projectModelFromTop(const Slic3r::Model &model,
Item item(std::move(pn));
item.rotation(wti.rotation),
item.translation({
ClipperLib::cInt(wti.pos(0)/SCALING_FACTOR),
ClipperLib::cInt(wti.pos(1)/SCALING_FACTOR)
scaled<ClipperLib::cInt>(wti.pos(0)),
scaled<ClipperLib::cInt>(wti.pos(1))
});
ret.emplace_back(nullptr, item);
}
@ -822,7 +822,9 @@ bool arrange(Model &model, // The model with the geometries
auto& cfn = stopcondition;
coord_t md = ceil_i(min_obj_distance, 2) - SCALED_EPSILON;
// Integer ceiling the min distance from the bed perimeters
coord_t md = min_obj_distance - SCALED_EPSILON;
md = (md % 2) ? md / 2 + 1 : md / 2;
auto binbb = Box({libnest2d::Coord{bbb.min(0)} - md,
libnest2d::Coord{bbb.min(1)} - md},
@ -916,7 +918,9 @@ void find_new_position(const Model &model,
BoundingBox bbb(bed);
coord_t md = ceil_i(min_obj_distance, 2) - SCALED_EPSILON;
// Integer ceiling the min distance from the bed perimeters
coord_t md = min_obj_distance - SCALED_EPSILON;
md = (md % 2) ? md / 2 + 1 : md / 2;
auto binbb = Box({libnest2d::Coord{bbb.min(0)} - md,
libnest2d::Coord{bbb.min(1)} - md},

View file

@ -5,6 +5,7 @@
#include "SLABoostAdapter.hpp"
#include "ClipperUtils.hpp"
#include "Tesselate.hpp"
#include "MTUtils.hpp"
// For debugging:
//#include <fstream>
@ -203,7 +204,7 @@ void offset(ExPolygon& sh, coord_t distance) {
}
ClipperOffset offs;
offs.ArcTolerance = 0.01*scaled(1.0);
offs.ArcTolerance = scaled<double>(0.01);
Paths result;
offs.AddPath(ctour, jtRound, etClosedPolygon);
offs.AddPaths(holes, jtRound, etClosedPolygon);
@ -476,7 +477,7 @@ ExPolygons concave_hull(const ExPolygons& polys, double max_dist_mm = 50,
double dx = x(c) - x(cc), dy = y(c) - y(cc);
double l = std::sqrt(dx * dx + dy * dy);
double nx = dx / l, ny = dy / l;
double max_dist = scaled(max_dist_mm);
double max_dist = scaled<double>(max_dist_mm);
ExPolygon& expo = punion[idx++];
BoundingBox querybb(expo);
@ -492,7 +493,7 @@ ExPolygons concave_hull(const ExPolygons& polys, double max_dist_mm = 50,
ctour.reserve(3);
ctour.emplace_back(cc);
Point d(coord_t(scaled(1.)*nx), coord_t(scaled(1.)*ny));
Point d(scaled(nx), scaled(ny));
ctour.emplace_back(c + Point( -y(d), x(d) ));
ctour.emplace_back(c + Point( y(d), -x(d) ));
offset(r, scaled(1.));
@ -529,14 +530,14 @@ void base_plate(const TriangleMesh &mesh, ExPolygons &output, float h,
ExPolygons tmp; tmp.reserve(count);
for(ExPolygons& o : out)
for(ExPolygon& e : o) {
auto&& exss = e.simplify(scaled(0.1));
auto&& exss = e.simplify(scaled<double>(0.1));
for(ExPolygon& ep : exss) tmp.emplace_back(std::move(ep));
}
ExPolygons utmp = unify(tmp);
for(auto& o : utmp) {
auto&& smp = o.simplify(scaled(0.1));
auto&& smp = o.simplify(scaled<double>(0.1));
output.insert(output.end(), smp.begin(), smp.end());
}
}

View file

@ -668,7 +668,7 @@ void SLAPrint::process()
double ilhd = m_material_config.initial_layer_height.getFloat();
auto ilh = float(ilhd);
auto ilhs = scaled(ilhd);
coord_t ilhs = scaled(ilhd);
const size_t objcount = m_objects.size();
static const unsigned min_objstatus = 0; // where the per object operations start
@ -696,15 +696,13 @@ void SLAPrint::process()
double lhd = m_objects.front()->m_config.layer_height.getFloat();
float lh = float(lhd);
auto lhs = scaled(lhd);
coord_t lhs = scaled(lhd);
auto && bb3d = mesh.bounding_box();
double minZ = bb3d.min(Z) - po.get_elevation();
double maxZ = bb3d.max(Z);
auto minZf = float(minZ);
auto minZs = scaled(minZ);
auto maxZs = scaled(maxZ);
coord_t minZs = scaled(minZ);
coord_t maxZs = scaled(maxZ);
po.m_slice_index.clear();
@ -1013,9 +1011,6 @@ void SLAPrint::process()
using ClipperPolygons = std::vector<ClipperPolygon>;
namespace sl = libnest2d::shapelike; // For algorithms
// If the raster has vertical orientation, we will flip the coordinates
// bool flpXY = m_printer_config.display_orientation.getInt() == SLADisplayOrientation::sladoPortrait;
// Set up custom union and diff functions for clipper polygons
auto polyunion = [] (const ClipperPolygons& subjects)
{
@ -1066,8 +1061,8 @@ void SLAPrint::process()
const int fade_layers_cnt = m_default_object_config.faded_layers.getInt();// 10 // [3;20]
const double width = scaled(m_printer_config.display_width.getFloat());
const double height = scaled(m_printer_config.display_height.getFloat());
const auto width = scaled<double>(m_printer_config.display_width.getFloat());
const auto height = scaled<double>(m_printer_config.display_height.getFloat());
const double display_area = width*height;
// get polygons for all instances in the object
@ -1123,11 +1118,6 @@ void SLAPrint::process()
sl::translate(poly, ClipperPoint{instances[i].shift(X),
instances[i].shift(Y)});
// if (flpXY) {
// for(auto& p : poly.Contour) std::swap(p.X, p.Y);
// for(auto& h : poly.Holes) for(auto& p : h) std::swap(p.X, p.Y);
// }
polygons.emplace_back(std::move(poly));
}
}

View file

@ -61,20 +61,6 @@ typedef double coordf_t;
#define SLIC3R_NOEXCEPT noexcept
#endif
template<class Tf> inline SLIC3R_CONSTEXPR coord_t scaled(Tf val)
{
static_assert (std::is_floating_point<Tf>::value, "Floating point only");
return coord_t(val / Tf(SCALING_FACTOR));
}
template<class Tf = double> inline SLIC3R_CONSTEXPR Tf unscaled(coord_t val)
{
static_assert (std::is_floating_point<Tf>::value, "Floating point only");
return Tf(val * Tf(SCALING_FACTOR));
}
inline SLIC3R_CONSTEXPR float unscaledf(coord_t val) { return unscaled<float>(val); }
inline std::string debug_out_path(const char *name, ...)
{
char buffer[2048];